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ABSTRACT- Voltage stability problems have been one of the major
concerns for electric utilities as a result of increase demanding of electric
power. This paper develops a new voltage collapse proximity indicator
using catastrophe theory together with comparative singularity of power
flow Jacobian and modal analysis. The application of the proposed
indicator has been demonstrated on multimachine power systems.
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1 - INTRODUCTION

Recently a number of utilities in different countries throughout the world have
experienced voltage collapse problems. In some cases blackouts occurred as a result of
voltage collapse [1-4] . Part of the reason for these types of problems is that today's
power system utilities are highly stressed and heavily loaded without an adequate
corresponding increase in the system capacity.

The problem of collapse may be simply explained by an inability of the power
system to supply the reactive power or by an excessive absorption of reactive power by
the system itself. Reactive power problems arise in power systems under a Varity of
conditions. For lightly loaded system, too much reactive power may be injected into the
network by shunt elements resulting in overly high voltages at the voltage uncontrolled
buses. Alternatively, under heavy load conditions, there may be insufficient injected
reactive power causing the voltage to drop. In some cases heavily loaded power
systems, particularly when the system configuration comprises long transmission lines,
the voltage drop caused by the dropping of a generator or a transmission line cannot be
recovered even if the static capacitors at load ends are switched on. This type of
abnormal voltage rapid fall is called voltage instability or voltage collapse phenomena.
There are two general types of tools for voltage stability analysis: dynamic and static.
Dynamic analysis uses time-domain simulation to solve nonlinear system differential /
algebraic equations. Static analysis is based on the solution of conventional or modified
power flow equations.

Dynamic analysis provides the most accurate replication of the time responses
of power system [5] . Accurate determination of the time sequence of the different
events loading to system voltage instability is essential for post-disturbance analysis
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and the coordination of protection and control. However , time-domain simulations are
time consuming in terms of CPU and engineering required for analysis of results. Also,
dynamic analysis does not readily provide information regarding the sensitivity of
degree of instability. These limitations generally make dynamic analysis impractical for
examination of a wide range for system conditions for determining stability limits.

Static analysis [6] involves only the solution of power flow equations and
therefore is computationally much more efficient than dynamic analysis. Several
algorithms have been developed to study the steady-state (static) voltage instability.
The minimum singular value of the system Jacobian matrix has been proposed as a
voltage collapse index [7]. However calculating the minimum singular value is time
consuming due to the high dimension of the Jacobian matrix. To improve the feasibility
of this method, a fast algorithm to compute the minimum singular value was proposed
[8]. Modal analysis also reported for voltage instability assessment [9]. This method
calculates a set of the smallest eigenvalues of the reduced Jacobian matrix and the
associated participation factors. The eigenvalues are used as voltage instability
indicators and the participation factors for weak area identifications. VVoltage — Power
(real or reactive) sensitivity is another index for voltage collapse detection . During
normal operating conditions, the Voltage — Power sensitivity is a finite value, and it
will increase with the system loading .When voltage collapse occurs, the Voltage —
Power sensitivity will be infinite [10]. Another developed method using the distance in
the load parameter space between a given operating condition and the critical point,
which is the voltage collapse point, as index .Algorithms for calculating this distance
were further investigated , while this index can provide a load power margin for an
operating condition, which is particularly valuable to system operators, the
computational burden is a main concern [11].

The study of this phenomena could be put into framework of catastrophe
theory which describes how sudden jumps in the system states can arise from a smooth
change of the system parameters [12]. The voltage stability manifold is defined as an
equilibrium surface of critical points . It can be obtained by deriving the minimum of
the system function which involves voltage and system parameters as state and control
variables respectively. In reference [13] , the theory was applied on a simple system
consisting of a single generator supplying a static load through a lossless transmission
line. The control parameter (a < 0) was used as an indicator for voltage stability index.

In this paper, an attempt has been made to find a physical explanation for
voltage instability phenomena in interconnected multi-machine system using the
catastrophe theory together with comparative singularity of power flow Jacobian and
modal analysis . The study is based on the analysis of the phenomena under the effects
of changing the system parameters.

2 - CATASTROPHE THEORY

In any system (physical or natural) if some of the parameters of that system
continue to vary very smoothly, a critical stage may be reached at which point the
system exhibits a sudden jump from state to another. The other state may be different
from the original state. Power system like many of the most interesting phenomena in
nature involves discontinuities. One of the reasons for these discontinuities is the
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voltage collapse. Catastrophe theory tries to deal with the properties of these
discontinuities.

