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ABSTRACT - Elman network is a class of recurrent neural networks
used for function approximation. The main problem of this class is that its
structure has a set of global sigmoid functions at its hidden layer. That
means that if the operating conditions of a process be identified, are
changed the function approximation property of the network is degraded.
This paper introduces a new version of the EIman network named Elman
Recurrent Wavelet Neural Network (ERWNN). It merges the multi-
resolution property of the wavelets and the learning capabilities of the
Elman neural network to inherit the advantages of the two paradigms and
to avoid their drawbacks. Stability and convergence property is proven
for the proposed network. The paper also develops a model reference
control scheme using the proposed ERWNN. The proposed scheme
belongs to indirect adaptive control schemes. The dynamic back
propagation (DBP) algorithm is employed to train both the two networks
structured for the indirect control scheme. This paper derives also the
plant sensitivity for adjusting the parameters of the developed controller.
The advantages of this new version of ERWNN in modeling and
controlling time intensive dynamic processes, are reflected in our
simulation results.

KEY WORDS: Recurrent neural network , wavelets, respiratory
systems.

1. INTODUCTION

The nonlinear function mapping properties of neural networks are central to their use
in modeling and controlling dynamic systems [1-4]. In general, neural networks can be
classified according to their structures into feedforward networks include the multi-
layer perceptron (MLP) [5], and recurrent networks include the Elman network [6].
They can also be classified according to their learning algorithms include supervised
learning [5], unsupervised learning [7] and [8], and reinforcement learning [9]. The
Elman recurrent neural network (ERNN) is a type of recurrent networks that has a wide
range of applications [10], [11], and [12]. Training the self feedback Elman network
with dynamic backpropagation (DBP) algorithm was proposed by Pham and Liu [13].
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Unlike, the basic Elman network trained by the standard backpropagation (BP)
algorithm, the modified Elman trained by DBP was able to model high-order dynamic
systems.

Recently, a set of neural networks are structured based on the concepts of the
wavelet transform. There are two kinds of Wavelet Neural Networks (WNNSs), one
with fixed dilation and translation parameters, and the other with adjustable dilation
and translation parameters [14] and [15]. The latter realizes the multiresolution
property that is very useful for function approximation purposes. The wavelets with
coarse resolution can capture the global behavior (low frequency) easily, while the
wavelets with fine resolution can capture the local behavior (higher frequency). The
performance of a model-based control system depends strongly on the accuracy of the
process model used. Many real-time processes have complex, uncertain and non-linear
dynamics and so it is difficult to model them mathematically. Because of the function
approximation ability of neural networks, much research has been conducted on
adapting them for modeling and controlling dynamic systems [4] and [11].
Feedforward neural networks such as MLP and Radial Basis Function (RBF) networks
usually does pose a serious problem when it is employed for modeling purposes. This
problem can be summarized as follows. If a feedforward network is adopted for the
modeling task, then we should know the number of delayed input and output in
advance, and feed them as a taped line to the network input. The exact structure of a
dynamic system is usually unknown. Besides much taped delayed lines increase the
dimension of the input vector that results a large network size. To deal with this
problem, interest in using recurrent networks e. g. ERNN for processing dynamic
systems has been steadily growing in recent years, [16] and [17].

This paper focuses on the EIman recurrent neural network, ERNN, to overcome the
structure identification problem of the feedforward networks mentioned above. The
main drawback of using the original ERNN is that it has global sigmoid functions at its
hidden layer. That means that if the operating conditions of a process to be modeled are
changed, the function approximation property of the Elman network is degraded as
mentioned previously. This paper merges the multi-resolution property of the wavelets
and the learning capabilities of the Elman network to overcome the limitations of
ERNN on modeling and controlling dynamic systems. That results a new version of
Elman network named ERWNN that has a universe of discourse covered by a set of
local wavelets instead of global sigmoid functions. This is our first motivation. Unlike
the traditional Elman recurrent network ERNN [6], the proposed ERWNN has the
advantages of better local accuracy, generalization capability and fast convergence as
reflected from our simulation results.

