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ABSTRACT– Voltage stability problems have been one of the major  

concerns for electric utilities as a result of  increase demanding of electric 

power. This paper develops a new voltage collapse proximity indicator 

using catastrophe theory together with comparative singularity of power 

flow Jacobian and modal analysis. The application of the proposed 

indicator has been demonstrated on multimachine power systems. 
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1 - INTRODUCTION 

 

  Recently a number of utilities in different countries throughout the world  have 

experienced voltage collapse  problems. In some cases blackouts occurred as a result of 

voltage collapse [1-4] . Part of the reason for these types of problems is that today's 

power system utilities are highly stressed and heavily loaded without an adequate 

corresponding increase in the system capacity. 
 

 The problem of  collapse may be simply explained by an inability of the power 

system to supply the reactive power or by an excessive absorption of reactive power by 

the system itself. Reactive power problems arise in power systems under a Varity of 

conditions. For lightly loaded system, too much reactive power may be injected into the 

network by shunt elements resulting in overly high voltages at the voltage uncontrolled 

buses. Alternatively, under heavy load conditions, there may be insufficient injected 

reactive power causing the voltage to drop. In some cases heavily loaded power 

systems, particularly when the system configuration comprises long transmission lines, 

the voltage drop caused by the dropping of a generator or a transmission line cannot be 

recovered even  if the static capacitors at load ends are switched on. This type of 

abnormal voltage rapid fall is called voltage instability or voltage collapse phenomena. 

There are two general types of tools for voltage stability analysis: dynamic and static. 

Dynamic analysis uses time-domain simulation to solve nonlinear system differential / 

algebraic equations. Static analysis is based on the solution of conventional or modified 

power flow equations. 
 

 Dynamic analysis provides the most accurate replication of the time responses 

of power system [5] . Accurate determination of the time sequence of the different 

events  loading  to  system  voltage  instability is essential for  post-disturbance analysis 
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and the coordination of protection and control. However , time-domain simulations are 

time consuming in terms of CPU and engineering required for analysis of results. Also, 

dynamic analysis does not readily provide information regarding the sensitivity of 

degree of instability. These limitations generally make dynamic analysis impractical for 

examination of a wide range for system conditions for determining stability limits. 
 

 Static analysis [6] involves only the solution of power flow equations and 

therefore is computationally much more efficient than dynamic analysis. Several 

algorithms have been developed to study the steady-state (static) voltage instability. 

The minimum singular value of the system Jacobian matrix has been proposed as a 

voltage collapse index [7]. However calculating the minimum singular value is time 

consuming due to the high dimension of the Jacobian matrix. To improve the feasibility 

of this method, a fast algorithm to compute the minimum singular value was proposed 

[8].  Modal analysis also reported for voltage instability assessment [9]. This method 

calculates a set of the smallest eigenvalues of the reduced Jacobian matrix and the 

associated participation factors. The eigenvalues are used as voltage instability 

indicators and the participation factors for weak area identifications. Voltage – Power 

(real or reactive) sensitivity is another index for voltage collapse detection . During 

normal operating conditions, the Voltage – Power sensitivity is a finite value, and it 

will increase with the system loading .When voltage collapse occurs, the Voltage – 

Power sensitivity will be infinite [10]. Another developed method using the distance in 

the load parameter space between a given operating condition and the critical point, 

which is the voltage collapse point, as index .Algorithms for calculating this distance 

were further investigated , while this index can provide  a load power margin for an 

operating condition, which is particularly valuable to system operators, the 

computational burden is a main concern [11]. 
 

 The study of this phenomena could be put into framework of catastrophe 

theory which describes how sudden jumps in the system states can arise from a smooth 

change of the system parameters [12]. The voltage stability manifold is defined as an 

equilibrium surface of critical points . It can be obtained by deriving the minimum of 

the system function which involves voltage and system parameters as state and control 

variables respectively. In reference [13] , the theory was applied on a simple system 

consisting of a single generator supplying a static load through a lossless transmission 

line. The control parameter (a < 0) was used as an indicator for voltage stability index. 
 