Consider a gradient system whose behavior is usually smooth, but sometimes (or in
some places) exhibits discontinuation and described by a potential function E, with n
state variables (X 4,.., X i,..., X ;) and m control variables (C ;,...,C ,., C ) . Then the
equilibrium equations are given by:

oE .
—pzo 1:1, ......... , 11 (1)
oX.,

Define an m-dimensional equilibrium surface in the (n + m) dimensional space
spanned by the X; and Cy. Since the potential depends upon the control parameters,
The Hessian of E, and its eigenvalues also depend on these control parameters. For
certain values of control parameters, one or more of these eigenvalues may assume the
value zero. When this happens, the Hessian of E; is

2
det| 2 EP_ :det[Epij]:O )
X, 0X |

and the system critical points are called non-isolated degenerate or non-Morse critical
points at which the system exhibits instability, but when the det [Epij ] # 0, the critical

points are called isolated non-degenerate or Morse critical points at which the system is
stable. Therefore the system potential function E, can be split into parts
(stable/unstable part). This is called splitting lemma [14-16], because it allows us to
split the critical point into two parts: part involved in structural stability (non-
degenerate associated with the non-vanishing eigenvalues), and the other involved in
instability(degenerate associated with the vanishing eigenvalues).

According to Thom's theorem, in an open neighborhood of a critical point (where €
eigenvlaues vanish), the original potential function E, can be written in the canonical
form.

Ep=Cat(L, m)+ > A,y €)

j=1+1

Where, Cat(€ , m) is the catastrophe function
A; 1sthe number of non-zero eigenvalues
y; is the coordinates associated with non-vanishing eigenvalues

The catastrophe function Cat(¢,m) gives the qualitative configurations of the system
discontinuities that occur in the neighborhood of critical points. The second term in
equation 3 does not contribute for discontinuities and can be ignored in the analysis.

According to Thom's classification theory, in any system governed by a potential
function, and in which the system behavior is determined by no more than four
different control variables, only seven qualitative different types of catastrophe
functions are possible and given in Table 1. These are called elementary catastrophes.
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Table 1: Seven elementary Catastrophes.

Catastrophe| Control | State : —
Manifolpd variable | variable Function Derivative
Fold 1 1 X33 +ax X%+ a
Cusp 2 1 x*4 + b X2 + ax x*+hx+a
Swallowtail 3 1 X2/5 + a x%3 + bx?/2 + cx x*+ax?+bx+c
Butterfly 4 1 X6+ axt4 +b X33 +cx?2 +dx| x5 +ax33 +bx%/2 + cx
Hyperbolic 3 2 X2+ y* +axy + bx + cy 3x%+ay+b+3y’+ax+c
Elliptic 3 2 X +a(x?+y?) -3xy +bx+cy | 3x%-3y’+2ax+b-6xy+2ay+c
Parabolic 4 2 X% + y* + ax? + by + cx+dy 2xy+2ax+c+x’+4y°+2by+d

3 - PROBLEM FORMULATION
As mentioned in the last paragraph of the introduction, the voltage collapse
phenomena needs more explanation for voltage instability. The basic configuration
used to explain voltage collapse is shown in figure 1-a. In this circuit the voltage
source Ey, in series with the equivalent transmission impedance Zy, represents the
Thevenin equivalent of a network connected to a load. The load is described by its real
and reactive powers as shown.

Equivalent Network

|
Z

Eth V2 P2 il QZ

V2:e2+jf2 fZ:VZSinU

a Ewn
1
»

e, = V,cos a

Figure 1.a: Thevenin Equivalent Network.

The load receiving end voltage V, in terms of P, and Q;and the Z is obtained as
follows [17]:

—— 4)
Therefore,

E.V, =V,V, +S,Z, )
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Where,
Vo=|Vo|Za , En=|[En|Z0 , S$;=P;+jQ, and Zyn=Rpn+]jXn
Rewrite egn.(5) in terms of real and imaginary components:

V, Ey COS a = V22 +(P2Rin+ Q2 X )
V,Ensinoa =-(P2Xin-Q2Rin ) ©)

Equations (6) represent the PV relationship and figure 1-b shows this for 2-bus
network. For a constant power demand, there exists two operating points except the
saddle point which represents the steady state stability limit. The higher operating
voltage is called the stable operating point and is the feasible solution. On the contrary,
the lower one is the unstable point and is infeasible [18]. In this paper, it will be shown
that the higher operating point has positive value of the new proposed indicator using
Catastrophe theory, the Jacobian matrix determinant, and the Eigenvalue of the reduced
Jacobian matrix and lower one is negative for them. The determinant approaches zero if
the operating move to the saddle point.

VZ a

Feasible Solution
J>0

Saddle Point
< J=0

V2cr

Infeasible Solution
J<0

»

P2

Figure 1-b: Receiving Power vs. Load Voltage for two-node Network.