This paper also introduces the proposed ERWNN for controlling dynamic systems. It
describes a design method for a model reference control structure using the proposed
ERWNN. In this structure, two ERWNNSs are employed, one is a controller named
(ERWNNC) and the other is an identifier called ERWNNI that provides information
about the plant be controlled to the former. This scheme is named ERWNN-based
indirect control (ERWNN-ICS). The paper derives the plant sensitivity for adjusting
the parameters of the controller. The paper also employs the DBP to train both the two
networks of the proposed scheme and applies it for controlling time intensive
processes.
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Controlling of the oxygen delivery to mechanically ventilated hypoxic patients is a
time intensive process that must balance adequate tissue oxygenation against possible
toxic effects of oxygen exposure [18] and [19]. Although many researches have been
conducted for oxygenation of newborn patients, few researches are carried out for
adults. The proposal scheme has been applied to control the oxygen delivery for adults
patients. Controlling this process using conventional proportional plus integral (PI)
controller needs empirical adjustments for the controller parameters. It means that if
the operating conditions of the controlled plant is changed, these parameters should be
readjusted. A multi-model adaptive controller (MMAC) [21] and feedforward fuzzy
neural network-based indirect control scheme (FNN-ICS) [22], were introduced for
controlling this process, however satisfied results have not been achieved. This paper
employs this time intensive nonlinear process to test the proposed ERWNN-ICS.
Compared with PI, MMAC controllers and FNN-ICS, best results were achieved using
the developed ERWNN-ICS.

The motivations of this paper can be concluded as follows:

Development a new version of ERNN named ERWNN

Deriving the DBP algorithm to train the proposed ERWNN

Testing the stability and convergence of the proposed ERWNN

Development an indirect control scheme based on the proposed ERWNN

named ERWNN-ICS

o Deriving the plant sensitivity to adjusting the parameters of the developed
ERWNN-ICS

The rest of the paper is organized as follows. Section 2 describes the proposed
ERWNN and its training algorithm. Section 3 depicts the modeling simulation results
using both the ERNN and the ERWNN. Section 4 details the modeling and controlling
of dynamic systems using the proposed indirect control scheme. Training both the two
networks of the proposed indirect control scheme is described in section 5. Simulation
results on modeling and controlling the respirator dynamic system are depicted in
section 6. Section 7 concludes the paper by summarizing the contributions made.

2. EEIMAN RECURRENT WAVELET NEURAL NETWORK

This section details wavelet transform. It describes the structure and training algorithm
of the introduced ERWNN and derives the DBP algorithm to adapt the parameters of
the proposed network.

2.1. Wavelet Transform

Unfortunately, most signals encountered in practice, are non-stationary. Such signal
requires a time-frequency representation rather just a time or frequency representation.
In other words, technologies based on Fourier Transform (FT) or even its
modifications still suffer from a set of drawbacks. That is that FTs are not able to
analysis or approximate signals with both sharp transitions and slowly varying spectra.
Authors who did not realize this fact blindly build their technologies based on FTs.
Besides, technologies that depend on FT are quadratic or nonlinear in nature with
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highly computation demand. Wavelet transform is the only linear transform that can
analysis or approximate stationary and/or non-stationary signals at varying resolutions.

The basic concepts about wavelet transforms that are relevant to this paper are
briefly recalled. The coherent states g®? all have the same envelope function g, which
is translated by the amount q, and “filled in” with oscillations with frequency p [23].
Wavelets are similar to the g®® in that they also constitute a family of functions
derived from an single function, and indexed by two labels, one for position, b, and the
other for frequency, a. That is.

h(@) (x) = |a|<—1/2) h(%) 1)

where h is a square integral function such that.

o = I ey < @

and a,beR and a=0. If h has some decay at infinity, then (2) is equivalent to the
requirement [h(x)dx=0. Compared with the coherent state g®?, wavelets will be a
better tool in situations where better time-resolution at higher frequencies, a<<1, than
at low frequencies, a>>1. It is clear that the major different between short-time

(windowed) FT and wavelet transform is that, in the latter high frequency components
are studied with sharper time resolution than low frequency components.
The link between wavelets and neural networks was introduced by [24]. In general, a

set of vectors {y/j je J}in Hilbert space H for which the sums ZKTJ., f>‘2yield upper
jed

and lower bounds for the norm |f|’, is called a frame. Given a frame y,,  in the
Hilbert space H , for any function f e H , f can be decomposed in terms of the frame
elements as follows [15]:

fx)= X <f ' S_ISUM,N >5UM,N (X) 3

M,Nezd

where S is the frame operator H —»H and y,, , is defined below:

Z4VAY (X):W;bbl (Xl)W‘;Z'bz (X3) ... V/;qqu (Xq) 4

'q

M7 :[al,az, -1 ], NT :[bl,bz, ...,bq], (//; p. (x;) can be generated by dilating and
i’

translating the mother wavelet as will be shown in section B. The parameters a; and b;
are the dilation and translation respectively.

In most practical applications, the function of interest have finite support, therefore it
is possible to truncate infinite number of wavelet frames in (3) to reconstruct the
function f as follows:

Q
f (X) 2 WM,nTM,N (X) (5)
M, N
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where w, , =(f,5™%,, ) and Q is the total number of wavelet function selected. This

equivalent to the wavelet neural network introduced by [24]. Initialization and wavelet
networks were described in [25] and [26].

