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Two algorithms of artifacts allocation in EEG-signals are described. For 

signal representation an autoregressive model is used. As a measure of 

distinction of segments in an EEG-signal the Kullback information is 

used. Results of real  EEG-signal processing are demonstrated. 
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INTRODUCTION 
Due to wide use of digital electroencephalography (EEG) systems in modern medical 

practice (E. Niedermeyer, F. Lopes da Silva, et al. [1]; F.Lopes da Silva et al. [2]), the 

problem of automatic allocation of artifacts in EEG becomes important (M.Van de 

Velde, G. Van Erp, P.J Cluitmans [3]; M.Van de Velde, I.R. Ghosh, P.J. Cluitmans 

[4]). In existing digital EEG-systems this problem is usually solved by visual analysis 

of EEG-signal on a screen and its eye-witnesed editing. 
 

In the article two methods of artifacts allocation in EEG-signals are considered. EEG-

data is considered as piece-stationary signal. From the random process theory point of 

view  it is possible to consider an artifact  as a change in dynamic properties of the 

process at some moment of time. EEG-signal is presented as an autoregressive 

process; a set of parameters corresponds to each stationary segment: coefficients of 

autoregression and dispersion of stimulating white noise. 
 

The first method uses so-called “one-model approach”: the first autoregressive (AR) 
model of necessary order in a fixed window is built on EEG  data. It is used as the 

basic model.  Then the second autoregressive model in some sliding window is 

identified. When spectral measure of distinction between two of these models becomes 

more than certain threshold, a new segment is formed. After that the logic analysis of 

fitting to a certain class of artifacts is made. Such procedure of segmentation that uses 

only a spectral measure of error goes with the delay after the change of spectral 

density function . As artifacts duration is small, for exact allocation of an artifact in 

data it is necessary to reduce this delay. For this purpose it is necessary to define the 

second threshold, smaller than the first one. If the value of the spectral measure of an 

error exceeds the first threshold then the following stationary segment begins until   

the  
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the spectral measure of an error becomes equal to the second threshold. Kullback 

divergence was used as a measure of distinction. 
 

The second method uses so-called “two-model approach”, when one model - “global” - 
is basic, and  the other - “local” - is checked. Borders of stationary segments are 

determined when distinction of parameters of models is essential. Two AR-models are 

simultaneously estimated: “local” – is estimated in short temporary window, 

corresponding to a signal after probable change, and “global” – in long temporary 

window, corresponding to a signal before change. 

 
AIM  AND  METHOD  OF  THE  RESEARCH 

 

Description  of  One- Model  Algorithm 
Segmentation of EEG-data is based on stationarity analysis of value of a spectral 

measure of error, which represents distinction between two spectral functions of 

density.  
 

Basic model is an autoregressive model in a fixed window 0, the second model - in 

some sliding window M'-M. Allocation of windows is shown in figure 1.  
 

EEG-data was considered as consisting from stationary subsequences. That means, the 

spectral estimation has insignificant changes in time. In 1980 H.Sugimoto has 

developed an adaptive method of segmentation for EEG analysis (N. H. Sugimoto [5]).  

 

We shall define the Kullback information  I 1 2:  as: 
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Kullback information that is limited in time is defined as function from length of data 
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Fig. 1: Windows in one-model algorithm. 

 

 

If length T is sufficiently great, then: 
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It is proved (A. Afifi, S. Azen [6]) that  Kullback information limited in time  I  ( 1:2 )T   

aspires to  I 1 2:  at rather large T. We shall define spectral density P1( )  as 
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It is here accepted that    ) jw ( exp = ) jw ( exp 2 1 АА   

It is possible to write down the following equality: 
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Where   k k m( , , , ) 0 1  is autocorrelation function of a residual sequence of 

autoregressive model (S.L. Marple [7]). Applying mentioned formula without constant 

coefficients we shall present in a following way: 
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Here MCO  is spectral measure of an error, first term reflects changes of complete 

energy of signal, while the second term reflects only changes of a spectrum. 

If value of a spectral measure of an error exceeds a threshold 1 , segmentation is 

carried out. Then, the sequence after segmentation is considered as different from a 

sequence before segmentation in sense of spectral density.  
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In general, the segmentation that uses only a spectral measure of an error, goes with a 

delay after the change in spectral density function. As the duration of artifacts is rather 

small (less then one second), for exact allocation of artifact in data it is necessary to 

remove this delay. Hence the second threshold  2  is given to reduce the delay in 

segmentation. The role of these thresholds is shown in the following way. When a 

value of the spectral measure of an error exceeds the threshold 1 , the segmentation 

turns back until a value of a spectral measure of an error becomes equal to the second 

threshold  2  smaller than 1 . 