2
Since short circuit capability equals Scc = E"w , then dividing both sides of equations

th
(6) by Scc, we obtain the following equations:

f = _(thh _QRth)/Zth

and (7)
e =V’ +(PR, +Q X,)
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where,
o :VZCOSalf :VZSIHOZ’P: 2 Q= Q, ,and V=e+jf

E., E,, SCC SCC
Squaring and adding eqns (7), we obtain the following equation:

2(P X
V44V E( ( Rch+Q th)_1)+(P2+Q2):O 8)
th
or,
V*+av2+bV+c=0 ©)

where,

a— 2(PRy, +QXy) _1
Zy,

b=0

c=(P?+QY)

Equation (9) is seen to be the swallowtail catastrophe manifold, with load bus voltage
as a state variable and control variables a, b = 0, and ¢ represent the system parameters .
As seen the control variables depend upon the load active and reactive components as
well as the system equivalent Thevenin impedance. Eqn (9) has the solution in V? as:

v? :(‘Z‘E‘iw/(a/z)z “¢) (10)

3.1 The Critical Voltage of Loading Node

Next, we find the singularity set S which is the subset of the catastrophe manifold
equation (9) that consists of all singular points corresponding to the system critical
voltage stability. These are the points at which the first derivative of equation (9) equal
to zero, as follows:

4v:+2aVv =0
or

Vcr:i __a
V 2

It is clear that for stable operation , the control parameter a should be less than zero,
and

(11)

2
0<C<[aj to get real solution and is considered here a new indicator for voltage
2

stability. The indicator can now be determined for each load bus in the power system.
The weakest bus in the system will have the smallest magnitude for the indicator ¢ as
well as the smallest eigenvalue of the Jacobian J, indicating that the system is on the
verge of instability.
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—— purder Curve —°— Operating points
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bus burder curve
T\ c=@t |
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Control Parameter (a)

Control Parameter (c)

Figure 2: The New Voltage Indicator.

The singularity set S is then projected down onto a two-dimensional control space
(a,c) to obtain the bifurcation set p . The bifurcation set is the image of catastrophe
manifold in the control space which provides the region of all possible stable voltage
operations in terms of the control variables (a, c), which usually represent the system
parameters as illustrated in figure 2.

By substituting equation (7) at critical operation into equation (11), we obtain the value

of critical voltage:

= Ey (12)
2C0S

cr

3.2 The Maximum Power Loading

Corresponding to maximum loading, there is one value of V, as the two values are
superimposed, then the term under the root of equation (10) must vanishes, i.e, the term
under the root becomes zero, then,

a
c=|—-
(2)
(13)

or
p? +Q2:(M_l

2
Z, 2)
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Equation (13) can be rewritten in the general form as :

LP? + KP+M =0 (14)

P in equation (14) is P Of the node under study. Solution of equation (14) results in
two values of P, one of them is negative and the other is positive. Evidently the positive
value should be considered. Therefore,

Proc =K £ KT —4LM) (15)
where,

L=1

(=Rl =)

M :(RthQ)Z + tah _( Zth )2
Xth Xth 2Xth

As seen the presence of a reactive component of load Q and system impedance affects
the loading power limit.

4 - VOLTAGE STABILITY EVALUATION USING
JACOBIAN MATRIX ELEMENTS

The use of the singularity of power flow Jacobian matrix as an indicator of steady state
stability was first pointed out by reference [19] , where the sign of the determinant of J
was used to determine if the studied operating point was stable or not.

From energy conservation, the following active and reactive load flow equations for P
and Q can be obtained from equations (7) and taken negative (injected at load bus):

_poRug_yyy_Xal (16)
Zth Zth
X R, f
—Q=""(e-V)+ (17)
Zth th
From the linearized Power flow equations (16) and (17) we obtain
AP P» &° Af
of oe
= (18)
AQ R Q | e
of oe

where, the elements of the Jacobian matrix of the system is
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opP oP
7¢MWRW%, %:%m@m

0 0
€N = (2Xwf —Rin)/Zi €< = Xn(2e -1)/Zy,
of oe

and the determinant of the Jacobian matrix is

| Ix| = Zwn(2e - 1) (19)

The singular points corresponding to the system critical voltage stability occur when
the determinant of the Jacobian matrix is zero. Then at | Jx| = 0, we obtain

€ =2 (20)

or
Eth

2Cc0S

(21)

cr

Equation (21) represents the critical load bus voltage and as seen the same equation
obtained using the catastrophe theory (equation (12)). After a little manipulation for
equations (16) and (17) we have:

1, X Z:—-4R,Z,P

e_ V2 L (f 4 2thy2 _ (Etn th% th

(e=2)"+( 2Rm) e )

and (22)
1, R Z2 _4X.Z.Q

e—— + f+ th 2 — th th*=th

(e=2)" +( me) e )

where, the value of f is given in equation (7) and the value of e is recalculated and
given by:

1 1
€= E + \/4 thh —5 [(X,P - RthQ) +Z, (RyP+ X, Q)] (23)

Equations (22) define two circles on (e-f) plane Shown in figure 3, with centers at

\/thh _4Rthzthp and \/Zti _4XchthQ

1
(=, th) ( Ri ) and radiuses of

2" 2R, 2" 2X,,

respectively. The radiuses vary with the real and reactive load respectively. The heavier
the load is, the smaller the radiuses will be. The intersection points define the possible
values of voltages (e, f ) at the load bus.
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(2, Rnf2X¢n)

A

Direction of Load
Increasing

Direction of Load
Increasing

B
_——
lower solution |J,|<0

Higher solution | J, | >0
Unstable

Stable

(1/2 ’ -Xth/2Rth)

Border Line e
|J]=0

Figure 3: Load Bus Voltage Solutions.

From figure 3, it is clear that there are two solutions (higher and lower) for the load bus

voltage (e, f)as long as L_QR‘“ is less than the radius of the circle. Also to get
th
the real roots for e, we have:

Z
(Xthp - RthQ)2 + Zth (Rth P+ XthQ) < (7”] 2 (24)

Equation (20) represents the vertical line connects the centers of the circles defined by
equations (22). This line can be considered as the border between the stable (area A
right hand side) and unstable (Area B left hand side) areas in the voltage plane, which
Eth

2c0Sa

is similar to the border curve obtained at V_ = or at ey, =% from the

catastrophe theory .

5-VOLTAGE STABILITY EVALUATION USING MODAL ANALYSIS

Voltage stability characteristics of the system can be identified by computing the
eigenvalues of the reduced Newton-Raphson load flow Jacobian matrix. The linearized
steady-state system power voltage equations are illustrated in equation (18) and the
variation in reactive load flow AQ at constant active power component (i.e AP=0)is
given by:
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AQ = (JQe - JQf Jl;l\] pe)Ae

f

or
AQ=1J,  Ae (25)
where,
JXR :(JQe - ‘]Qf‘]:‘]pe)

Jot = (Xet2Ruf)/Zsn ,  Jpe = Rin(26-1)/Zys

Jor = @Xinf = Rn)/Zn . JIge =Xin(2€ -1)/Zy,

Jyr is a reduced Jacobian matrix of two node system, and its dimension is 1 x 1 matrix.
Eigenvalue of this reduced Jacobian matrix is used as indicator of voltage stability. If
the eigenvalue of J,z is positive, the system is considered voltage stable. The system is
considered voltage unstable if the eigenvalue of J,g is negative . At each operating
point we keep the active power component constant and evaluate voltage stability by
considering the incremental relationship between the reactive power Q and the
magnitude of active bus voltage e.

6 — NUMERICAL EXAMPLE

In order to study the intrinsic characteristics of the catastrophe control parameters
(a, ¢), the singularity of power flow through the determinant sign of the Jacobian matrix
and the eigenvalue of the reduced Jacobian matrix using modal analysis and their
relations to voltage instability state, a theoretical test system has been adopted. The test
system is the Ward-Hale 6-bus Network [20] shown in figure 4. This system, generally
used for testing the new developed techniques in comparison to the known ones. The
initial data for generation and load of the system is given in Table 2. The results of the
conventional load flow run of the test system are shown in Table 3. In this run, bus 1 is
taken as the slack bus and bus 2 is maintained at constant voltage of 1.1 p.u. An
accuracy of 0.00001 was achieved in both voltage magnitude and angle.

3IT

e

Figure 4: Ward-Hale 6-bus Network.
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Table 2: Bus Loading and Voltages.

Bus Bus Active Reactive
Number Voltage Power Power
1 1.050 ... | el
2 1.100 0500 | ......

3 | ... - 0.550 -0.13
4 | ... - 0.000 - 0.000
5 | ... - 0.300 -0.18
6 | ...... - 0.500 -0.05

For this system, the Thevenin’s equivalent ( Ey,and Zy,) at each load node with its load
separated is firstly calculated. The Thevenin’s p.u. voltages Ey, and impedances Zy, for
the load nodes (nodes 3 — 6) are found to be as given in Table 4.

Table 3: Load Flow Results.

Bus Number Bus Voltage Active Power Reactive Power
1 1.050 £0 0.952 0.433
2 1.100 £ -3.34 0.500 0.184
3 1.0008 £ —-12.78 - 0.550 -0.13
4 0.9290 ~ -9.84 0.000 0.000
5 0.9198 ~-12.33 -0.300 -0.18
6 0.9192 £ -12.24 - 0.500 -0.05

Table 4: Thevenin’s equivalents.