2.2. Structure of ERWNN

The structure of the proposed ERWNN is similar to the structure of ERNN that is
described in [13]. The first motivation of this paper is that it introduces the
multiresolution property of the wavelets to the ERNN by replacing the sigmoid
function at its hidden layer with a set of wavelet functions defined in (6) as depicted in
Fig. 1. The idea of employing wavelets to neural networks described in section A, was
borrowed to construct our ERWNN. The novelty of the proposed network can be
concluded as follows:

Converting the ERNN from global-support (i.e. sigmoid functions) network, ERNN, to
local-support (wavelets) network, ERWNN, results a universal tool for function
approximation as will be shown in section 3. This is due to the use of a higher
resolution of the space when the data are dense, and a lower resolution when data are
sparse.

Merging the multi resolution property of the wavelets to the ERNN, keeps the number
of the hidden/context layer approximately six for a complex process. In other words, to
obtain similar RMS values using both the two networks, the number of the
hidden/context units should be increased using the ERNN compared with the proposed
ERWNN.

Referred to Fig. 1, it can be seen that the proposed network, in addition to the input,
the hidden units and the output unit, the context units, there are also the link weights.
These weights link, respectively, the input / hidden units, the context / hidden units,
and the hidden / output units. The function of each unit at a layer in the proposed
ERWNN can be described as follows:

Layer-1: The input unit at this layer is only a buffer unit, which passes the signals with
out changing them.

Layer-2: Instead of using sigmoid functions [6] at the hidden layer of the traditional
ERNN, this paper proposes that each unit in the hidden layer implements the
multidimensional wavelets defined in (6):

0 =10 () ©

vi —bi

where x; = , viisi™ input to a hidden unit, h.() s the i" daughter wavelet

a.

|

generated by a translation b;, and dilation a from a mother wavelet h(). The
employed mother wavelet is:

h(x) = (L - x?) exp(=x?), a0 7)

It also proposes the dilation parameter of the wavelets defined in (6) to link the
hidden and the context units as shown in Fig. 1 and the weights of the traditional
network are considered as a scaling parameters.
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Fig. 1. The modified ERWNN.

Layer-3: This layer represents the final output of the network. At a specific time k, the
previous activations of the hidden units (at time k-1) and the current input (at time k)
are used as inputs to the hidden units. At this stage, the network acts as a feedforward
network and propagates theses inputs forward to produce the output similar to the
traditional ERNN. This shows that the proposed ERWNN is an approximate realization
of ERNN. The function of each unit at a specific layer in the proposed ERWNN is
described as follows:

The input of a hidden unit at the hidden layer is:

Vi () =wi; (k=1 x; (k) (8)

Via () =wi (k=D u(k) )

wherej=1,...,n ,and i=1,2... ,n. Let 1=1,2,...,n+1.
The output of a hidden unit at the hidden layer is:

iy Vi (k))=(1—[%} ) EXP<—("(:¢J > (10)

where1=1,....,n+1

n+l
X; (K) = |1_[ hi (vi (K)) (11)
=1
The context unit output is:

X;(K)=a;x (k-D+axjk-1) (12)

The final output of the network is:
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>w! (k=) x, (k)
y(k) = =— (13)
; Xi (k)

2.3. Training of the ERWNN

This paper derives the DBP algorithm to train the proposed self feedback ERWNN.
This is our second motivation in this paper. In this case the feedback vector,
X () ={x; ()}, s a % Kk-D+axi(k-1), which is a function of
W k-2)x(k-2)+w'(k-2u(k-2). Therefore, x;(k) depends on the weights of the
previous time instants. When an input-output pair, (u(k),yq(k)), is presented to the
network at time k, the error function at the network output defined in (14) can be

minimized to obtain the best solution from a set of given solutions. Accordingly, the
weights are updated using DBP algorithm at each time step k as follows:

=2y, 00—yl (14)

where yq4(k) and y(k) are the desired and the actual outputs respectively.

—OE« —0OE« oy(k) _ % OXi
- =CEex = (Y, () - y(k) *—=— 15
kD 0 ok T (15)
—0OE« _ —OEx . 9Y(K) . Oxi(K) (16)
ow; (k=1 oy(k) oxi(k) ow (k-2
(i Xi (k)j*w,y (k-1) _(Zn: w’ X (k))
gﬂx: - . 2 17)
| (Exw)
According to the above derivatives (16) becomes:
i = _ *ﬂ* L ahivl(vi,l (k))
S icD ~ Vo0 =0 o T (v, ()l

ohia (k) ohia(viy (k) ovia (k) :6hi,1(Vi,|(k))*u
ow; (k=1 ovia(k)  owj(k-1) ovia (k)

ahi,l(vi,l(k)) _ % 2_[Vi,1(k)_b,li] *Vi,l(k)_bi,l *EX _[Vi,l(k)_bi,l(k)] (18)
aVi,l(k) di| (a“)z au(k)