 In this paper, an attempt has been made to find  a physical explanation for 

voltage instability phenomena in interconnected multi-machine system using the 

catastrophe theory together with comparative singularity of power flow Jacobian and 

modal analysis . The study is based on the analysis of the phenomena under the effects 

of changing the system parameters. 

 

2 - CATASTROPHE  THEORY 
 

In any system (physical or natural) if some of the parameters of that system 

continue  to vary very smoothly, a critical stage may be reached at which point the 

system exhibits a sudden jump from state to another. The other state may be different 

from the original state. Power system like many of the most interesting phenomena in 

nature involves discontinuities. One of the reasons for these discontinuities is the 
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voltage collapse. Catastrophe theory tries to deal with the properties of these 

discontinuities. 
 

Consider a gradient system whose behavior is usually smooth, but sometimes (or in 

some places) exhibits discontinuation and described by a potential function Ep with n 

state variables (X 1,.., X i ,…, X n) and  m control variables (C 1,..., C k ,., C m) . Then the 

equilibrium equations  are given by: 
 

0




i

p

X

E
           i = 1, ………, n                                                            (1) 

 

Define an m-dimensional equilibrium surface in the (n + m) dimensional  space 

spanned by the  Xi and Ck. Since the potential depends upon the control parameters, 

The Hessian of  Ep and its eigenvalues also depend on these control parameters. For 

certain values of control parameters, one or more of these eigenvalues may assume the 

value zero. When this happens, the Hessian of  Ep is 
 

  0Epdet
Ep
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and the system critical points are called non-isolated degenerate or non-Morse critical 

points at which the system exhibits instability, but when the det [
ijEp  ] ≠ 0, the critical 

points are called isolated non-degenerate or Morse critical points at which the system is 

stable. Therefore the system potential function Ep can be split into parts    

(stable/unstable part). This is called splitting lemma [14-16], because it allows us to 

split the critical point into two parts: part involved in structural stability (non-

degenerate associated with the non-vanishing eigenvalues), and the other involved in 

instability(degenerate associated with the vanishing eigenvalues). 
 

According to Thom's theorem, in an open neighborhood of a critical point (where ℓ 

eigenvlaues vanish), the original potential function Ep can be written in the canonical 

form.  

Ep = Cat(ℓ , m) + 


n

lj

jj y
1

2                                                                       (3) 

 

 Where,        Cat(ℓ , m)    is the catastrophe function 

  λj       is the number of non-zero eigenvalues   

  yj     is the coordinates associated with non-vanishing eigenvalues 
 

The catastrophe function Cat(ℓ,m)  gives the qualitative configurations of the system 

discontinuities that occur in the neighborhood of critical  points. The second term in 

equation 3 does not contribute for discontinuities  and can be ignored in the analysis. 
 

According to Thom's classification theory, in any system governed by a potential 

function, and in which the system behavior  is determined by no more than four 

different control variables, only seven qualitative different types of catastrophe 

functions are possible and given in Table 1. These are called elementary catastrophes. 
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Table 1: Seven elementary Catastrophes. 
 

Catastrophe     
Manifold 

Control 
variable 

State 
variable 

Function Derivative 

Fold 1 1 x3/3 + a x x2+ a 

Cusp 2 1 x4/4 + b x2/2 + ax x3 + b x + a 

Swallowtail 3 1 x5/5 + a x3/3 + bx2/2 + cx x4 + ax2 + bx + c 

Butterfly 4 1 x6/6 + a x4/4 + b x3/3 + cx2/2 + dx x5/5 + a x3/3 + bx2/2 + cx 

Hyperbolic 3 2 x3 + y3 + axy + bx + cy 3x2+ay+b+3y2+ax+c 

Elliptic 3 2 x3 + a(x 2+ y2) -3xy + bx + cy 3x2-3y2+2ax+b-6xy+2ay+c 

Parabolic 4 2 X2y + y4 + ax2 + by + cx+dy 2xy+2ax+c+x2+4y3+2by+d 

 
 