Bus Number Thevenin’s Voltage Eth Thevenin’s impedance Zth
3 0975 £-1.023 0.2740 £75.64
4 0954 £—9.93 0.2220 £75.81
5 1.000 Z—3.1987 0'32315475.43
6 0.987 < —3.21 0.2370 £75-54

The new indicator ¢ , the singular value of the Jacobian | Jy | and the eigenvalues A
using modal analysis are applied and calculated for each load node at the nominal load
setting. In order to test these indicators, two tests are carried out :

6.1 The First Test

Stressing each load node of the test Ward-Hale 6-bus Network with keeping the
reactive power constant at each load node by gradually increases the active power,
starting from the base load up to 130% P.x . The results show complete agreement,
also, it shows the value of the critical voltage V. for each load node and its
corresponding consumed max power P... The criteria for the system to be stable, the
new indicator ¢ should be less than (a/2)?, the determinant values of the Jacobian | Jy |
and the eigenvalues A also should be positive values as shown in Table 5. The new
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indicator ¢ using the catastrophe theory provides a way to determine the stable and
unstable zones as shown in figure 5. As seen the break away point which represents the
critical loading point at each bus occurs at loading with maximum value. This point
corresponding to the saddle point obtained from P-V relationship as shown in
figure 1-b which separates between the stable and unstable zones.

Table 5-a: The New and Different Voltage Stability Indicators
for Load Bus 3 for 6 — Bus Power System.

Bus New indicator |Jacobian| Eigenvalue| Critical
Number Value 1 Voltage Bus System
C A 13, | V., Loading State
X

0.0265| -0.8319| 0.2097 3.3350 0.629 | Base Load| Stable
0.0327] -0.8205| 0.2018 3.2540 0.625 | 50% Prax | Stable
0.0465| -0.7987 | 0.1842 3.0559 0.616 | 60% Prax | Stable
0.0719] -0.7663 | 0.1500 2.6074 0.604 | 75% Prax | Stable

Maximum| 0.1.03] -0.7340 | 0.9751 1.8067 0.591 | 90% Prax | Stable

Loading Critical
p.u 0.1268| -0.7122 | 0.0000 0.1219 0.582 | 100% Ppax Stable

1. 2289

0.1532| -0.6908 | -0.41100| -7.403087 | 0.573 | 110% Ppax | Unstable
0.1820| -0.6690 | -0.41100| -7.624514 | 0.564 | 120% Ppax | Unstable
0.2134| -0.6475|-0.41100| -7.859595 | 0.555 | 130% Pmax | Unstable

BUS 3

Stable / Unstable Zone For Bus 3
Using The New Indicator

0.250
O\ 0.200 -
Pmax 3
S
/ /./I—/- 5
=1 Unstable Zone 0.150 g
®©
S
a
Stable Zone 0.100 —
2
c
0.000

-0.647 -0.669 -0.691 -0.712 -0.734 -0.766 -0.799 -0.820 -0.832

—=— purder Curve Control Parameter ( a)

—O— QOperating points

Figure 5-a: Operating Zones for Bus 3.
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Table 5-b: The New and Different Voltage Stability Indicators
for Load Bus 4 for 6 — Bus Power System.

Number

Bus New

indicator

c

A

Jacobian
Value
| Ix |

Eigenvalue
A

Critical
Voltage
Vcr

Bus
Loading

System
State

0.0000

-1.000

0.222

4.943280

0.674580

Base Load

Stable

0.0368

-0.900

0.17595

4.531556

0.634206

50% Pmax

Stable

0.0530

-0.860

0.16139

4.277920

0.625819

60% Pmax

Stable

BUS 4

0.0828] -0.826] 0.13414 | 3.688300 | 0.613023| 75% P« | Stable

Maximum]0.1193| -0.791| 0.85462 | 2.608000 | 0.599955| 90% Pp.x | Stable

Loading

p.u
1.573

Critical

0.1473 Stable

-0.768| 0.00000 | 0.287339 |0.591082| 100% Pyax

0.1783| -0.744| -0.333000

-9.384356 | 0.582073| 110% Prax | Unstable

0.2122] -0.721| -0.33300 | -9.707075 | 0.572923| 120% Prax| Unstable

0.2490] -0.698| -0.33300 | -10.05278 | 0.563625| 130% Prax| Unstable

Stable / Unstable Zone
For Bus 4
Using The New Indicator

%‘\ I?max /
././i/“\l\

Stable
\1
\J_

-0.698 -0.721 -0.744 -0.768 -0.791 -0.826 -0.86 -0.9 -1
—— burder Curve
==O== QOperating points

0.300

= 0.250

0.200

0.150

Zone

0.100

Control Parameter ( c)