—OE« _ —OE« . oy(K) . ox; (K) = (yd (k) _ Y(k))*ﬂ* aXXi (k) (19)
owp (k=1 oy(k) oxi(k) ow k-1 o ow (k-1

(k)

where,
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ox; (k) ( i (kK)) na 8hi,j (Vi,j (k) aVi,j (k)
AL L (v (K *— i (Vi (k)™ *
D Hh. oy~ T = g g0y TR

J =]

n+l ohi ; (v ; (k)
= it Wi K))*————
Eh" (vi, (K)) PYT)

1%

*xj()  (20)

The variable x| (k) depends on the weights of the previous time instants, w(k-2).
Accordingly, substituting (20) into (12), results (See the appendix ):

OXi (k) n+l 6hi,,~ (Vi,j (k) OXi (k-2
———=|1h (Vi, (k))*—*ai,-(k)* i(k—l)+a*x— 21
ow, G HM vyt X iy Y
and M can be computed as (18).

ovi; (k)
For the readers who are interested, they will discovered that the term « *% in
i,j -
(20) is equivalent to Hh. (Vi (k))*M w) (k — )*—8x. (k-1 using the
avl,j(k) a\NIJ(k_Z)

DBP with x§(k)=a,;x;(k-1), a=0. Although these two terms do not provide

exactly the same search, the former can provide an infinite impulse response. The
derivative of (14) to the translation parameter of a wavelet function, b, and to the
dilation parameter of a wavelet function, a, can be derived as follows:

—0OE« _ —aEk* oy(k) * OXi (k)
obig (k) oy(k) oxi(k) oh;;(k)

8y ke A ahi,g(vi,g(k))
_ k) — v(K))* 22 Cv (k) —————— 22
R 22)
2 2
ahi,g(k)7:2* 2_[Viv9(k)_bi,gj * (Vi:g(k)_zbi'g) * EXP —[Vi’g(k)_bi‘g] (23)
ob; ) Qg @) Qg
—0E« —0OEx . oy(k) , oxi(K) oy(k) , | net Ghi,g(k)
_ * * _ K) — v(K))* 2227 = K)*
G2, 00 M o) da,00 e OO gzl[ﬂgh’“ aa,g(k)J
(24)

where,

5hi,g(k) _2%(2— Vi,g(k)_bi,g )* (Vi,g(k)_?i,g) *EXP( Vi,g(k)_bi,g , g=n+l.
aai,g(k) i g (ai,g) dig

for (g=1,2,...,n):
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ohiy®) (W, (0-D)), avi,g(k/ o ) (e ®=big ) |
oas, (k)_ 2 [ aﬁg J {(ai,g ﬁaing (Vi,g(k) bi,g)} {2 ( 2y ]}

(Vi,g (k)_::)i,g)2 *EXP(— Vi,g(k)_bi,g i
(ai,g) ai,g

here, Vis(K) _ e 1ywew (k1.
where, S S <, (k=) x, (k=)

3. SIMULATION RESULTS IN MODELING DYNAMIC SYSTEMS

Simulation experiments using the proposed ERWNN were conducted on modeling
dynamic systems. Since the ERWNN is employed to perform this simulation, only
control signal is fed as input to the network. The developed DBP described above is
used to adapt the parameters of the ERWNN using the differences between the desired
and the actual outputs e(k). The RMS error as defined in (25) was computed for the
trained network using the test data.

RMS errorz\/Ti é(Yd[k]—y[k])z (25)

where Yd[k] and Y[K] respectively, are the desired and the actual outputs and T is the
number of samples during the test period.

For comparison reasons, the number of hidden/context units, which should be at
least be equal the order of the system to be modeled, was taken as six to enable the
conventional ERNN and the proposed ERWNN to model and control most practical
systems. The training times for the DBP-trained ERNN and the DBP-trained proposed
ERWNN were the same in the following simulation examples. Both the two networks
are tested using two types of processes, one is linear and the other is nonlinear.

3.1. Linear Systems Modeling

Although the proposed ERWNN with the DBP can model complex systems, it has first
been used to identify a linear system to test the soundness of the proposed network.
The third-order linear system employed in this simulation has one real pole and two
complex poles [13]:

G(S)

. [0}
(S +)[(S +1,)? +a?]

(26)

Its discrete form is:

y(K)=Ayk-1)+Ayk-2)+Ay(k—3)+Bu(k—1) +B,u(k—2) + Bu(k—=3)  (27)
With sampling period T=0.08 Sec. and the parameters t,=1.0, t;=2.5 and ,, — 2%_5 ,
the coefficients of (27) are A;=2.627771, A,=-2.333261, A;=0.697676, B,=0.017203

and B,=-0.030862, B;=0.014086. The training normalized squares set of 600 data
points, was produced randomly to the system model with zero initial conditions and
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recording the output data. After training the two networks, they were tested using a
different random set of 100 points and the responses of the conventional ERNN and the
proposed ERWNN are obtained and the RMS errors were computed using the RMS
error defined in (25). They are 4.04*10° and 1.38*107° respectively.