 

DESCRIPTION  OF  THE  TWO- MODEL  ALGORITHM 
The given algorithm realizes so-called "two-model approach" for detection of changes 

in AR-process. Two AR-models are simultaneously estimated: "local" and "global".   

Allocation of windows in case of use of such approach is shown in figure 2. 
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Where (en) - white noise, r-a moment of change of a signal.  

We shall consider statistic of the following kind 
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The conditional mathematical expectation before and after the change: 
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Here J g g( , )0 1  is a Kullback divergence. 
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Fig. 2: Windows in two-model algorithm. 

 
 
 

The drift after the change is a symmetric function, that allows to realize symmetric 

detection, i.e. comparable characteristics of algorithm at transition from a "pure" 

signal to "noised" and vice versa. 

In case of Gauss autoregression wn is expressed: 
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The conditional mathematical expectation before and after the change is: 
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Here 10  , nn ee  are errors of updating for the first and the second model accordingly. 

The Burg algorithm was used as an algorithm that was estimating AR-parameters in a 

"short" temporary window, and a size of a window L can be changed (various size of a 

window was tested and good results were achieved at the size in 3-4 times more than 

order of AR-model). The trellised filter on the basis of approximate algorithm of the 

least squares was used as algorithm for estimation of AR-parameters in a "long" 

temporary window (A. Afifi, S. Azen [6]). 

The Hinkly test was used to W
n
 statistics to decrease delay and to obtain good 

estimation of the moment of change, i.e. the following statistics was used: 
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Where  is a positive drift. 
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Typical behaviour of statistics is shown in
 
figure 3.  

The moment of n
d
 disclosure corresponds to crossing of threshold  by the value: 
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Fig. 3: Typical behaviour of statistics is shown on the 3
rd

 figure. 
 

 
EXPERIMENTS 

For testing the algorithms we used EEG data that was obtained during scheduled 

diagnostic work in clinical laboratory. EEGs of eleven patients were used. During the 

experiments patients were in a quiet wakefulness condition (with closed or opened 

eyes). All patients had no steadily rough infringements of bioelectrical activity of the 

brain. 

Files, containing digital EEG's, were recorded by serial system "Encephalan 131-01,  

v. 4.2", manufactured by "Medicom LTD " company. Recordings were made under 

following parameters: 

- Number of channels - 16; 

- Sampling frequency - 150 Hz; 

- Number of digits of analog-digital converter - 10; 

- Duration of recording during investigation - up to 15 minutes. 
 

Fragments containing various displays of bioelectrical activity and artifacts were used 

for EEG processing. Allocation and interpretation of EEG fragments were made by 

doctor-expert by means of interactive analysis of records.   

During analysis of each fragment expert visually allocated parts of record that 

contained artifacts, parts of record with paroxysmal activity and parts of record 



SELECTION  OF  ARTIFACTS  IN  EEG-SIGNALS…. 
________________________________________________________________________________________________________________________________  

 

     75 

without the specified displays. The necessity of division of parts of records with 

paroxysmal activity and without it is caused by a fact that paroxysm and artifacts look 

similar and consequently their division requires additional analysis. 
 

As it was mentioned earlier, artifacts depending on the reason of their occurrence are 

divided into groups. For unity of data description, groups of paroxysmal and regular 

activity were included in classification. Thus, depending on kind of distortion the 

following groups were generated: 

– "Blinking" (group 1); 

– "Eyes movement" (group 2); 

– "Electrode movement" (group 3); 

– "Bad contact" (group 4); 

– "Paroxysm" (group 5); 

– "Regular activity" (group 6). 

The following parameters were used: 
 

Two-model algorithm. 

– The order of autoregressive model: 20 (estimation of autoregressive coefficients 

by Burg algorithm (S.L. Marple [7])); 

– Size of drift: 1.0: 

– Length of local window: 100 samples (0.66 sec): 

– Threshold size: 7; 
 

One-model algorithm. 

– The order of autoregressive model: 20 (estimation of autoregressive coefficients 

by Burg algorithm); 

– Length of window: 300 samples (2 sec); 

– Size of threshold 1  1 : 6; 

– Size of threshold 2 2 : 4. 
 