0.050

- 0.000

Control Parameter ( a)

Figure 5-b: Operating Zones for Bus 4.
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Table 5-c: The New and Different Voltage Stability Indicators
for Load Bus 5 for 6 — Bus Power System.
Bus New indicator | Jacobian| Eigenvalue| Critical
Number Value A Voltage L Blé.s System
C a 13, | V., oading State
0.0104] -0.8787] 0.276166| 2.936918 0.663 | Base Load| Stable
0.0316] -0.7856| 0.226402| 2.510242 0.627 | 50% Ppax | Stable
BUS 4 0.0440] -0.7647] 0.206671| 2.345026 0.618 | 60% Ppax | Stable
0.0668] -0.7337] 0.168214| 1.977991 0.606 | 75% P | Stable
Maximum 0.0948] -0.7025| 0.109354 | 1.334347 0.593 | 90% Pyax | Stable
Loading Critical
p.u 0.1162] -0.6817] 0.000000| 0.000000 0.584 | 100% Pax Stabl
1. 0398 able
0.1399] -0.6612]-0.161575| -2.013231 | 0.575 | 110% P« | Unstable
0.1659] -0.6403]-0.161575] -2.066252 | 0.566 | 120% P« | Unstable
0.1941]1-0.6197]-0.161575] -2.122141 | 0.557 | 130% P | Unstable

Stable / Unstable Zone
For Bus 5
Using The New Indicator

0.250
0.200

Pmax /./.
/ 0.150

Unstable Zone /

Stable Zone 0.100
N\)\g\g 0,050
0.000

-0.620

-0.640 -0.661

-0.682

-0.703

-0.734

Control Parameter (a)

—— burder Curve
=O= Operating points

-0.765

-0.800

-0.879

Control Parameter (c)

Figure 5-c: Operating Zones for Bus 5.
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Table 5-d: The New and Different Voltage Stability Indicators
for Load Bus 6 for 6 — Bus Power System.
Bus New indicator | Jacobian | Eigenvalue| Critical
Number Value y) Voltage L Bug System
I a 13, | Ve, oading State
0.0149] -0.902 | 0.205823 | 4.216143 0.663 | Base Load | Stable
0.0350] -0.862 | 0.184078 | 3.949922 0.648 | 50% P Stable
Bus 6 [0.0503] -0.839 | 0.168060 | 3.709058 | 0.639 | 60% Ppax Stable
0.0786] -0.805 | 0.136814 | 3.159393 0.626 | 75% Py Stable
Maximum 0:1132] -0.770 ] 0.088957 | 2.169858 | 0.613 | 90% Prux St_a?le
Loading 4 1397 -0.748 | 0.000000 | 0.074827 | 0.603 |100% P, | CHitical
p.u Stable
18357 10 1690] -0.724 | -0.35550 | -8.825145 | 0.594 | 110% P,y | Unstable
0.2011] -0.702 | -0.35550 | -9.108338 | 0.585 | 120% P,..x | Unstable
0.2360| -0.679 | -0.35550 | -9.410307 | 0.575 | 130% P,.x | Unstable
Stable / Unstable Zone
For Bus 6
Using The New Indicator
0.250
\ Pmax —
/ m lo2o ©
Unstable Zone / §
- 0.150
:
Stable Zone 0.100 E
\O\L 5
0.050 "g'
V\O\() S
. . . . . . . . 0.000
-0.679 -0.702 -0.724 -0.748 -0.771 -0.805 -0.839 -0.862 -0.902
—®— burder Curve Control Parameter ( a)
=O== Qperating points

Figure 5-d: Operating Zones for Bus 6.

6.2 The Second Test

As illustrated in Table 5-c the values of the control parameter ¢ of bus 5 as compared
to the other buses are the smallest values as well as its eigenvalues obtained. Therefore
bus 5 is considered here the weakest bus in the system. In order to test the three criteria
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for this bus with load active power is kept constant at 0.3 p.u and load reactive powers
are assumed to be increased gradually from 0.18 p.u up to 402.8 % of its nominal value
i.e reactive power of that bus is increased to 0.725 p.u. The node critical voltages
nearly dropped down by 25 % from stable to unstable cases.

The criteria for the system to be stable, the new indicator ¢ should be less than (a/2)?,
the determinant values of the Jacobian | J, | and the eigenvalues A also should be
positive values as shown in Table 6. As shown in figure 6 the break away point which
represents the critical reactive power loading point at bus 5 occurs at 0.715 p.u . This
agree with the given results .

Table 6: The New and Different Voltage Stability Indicators for Bus 5 at
different Loading VARs With Constant Active Power 0.3 p.u.