3.2. Non-linear Systems ldentifications

The ERNN and the proposed ERWNN were also tested using a non-linear dynamic
system. The same structure used for the above linear system modeling was employed.
The nonlinear system model is [27] and [28]:

y(k)=(0.8—-0.5exp(y*(k —1)))y(k —1)—
(0.3+0.9expy2(k —1)))y(k —2) + (28)
0.1sin(3.1415926/(k —1)) + e(k)

where e(k) was a Gaussian white noise sequence with zero mean and variance equal to
0.01. A data base of 600 data points was created using (28) (initial condition: y(0)=y(k-
1) =0.1). The first 500 data were employed as training data. The last 100 data were
reserved as new data test for the trained model. Both the ERNN and the proposed
ERWNN were trained using noise e(k) as the input and y(k) as the desired output. The
DBP was employed as the training algorithm. The response of the trained two networks
to the new data are depicted in Fig. 2 and Fig. 3 and the RMS error defined in (25) was
computed for the testing data of the ERNN and the proposed ERWNN and was found
0.76 and 0.53 respectively.

Using the conventional ERNN and the proposed ERWNN with DBP algorithm,
modeling simulation RMS errors for the above experiments are listed in Table I. The
table shows that best results have been obtained using the proposed ERWNN network.
It also depicts that using the two networks to obtain similar RMS error values, e. g.
1.38*10° and 0.53 respectively, the number of hidden/context units of the conventional
ERNN should be increased.

Fig. 2. Response of the ERNN (the non-linear system defined in (28)).
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Fig. 3. Response of the proposed ERWNN (the non-linear system defined in (28)).

Table 1: Modelling simulation results.

Cases ERNN ERWNN | hidden/context units

ERNN ERWNN
The 3" —order linear system | 4.04*10° | 1.38*10° 9 6
The nonlinear system 0.76 0.53 11 6

3.3. Identifiability, Generality and Stability Analysis

Identifiability, generality, and stability are very important features for a neural network
to be a universal approximator and to be suitable for control purposes. These features
can be defined as follows. First, identifiability basically consists of two parts,
parameter convergence and parameter consistency. The former usually does not pose a
serious problem, because it depends on the convergence of the optimization technique
used. The latter, on the other hand, requires that a unique set of parameter values
results from the identification method, which can be difficult to admire. Second,
generality is measured in terms of the Mean Squared Error (MSE) over a test or
validation set of data not previously seen by the network [29]. A small MSE means
good generalization ability. If this error increases after training has progressed for
some time, over-fitting or over-training is said to happen [30]. Based on our simulation
results depicted above, the RMS errors obtained are very small values and each error
value dose not increases after training phase. Third, stability and convergence mean
that feeding a sustained new input pattern to a network should not delete previously
learned information [31]. The stability of the ERNN proven in [17] and [32] can be
applied to the proposed ERWNN with ease as follows. The recurrent networks [10],
[11], [33], and [34] are given in a static model [32] defined as follows:

r%z—vi + fi[ZWijvj +uij
t = ,i=1,2,...,n

(29)
where 7is a positive parameter, Viis the state of neuron i with

net = > w,v, +6, . A .
JZ=1: H being its local field state, fi() the activation function of neuron
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i, Yithe external input, “Vithe link weight between the neuron i and neuron j
respectively. Recurrent networks usually employs sigmoid functions or (in our
proposal) wavelet functions defined in (6). The former employs the parameter A for
controlling the steepness of the sigmoid curve while the latter uses the dilation
parameter for controlling the width of the wavelet function to capture the low and high
frequencies of the process be controlled. Equation (29) was generalized as [32]:

S FWv+u)
dt (30)
where V=M V2.2 V0) s the neural network state vector, WV =W, Do is the weight

matrix and F :R" —=R"is the nonlinear mapping associated with the network’s
activation functions. System (30) has at most a finite number of equilibrium states if
one of the five conditions introduced by [23] is fulfilled, however, a recurrent network

to be a stable network, it should fulfill the necessary condition; R(F) =[=1.1]"

It is clear that the globally convergent dynamics of recurrent networks has been a
prerequisite for their application [33]. Because of its difficulty, there has been lack of a
systematic analysis on such dynamical property [34]. The paper proposes the following
test to check the stability and convergence of the proposed ERWNN. In this modeling
task two sequences of 500 and 300 points respectively, one forming a sinusoidal signal
and the other a superposition of two sinusoidal signals, were applied to the test process
defined in (28) and the corresponding outputs recorded. This provided a training data
file of 800 points. The input was normalised in the range [-1, 1]. The input signal
employed to generate the training points for the proposed ERWNN network is defined
as:

