[1] A. Azarhoosh, F. M. Nejad, and A. Khodaii, “Evaluation of the effect of nano-TiO2 on the adhesion between aggregate and asphalt binder in hot mix asphalt,” Eur. J. Environ. Civ. Eng., vol. 22, 2018, doi: 10.1080/19648189.2016.1229227.
[2] Q. Xu, H. Chen, and J. A. Prozzi, “Performance of fiber reinforced asphalt concrete under environmental temperature and water effects,” Constr. Build. Mater., vol. 24, no. 10, pp. 2003–2010, 2010, doi: 10.1016/j.conbuildmat.2010.03.012.
[3] G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto, “Asphalt modification with different polyethylene-based polymers,” Eur. Polym. J., vol. 41, no. 12, pp. 2831–2844, 2005.
[4] E. Eka Putri and O. Vasilsa, “Improve the Marshall stability of porous asphalt pavement with HDPE addition,” in MATEC Web of Conferences, 2019, vol. 276, p. 3005.
[5] S. Hinislioglu and E. Agar, “Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix,” Mater. Lett., vol. 58, no. 3–4, pp. 267–271, 2004, doi: 10.1016/S0167-577X(03)00458-0.
[6] L. A. Ahmed, “Improvement of Marshall properties of the asphalt concrete mixtures using the polyethylene as additive,” Eng. Technol. J., vol. 25, no. 3, pp. 383–394, 2007.
[7] Z. Kalantar, A. Mahrez, and M. R. Karim, “PROPERTIES OF BITUMINOUS BINDER MODIFIED WITH HIGH DENSITY Penetration Test Results,” Int. Eng. Conv., no. May, pp. 11–14, 2009.
[8] N. Z. Habib, I. Kamaruddin, M. Napiah, and M. T. Isa, “Rheological properties of polyethylene and polypropylene modified bitumen,” Int. J. Civ. Environ. Eng., vol. 3, no. 2, pp. 96–100, 2011.
[9] F. Moghadas Nejad, A. Azarhoosh, and G. H. Hamedi, “Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt–a laboratory study,” Road Mater. Pavement Des., vol. 15, no. 3, pp. 746–756, 2014.
[10] N. Y. Ahmed and A. S. M. AL-Harbi, “Effect of Density of the Polyethylene Polymer on the Asphalt Mixtures,” J. Univ. Babylon, vol. 22, no. 4, pp. 674–683, 2014.
[11] F. M. Nejad, M. Gholami, K. Naderi, and M. Rahi, “Evaluation of rutting properties of high density polyethylene modified binders,” Mater. Struct., vol. 48, no. 10, pp. 3295–3305, 2015.
[12] H. A. A. Gibreil and C. P. Feng, “Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt,” Constr. Build. Mater., vol. 142, pp. 101–108, 2017, doi: 10.1016/j.conbuildmat.2017.03.062.
[13] A. K. Sarkar, “Analysis of Effects of High-Density and Low-Density Polyethylene Wastes on Bitumen for Highway Construction,” Int. Res. J. Eng. Technol., pp. 1057–1061, 2019.
[14] L. Zhou, W. Huang, Y. Zhang, Q. Lv, C. Yan, and Y. Jiao, “Evaluation of the adhesion and healing properties of modified asphalt binders,” Constr. Build. Mater., vol. 251, p. 119026, 2020.
[15] C. ASTM, “128-15.“,” Stand. Test Method Relat. Density (Specific Gravity) Absorpt. Fine Aggregate”, ASTM Curr. Ed. Approv. Jan, vol. 1, 2015.
[16] A. International, “ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.” ASTM International West Conshohocken (PA), 2015.
[17] A. Standard, “D854.(2014),” Stand. test methods Specif. gravity soil solids by water Pycnom.
[18] C. ASTM, “Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate.” ASTM International, 2013.
[19] A. ASTM, “C131-06 Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.” Conshohoken, PA: ASTM, 2006.
[20] C. Fang, R. Yu, Y. Li, M. Zhang, J. Hu, and M. Zhang, “Preparation and characterization of an asphalt-modifying agent with waste packaging polyethylene and organic montmorillonite,” Polym. Test., vol. 32, no. 5, pp. 953–960, 2013, doi: 10.1016/j.polymertesting.2013.04.006.
[21] M. Mubaraki, “The Effect of Modified Asphalt Binders by Fourier Transform Infrared Spectroscopy , X-Ray Diffraction , and Scanning Electron Microscopy,” vol. 6, pp. 5–14, 2019.
[22] ASTM International, “D6927-15 Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. Designation: D6927-15,” 2015. doi: 10.1520/D6927-15.2.
[23] AASHTO T283-14, “Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage,” Am. Assoc. State Highw. Transp. Off. Washington, DC, vol. 14, 2014.
[24] K. D. Stuart, “Moisture damage in asphalt mixtures-a state-of-the-art report,” FHWA-RD-90-01. FHWA, Washingt. DC, 1990.
[25] Egyptian code of practice for urban and rural roads part 4: road material and its tests. Egypt: Housing and Building National Research Center, 2008.
[26] H. A. Omar, N. I. M. Yusoff, M. Mubaraki, and H. Ceylan, “Effects of moisture damage on asphalt mixtures,” J. Traffic Transp. Eng. (English Ed., 2020.
[27] R. B. Mallik and T. El-Korchi, “Pavement Engineering: Principles and Practice-Chapter 5.” Taylor & Francis Group, Boca Raton, USA, ISBN987–1–4200–6029–4, 2009.
[28] C.D. Whiteoak, The Shell bitumen handbook. Shell Bitumen UK, 1990.
[29] M. Arabani, S. A. Tahami, and M. Taghipoor, “Laboratory investigation of hot mix asphalt containing waste materials,” Road Mater. Pavement Des., vol. 18, no. 3, pp. 713–729, 2017.