Bus New indicator Jacobian |Eigenvalue] Critical | Bus 5| System
Number Value A Voltage | VARs | State
C a | Ix | ver p.u

0.01040 | -0.87865 | 0.276166 | 2.936918 | 0.6630 | 0.18 | Stable
0.02229 | -0.71861 | 0.210677 | 2.201371 | 0.6000 | 0.36 | Stable
0.03890 | -0.60795 | 0.148268 | 1.530762 | 0.5510 | 0.54 | Stable
0.05080 | -0.44281 | 0.103353 | 1.060713 | 0.5260 | 0.63 | Stable
0.06200 | -0.50359 | 0.024072 | 0.245756 | 0.5020 | 0.710 | Stable
Base | 0.06230 [ -0.50239 | 0.018062 | 0.184371 | 0.5010 | 0.712| Stable
Loading [ 0.06240 | -0.50159 | 0.014128 | 0.144204 | 0.5009 | 0.713 | Stable
P-U 10.06260 | -0.50119 | 0.008541 | 0.087175 | 0.5006 | 0.714 | Stable

BUS 5

0.3
0.62700 | -0.50040 | -0.161575 | -1.501579 | 0.5003 | 0.715 | Unstable
0.63500 | -0.49719 | -0.161575 | -1.500193 | 0.4988 | 0.720 | Unstable
0.06420 | -0.49437 | -0.161575 | -1.498810 | 0.4972 | 0.725 | Unstable
Stressing Bus 5 With Different VARs at
Constant Active Power 0.3 p.u.
0.250
0.200
ko
0.150 &
g
0.100§
O—0—0—o—0—0—@ 0.050 &
o
0.000
-0.494 -0.497 -0.500 -0.501 -0.502 -0.502 -0.504 -0.553 -0.608 -0.719 -0.879
=O= burder curve
@— Operating points Control Parameter (a)

Figure 6: Operating Zones for Bus 5 at Different VARs With Constant active Power.
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7- CONCLUSIONS

1. This paper has developed a new voltage stability indicator for integrated power
systems using the catastrophe theory.
A swallowtail manifold has been shown to be appropriate for this new indicator.

2. An algorithm has been presented in this paper and a developed C — language
program is used to calculate the new indicator in terms of the system parameters;
load active and reactive powers, transmission impedance, and the voltage source .
These system parameters can be measured or calculated with a speed adequate for
on-line steady-state voltage stability assessment. It has been shown that the zone
inside the border curve which represents the curve of critical points and the curve
of bus operating points represents the steady voltage stable zone, and the voltage
collapse occurs in the zone that produced after the system is loaded with value
greater than maximum load P .

3. Coincidence of the obtained results of the new indicator, determinant of the
Jacobian, and the eigenvalues is proved for system load nodes of different
active and reactive power loadability conditions leading to stable and unstable
voltage cases.

8 — REFERENCES

[1] T. Nagao, “ Voltage Collapse at Load ends of Power Systems “ Electrical
Engineering in Japan, Vol. 95, No. 4, 1975.

[2] W.R. Lachs, “ Voltage Collapse in EHV Power Systems ““, paper No. A 78 057-
2, IEEE PES, winter power meeting, Jan/Feb 1978.

[3] M.Z. El-Sadek, “ Preventive Measures for Voltage Collapses and Voltage
Failures in the Egyptian Power Systems “, Electric Power Research, Vol. 44, No.
3, 1988.

[4] M.Z. El-Sadek, “ Prevention of Repetitive Blackouts in the Egyptian Power
Systems “, 2" MEPCON 1992, Assuit University, Egypt, pp. 14-19, Jan.1992

[5] T.V.Cutsem, “ Dynamic and Static Aspects of Voltage Collapse “, Proc. of Eng.
Found. Conf. on bulk power system voltage phenomena — voltage stability and
security, Potosi, Mi, Sept. 1988, pp 655-679.

[6] B.H.Lee, and K.Y. Lee “ Dynamic and Static Voltage Stability Enhancement of
Power Systems “, IEEE Trans on power system, Vol. 8, No. 1, Feb 1993, pp
231-283.

[7] V.Ajjarapu, “Identification of Steady-State Voltage Stability in Power Systems*
Vol. 11, No.1, 1991, pp 43-46.

[8] V.Ajjarapu, and C. Christy, “ The Continuation Power Flow: a tool for steady-
state voltage analysis “, IEEE on power systems, Vol. 7, No.1, Feb 1992, pp 416-
423.

[9] B.Gao, G.Morison and P.Kundur, “Voltage Stability Evaluation Using Modal
Analysis “, Trans on power system, Vol. 7, No. 7, Nov. 1992, pp 1529-1542.

[10] N. Amjady, and M. Esmail, “ Application of a New Sensitivity Analysis
Framework for Voltage Contingency Ranking “, IEEE Trans. On power systems,
Vol. 20, No. 2, May 2005, pp 973-983.