2
u(k):sin(—znkj,0sk<500, u(k) = o_g*sin(Zij N
250 250

0.2% sin(zn—kj, 500<k <800

The sequences defined in (31) were employed to test the generality and
stability/convergence of the proposed network. The output of the network and the
process are obtained and the RMS error as defined in (25) was computed for the
trained networks using the test data and it was 0.42. In this test, the new input pattern
(the second part of (31) to the ERWNN network did not delete previously learned
information (the first part of (31)). This our third motivation in this paper.

4. MODELING AND CONTROLLING TIME INTENSIVE DYNAMIC
SYSTEMS USING THE ERWNN

This paper uses time intensive respirator process to test the proposed control scheme.
Accordingly, this section describes the model of the process, and the proposed
modeling and controlling structures using the ERWNN.
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4.1. Plant Model

The model relating S,0,to F,0, is based on that describing the response of P,O, to an
increment of FO, [21]. The transfer function of the change of the P,O, to the change
of the F,0, is described as:

AP,O,(s) _ G,e™
AFO,(s) 1l+z.s

where, AP,O, is the change in arterial O, partial pressure (torr), AFO, is the
change in inspired oxygen fraction (percentage O, ), G, is the sensitivity of P,O, to
FiO, (torr /percent O, ), Ty is the system transport lag time (sec.), and 1, isthe
plant time constant (sec.).

Actual values for the parameters in (32) can be dynamically changed with time. The
anticipated ranges for each parameter are: Gp = 55 — 550 (Torr / percent O,), 1, = 30 —
120 sec (nominal = 60 sec.), and T4 = 15 — 45 sec (nominal = 20 sec.).

The actual value of P,0O, can be computed by adding initial tension (P,O, (0)) to the
differential partial pressure:

PaOZ(S) = PaOZ(O) + APaOZ(S). (33)

The relationship between P,0, and S,O, can be described by the sigmoid O,
dissociation curve [35]. The O, dissociation curve can be displaced by a number of
physiological factors, i.e., P,CO,, pH, temperature, and 2,3 diphosphoglycerate levels.
The model assumes that the chemical reaction of O, binding to blood is standard, i.e.,
P.CO, = 40 torr, pH = 7.4, and temperature is 37° C. Hence, S,0, can be computed
from P,O, using the standard O, dissociation curve. Severinghaus [36] provides a
simple two-constant equation for the standard O, dissociation curve valid for S,0, >
0.3 with a maximum error of 0.55 percent at 0.9877 saturation;

1
= 3 1
2340Qp, 0,° +150P, 0] ' +1

(32)

The simulation diagram of the system is shown in Fig. 4. The anticipated ranges of the
model parameters are given in [21]:
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Fig. 4. Respiratory system diagram.
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4.2. ERWNN-Based Indirect Control Scheme

The model reference control strategy is an indirect adaptation method [37], [38], and
[39]. This method is characterized by online identification to form a process model,
which is then used to perform controller design. This has the advantage of separating
the model identification and controller design stages for easier analysis. A combination
of available model identification and controller design techniques can then be used to
produce a controller with the desired characteristics [40], and [41].

The proposed control scheme in this paper, ERWNN-ICS, is illustrated in Fig. 5.
The control scheme must perform two major tasks: (1) process identification and (2)
process control. The former is achieved by using the proposed ERWNN as an identifier
(ERWNNI) to estimate the dynamics of the controlled process. The latter is achieved
by using the proposed ERWNN as a controller (ERWNNC) to generate the control
signals. This results a new version of indirect control scheme. This our fourth
motivation in this paper.

/

) u(k) | y(k)
'L)’ M.R. ™ ERWNKC | A process =
)
+
ec(KW yu(K) ERWNNI
/& yi(k)
4

Fig. 5. The proposed indirect control architecture using ERWNN.

The reference model (RM) specifies the desired performance of the control system.
The controller is designed such that the actual output of the system will track the
desired output of the reference model. To produce a desired output that will be
compared with the actual output, we employed the following reference trajectory that
takes the form of a smooth first-order transition from the initial actual value of the
output (S,0,) towards the known reference [38]. That is:

yr(K) = a yi(k-1) + (1-0) r(k) (35)

where, r(k) is the reference value (the set point) and o € [0,1] is a constant. The closer
a is to O the faster the transition. However, r(k) can be directly applied due to the slow
response of the respiratory system.