In table 1, results of algorithms used are submitted. 

 
CONCLUSION 

 

 As one can see from table 1, the both developed algorithms give good coincidence 

with expert estimations because level of coincidence is no less than 91%. According 

with artifact structure one model algorithm more sensitivity to detect blinking and 

electrode movement, two-model algorithm demonstrated better result to detect eyes 

movement and paroxysm artifact.    

 In whole, comparing common ability of both artifact detection methods,  two-model 

algorithm gives  better results in comparison with one-model algorithm, but it is 

necessary to take into account, that two-model algorithm has larger computing 

complexity.  

Reasonable agreement of results of automatic allocation with expert estimations 

allows to recommend to include developed methods in software of modern computer 

electroencephalographic systems. 
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Table 1: Results of algorithms use in case of different artifacts in EEG. 

 

 

Further development of suggested methods lies in solving of a problem of automatic 

classification of types of allocated artifacts by means of analysis of characteristics of 

spectral power density that is estimated on local parts of signal with artifacts            

(R. T. Al-Kasasbeh [8]).  Technology of wavelet transform can be effectively used for 

this problem solving.  
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Artifact 

 

Number of 
realization 

one-model algorithm two-model algorithm 

coincidence 
with expert 

false alarm coincidence 
with expert 

false 
alarm 

Blinking 33 93.1% 14.5% 92% 9.3% 

Eyes movement 28 91% 9.1% 97,5% 6.7% 

Electrode 

movement 

24 93.2% 11.4% 95,7% 7.2% 

Bad contact 37 91.5% 17.3% 94,1% 9.1% 

Paroxysm 31 92.2% 8.7% 98,2% 5.7% 
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 (EEG) اإختاليΔ إشاراΕ فرϭق جϬود الϬϜرباء الدماغيΔ اختيار الظواهر
  Εمعلوما ϝباستعما Kullback 

 
اإخ ال   ا       ل ي ي    الا  واهاقس   م م    خواέزم       ϩά الوέق  ا الثية   ا ق ل  اس ل έا   ا ه  

،  ل     ث   (EEG) إش έات فاϭس جϬ و  الهϬاا  ا ال م ة  ا  (artifacts)الاواها اللث ع ا 
ك   لل     Kullback  مس  م م   معلوم  ت  (EEG)المة ل ق     اجج ءاا المم  ءن م   ةش  έن 

ϭأثث      (EEG)   ل ا ال شم ص اللثي السل م أخάت ال έا ا  ل  ةش έات ϭاقع ا حق ق اةي  ح 
 ل  ش ه    (EEG) ةش έات فاϭس جϬو  الهϬاا ا ال م ة ا  ح ث يمه   اνف  ل  Ϭ  في لل .
. Autoregressive  نمولج الاي ضي  ِ  ِ 

 
ه ق       المواέزم         ق ل     اع ن  يمϬم      م    ح قق      م المث    ااا الث     حة          قل      اإخ     ا ت 

(artifacts) زم  ت  ل   ش ه  اامم   تέا ل وص ا اإض فا قل  الموا  Ϩفي ضوا لل  قسمح ل .
.  ل ل ويا لل   اإقم  ϩ المواέزم      يمه       ظاي ع نااي  ت έϭ ϭEEGاله مح مض مم ت 

الشثه ت العμ ثون ا إ   مام م  ءات قل   اإخ  ا ت ϭ اج  ث    قيوي  الموجا ϭ خμ يص
المؤ يا لϭ  Ϭ قϨμ فϬ . ة  ةي اف ا قل  المواέزم  ت قمع  ةك ش ف اإخ ا ت اليق ق ا إش έات 

 أكةا ف  ل ا.   EEG  فاϭس المϬ  الهϬاا ي ا
 

                        الممس      ت المواέزم      ا الة ن      ا قعل     ي ن       يت قي ي       اإخ      ا ت الϨ قم     ا         ةزاح     ا
( electrode movement )       حاك  ا الع ϭ   (eyes movement   )  νم  ا ϭ
(paroxysm)     ال ϭblinking     زم  اέله   الموا ϭ   لϭزم  ا اجέأكة ا ف  ل  ا م   الموا

 قل  اإخ ا ت.  حسΏΎالة ن ا معق ن έي ض   ϭ قي  ج ةل  ϭق  أظول في 
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