A NEW VOLTAGE COLLAPSE PROXIMITY INDICATOR 537

[11] S. Greene, 1. Dobson, and F. L. Alvarade, “ Sensitivity of the loading margin to
voltage collapse with respect to arbitrary parameters “, IEEE Trans. On power
systems, vol. 12, No. 1, Feb. 1997, pp 262-272.

[12] J.L. Dineley and G. A. Mahmoud, “ A New Method of on-line Evaluation of
Synchronous Power System Stability “, IEE 2™ international Conference on
Power Monitoring and Control, 1986, pp 333.

[13] G. A. Mahmoud, “ Study of Voltage Instability in Power Systems Using
Catastrophe Theory “, Mansoura Engineering Journal (MEJ) Vol. 17, No. 4 Dec.
1992.

[14] T.Poston, and I.Stewart,“Catastrophe Theory and its Application“,Pitman,
London, 1978.

[15] R. Gilmore,“Catastrophe Theory for Scientists and Engineers®, Wiley, New
Yourk, 1981.

[16] E.C.Zeeman, “Catastrophe Theory “, Scientific American, April 1976, pp 65-83.

[17] M.Z. El-Sadek, “ Power System Voltage Stability and Power Quality “, Mukhtar
Press, Assuit, Egypt 2002.

[18] W.M. Wang, I.F. Chen and C.L. Huang, “ Analysis of Stability and Uniqueness
of Load Flow Solution of Radial Distribution Systems “, Inter. Power Eng. Conf.
1993, March, Singapore, pp 119-124.

[19] V.A. Venikov, V. A. Stroev, V.I. Idelechick, and V. 1. Tarasov, “ Estimation of
Electrical Power System Steady-State Stability in Load Flow Calculation “,
IEEE Trans. On PAS, Vol. PAS-94, No. 3, pp 1034-1041 May/Aug 1975.

[20] S. Abdelkader, “Transmission Loss Allocation in Deregulated Electrical Energy
Market” , 10 th MEPCON, Dec. 2005, Port-Said, Egypt, pp 733-739.

gl S yaadl Gl EY) pdise

Gilalaial ST e a5 A 5eS<U (g 8l ClSaal agall & o) 35V JSLie Caavial a8
A Sl leadl) apaii (381 g

Ak Loadione sgall 8 Hlagd¥) Alad ol JBY1 5 5l 5aaa 48yl o Canll 138
528l 48yl Jie s laall 138 8 danitcual) Al (5 dal) e 4l S0
Jolaall 34, Hla IS g 4y jeSI) A8Ual) (38331 Ly SIal) 48 sma 2354l (Singularity)
4_1).1.43\ d:\’.a..u.ﬁ\ dalaia uﬂ.\aﬂ ‘U..g.u} M.JJH\ 0l C'_ta.\aj .(Modal analysis) uaﬂ.ﬁ\
e ALY dasy Laaxy Al Alalal) ddasil) Gl 5 Ay oSl 5 68l Il
Ward-Hale 6-bus Network A yeS Al e Aol aad | aUaill Jads

Baa e A8 Jraadll lucad Juad die 45,50 03] Thevenin (A8 Laadiow

CVa aan A Ll Gldail)l cudae Al jall sda (8 Ledl) Jua gill 23 ) il
Ladie aaa () jiall agad) dikie A Jeoliil) Al ypaall Sdsall el Cu (Jpanill



538 Gamal Abdelazim Mahmoud

Ol A ghian 23a0 dad e (il Lo 2y (8/2)7 0 JEl5 dun g € A 5SS
Eigenvalues Ul 4 gall dall GlIX g Can gal) 43U

Ol Jaead 4 23 Y0 HLEAY) 1 Leadidd) 203N e ) Jladl o) ) a5
o M adY) Jaall (e % 130 () dasad Allndl) 35080 iy dabisall Jlea!
YA Jlaal) oded dllad sl 8508l A8 ya (258 ae Caall 128 JOIA anlitial
oA A 3k ae Gt lale Jgeanl) i ) ColS Cus ¢y
o Laadl lanyaa a3 i) Al ) lecadll e Al jall 43 o5 s SEN HLay) Ll
Aagall 5 yaia Alad e 508 5 Al 56 Alad 5,08 I3 Jlaals Leliaat g ) 134
Gy Wasy il Alalal) ddaal) GUAS 5 45 jid) Judil) dshia agaad Kl Lo
o lenll Gaalail) 4 pl<a) ayand) 5all agd any Las ldaill Jiacd aga b g
A e (sl iy Jreadl) (laucad Jodis (3lalial 4y ) 5dl) 480 jall