5. TRAINING THE ERWNNI AND ERWNNC

Briefly, our goal is to minimize the error function, E,. For a training pattern, E, is
proportional to the sum of the squares of the difference between the actual system
output S;0,. Suppose E; is:
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e ==y, 00—y, 0] (36)

Y, is the process output S,0, and y, is the output of the ERWNNI. Then the gradient of
error defined in (36) with respect to any weight in the identifier network w, becomes:

OE oe, (k) oy, (k)
ot _ kycee \t) oyl 37
. e (k) . e k) . (37)

where e,(K) = yy(K) - yi(K) is the error between the system and the ERWNNI outputs.
The parameters can be adjusted using the following rule:
ok,

wi (k+3) =w, (k) + Aw, (k) = w, (k) + 7, (_M) (38)

where 7, €[0,]] is a learning rate.

Similarly, the parameters of the controller can be adapted as described above. Although
the system is identified, the sensitivity term y (k) is unknown. This paper also derives
the sensitivity value to design the parameters of the controller ERWNNC using the

plant model ERWNNI. This is our fifth motivation in this paper. Once the trained
model of the process is obtained, we assume the sensitivity can be approximated as:

oy, _ 3y, (k)
Yulk= 30t~ au(k) (39)

The plant sensitivity can be derived as follows:

o ow; (k=1) x; (k) noxi(k) o [a oxi (k) 0, oxi (K)
O AR | —yk) > Y (k—1) Ny ey K
oy(k) _L ou(k) } " )i=1 ou(k) _{;aw.y (k=1 6u(k)} vt 21 au(k)
au(k) %Xi ) éxi (k)
(40)
oxi(k) o 4 Onin1 (Vi n.a (K))
where, 2u(k) —Ehu (Vi,| (k) au(k)
ahi n+l Vi n+l k i,n+l k a in+1 k ahi,ml Vi n+1 k
200300) _ s (K) , Ovins () s Wins 0Dy 1y
ou(k) Ovina(k)  ou(k) OVina(K)
w can be computed similar to (18).
OV o (K)

6. TESTING
Simulation experiments using the proposed ERWNN were conducted on two test
schemes, one is a process modeling and the other is a process control. The RMS error
defined in (25) was computed for the trained network using the test data.

6.1. The Process Modeling Simulation Results

The proposed ERWNN with one input unit, a six of hidden/context units and one
output unit was used to identify the O, uptake system. Accordingly, the network has
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48 weights to be updated with the DBP. Simulation was performed using the following
cases:

Case(1): T, = 15 sec, 1, = 60 sec, Tq=20 sec and G, = 123 torr / percent O,.

Case(2): T, = 15 sec, 1, = 60 sec, Tq= 20 sec and G, = 250 torr / percent O,.

Case(3): T, = 15 sec, 1, = 60 sec, Tq = 20 sec and G,= 300 torr / percent Oo.

Ten thousands square pulses (step inputs) were applied to the O, uptake system and
the corresponding outputs recorded. This provided a training data file of 10000 points.
The inputs were normalised in the range 0-1. The amplitudes and the frequencies of the
inputs were changed pseudo-randomly after 60 time steps. The trained model was
tested using data that had not been employed for training. The test signal and the actual
output of the process are obtained using the ERNN and ERWNN and the RMS error
defined in (25) was computed and its values were 2.21x107® and 0.9x107 respectively.

6.2. Indirect Control Using ERWNN Simulation Results

The indirect control architecture using ERWNN explained in sections 1V, ERWNN-
ICS, was tested over a range of plant parameters. The testing is performed at two
values of plant gain (G, = 123, 250 torr/ percent O,). The first value of G, is tested
with dynamic combinations of plant time constant (t, = 30, 60, 90 sec), and transport
lag (T4 = 15, 20, 25 sec), and the second value of G, is tested with fixed combination of
plant time constant and transport lag (t, = 60 sec, T4 =20 sec), but the plant gain was
halved (at t=10 min.) in the presence of a disturbance to test the regulation capabilities
of the proposed controller. The values of the plant time constant and transport lag were
chosen such as, they provide the greatest degree of mismatch between the plant and the
model.

In general, noise signals can be classified into impulse noise, thermal noise, shut
noise, and additive white Gaussian noise. Measurements were corrupted with additive
white Gaussian noise generated using the algorithm written in the appendix [35]. The
output of the controller network is limited to give an F,0, between 21% and 100% O..
The controller was commanded to raise S,0, from an initial value of about 0.8 to a
reference value of 0.95 and to maintain at the new setpoint. The reference trajectory,
chooses a =0.68. The sampling period of the results is 15 sec.

Two network with one input unit, six hidden/context units and 48 weight were
employed in this test. One stand for the identifier and the other performs the controller.

1- Simulation results with G, = 123 torr / percent O,

With gain (G, = 123 torr / percent O,) three combination of the time constant and the
time delay are tested as follows:

case (1): T, = 60 sec and T4 = 20 sec.

case (2): 1, = 30 sec and T4 = 15 sec.

case (3): 1, = 90 sec and T4 = 25 sec.

The RMS errors were calculated using (25) and their values are 6.28*107, 6.75*107,
and 1.14*107, for the three cases.

2- Simulation results at disturbances presence

Testing the regulation capabilities of the proposed ERWNN-ICS in the presence of a
disturbance such that the plant gain was halved at (t=10 min.) from 250 to 125 torr /
percent O,, indicates the soundness of the proposed scheme. The RMS error was
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computed using (25) and its value is 7.99%107. The outputs and the control signal are
shown in Fig. 6, which shows that the error was eliminated within 0.85 min. That
assures the soundness of the proposed indirect control scheme using the ERWNN. For
comparison reasons, this experiment was performed using the conventional
ERNN_ICS. The outputs and the control signal are shown in Fig. 7, which shows that
the error was eliminated within 1.25 min and the RMS error obtained was 12.00%10%,
In sense of recovering time and the RMS error defined in (25), Table Il shows the
results obtained using the proposed indirect control scheme and that obtained in [21],
and [42].
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Fig. 6-a. The process output.
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Fig. 6. The process output and the control signal using the ERWNN-ICS.
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Fig. 7. The process output and the control signal using the ERNN-ICS.

Table 2: Comparison with results published in [21] and [42].

Controller type Time required (min.) Disturbance rejection
(RMS) errors
Pl At least 10.00 20.50*10°
MMAC 3.00 11.00*10°
FNN-ICS 2.5 8.59*10°
ERNN-ICS 1.25 12.00*10°
ERWNN-ICS 0.85 7.99%10°

As a final conclusion, Table 2 depicts that best results have been achieved using the
ERWNN-ICS compared with the conventional Pl-controller, MMAC controller [21],
the FNN-ICS and the ERNN-ICS, [42] for controlling the O, uptake system. In the
sense of RMS errors and time required to reject the disturbances shown in the table, the
ERWN-ICS is promising scheme for controlling real time intensive processes in noisy
conditions and disturbances. The application areas for the introduced technology are
very wide, however, the author can conclude the major application of this technology
as follows:

e A universal tool for function approximation
Real time learning of unknown functions
Modelling and control time intensive real time processes
Data compression
Financial and economic analysis
Biomedical engineering

7. CONCOLUSIONS

This paper introduced a new version of ElIman networks named ERWNN. Compared
with the traditional ERNN, the proposed ERWNN has three notable features, local
accuracy, generalization capability, stability and convergence property. The former
two features are inherited from replacing the global property of sigmoid functions
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used at the hidden layer of ERNN by the multiresolution property of wavelets while the
latter is gained from employing few context/hidden units, which memorizes the
previous actions of the hidden units and can be considered to function one-step time
delay. This paper developed a model reference control scheme that belongs to indirect
adaptive control. The scheme consists of two ERWNNSs, one performs the controller
and the other stands for the system’s model. This paper also derived the plant
sensitivity and DBP algorithm. The former is employed for adjusting the parameters of
the developed controller and the latter is used to train both the two networks of the
proposed indirect control scheme, ERWNN-ICS. Structurally, the number of
hidden/context units (should at least be equal to the order of the system be modeled ) of
an ERWNN employed was fixed to be six to control the actual processes with ease.
The control of the oxygen delivery to mechanically ventilated hypoxic patients is best
achieved using the proposed indirect control scheme, ERWNN-ICS, compared with the
conventional PI-controller, MMAC-controller , FNN-ICS, and ERNN-ICS.
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THE APPENDIX

In (20) assume that, ¢:ﬁhi,l(vi,|(k))*w,

1]

ox;i (k) — ¢ xS (k) - Further, e gy _1_oxi(k)  Attime instant (k-1), It becomes:

That equation becomes,
ij

ow, (k-1 ¢ owly (k1)
xs (k1= _ox k=D - gybstituting this equation into (12), results:
¢ ow;;(k—2)
1 oox) 1 oxik-1)

=a, X. (k-D+a

$ ow; (k- ¢ ow;(k—2)
Multiplying the resulted equation by 4 , results:
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oxi (K) aeL ohi (Vi,j () ox; (k1)
—A T h, (v, K)*—Zx g (K)*x (K-D)+a* L the
ow;,; (k=1) Hh"'(v’()) ovi,; () 2, (" (D ow,;(k-2)

resulted equation is equivalent to (21).
The responses of the oxygen uptake system are corrupted with additive white
Gaussian noise generated using the following algorithm [35]:
SN=RAN
SN=2.4*(SN-0.5)
SA02=SA02+SN/100
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