3 - PROBLEM  FORMULATION 
 

 As mentioned in the last paragraph of the introduction, the voltage collapse 

phenomena needs more explanation for voltage instability. The basic configuration 

used to explain  voltage collapse is shown in figure 1-a. In this circuit the voltage 

source  Eth in series with the equivalent transmission impedance Zth represents the 

Thevenin equivalent of a network connected to a load. The load is described by its real 

and reactive powers as shown. 

 

 

 

 

                                                                                   

                                                                               
                                                                                                                   

                                                         V2                      P2 , Q2                             

                                                           Load 

                                                                                

  

                                                                                     

                                                                                                       
 

 

 
Figure 1.a: Thevenin Equivalent Network. 

 

 

The load receiving end voltage V2 in terms of  P2 and  Q2 and the  Zth is obtained as 

follows [17]: 
 

                
*

2

*

2
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V
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EV th

th                                                                                   (4) 

Therefore, 
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*
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V2 = e2 + j f2                                   f2 = V2 sin  α    

                                

                         α                                       Eth                            

 

e2 =  V2 cos  α          

Equivalent  Network 

 

                  

Zth                        
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Feasible Solution 

          J > 0 

  Infeasible Solution 

                 J < 0 

                   

 

Saddle Point 

        J = 0 

P2 

Where, 
 

V2 = |V2|        ,   Eth = |Eth| 0    ,     S2 = P2 + j Q2   and    Zth = Rth + j Xth 
 

Rewrite eqn.(5) in terms of real  and imaginary components: 
 

                   V2 Eth cos α = 2

2V +( P2 Rth + Q2 Xth ) 

V2 Eth sin α = - ( P2 Xth - Q2 Rth  )                                                                                                         (6) 
 

Equations (6) represent the PV relationship and figure 1-b shows this for 2-bus 

network. For a constant power demand, there exists two operating points except the 

saddle point which represents the steady state stability limit. The higher operating 

voltage is called the stable operating point and is the feasible solution. On the contrary, 

the lower one is the unstable point and is infeasible [18]. In this paper, it will be shown 

that the higher operating point has positive value of the new proposed indicator using 

Catastrophe theory, the Jacobian matrix determinant, and the Eigenvalue of the reduced 

Jacobian matrix and lower one is negative for them. The determinant approaches zero if 

the operating move to the saddle point.                                          
                                            

                              V2                                        

 

 

 

                                

 

 

    

                             V2cr 

 

 

 

 

 

         

        

 
 

Figure 1-b:  Receiving Power vs. Load Voltage for two-node  Network. 

 
 

Since short circuit capability equals Scc = 

th

th

Z

E 2

, then dividing both sides of equations 

(6) by Scc, we obtain the following equations: 
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where, 
 

and
SCC

Q
Q
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P
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f

E
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e

thth

,,,
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,
cos 2222 


 V = e + j f 

 

Squaring and adding eqns (7), we obtain the following equation: 
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or, 
 

024  cbVaVV                                                                                (9) 
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Equation (9) is seen to be the swallowtail catastrophe manifold, with load bus voltage 

as a state variable and control variables a, b = 0, and c represent the system parameters .  

As seen the control variables depend  upon the load active and reactive components as 

well as the system equivalent Thevenin impedance. Eqn (9) has the solution in V
2
 as: 

 

))2/(
2

( 22 ca
a

V 


                                                        (10) 

 

3.1 The Critical Voltage of Loading Node  
 

Next, we find the singularity set Ѕ which is the subset of the catastrophe manifold 

equation (9) that consists of all singular points corresponding to the system critical 

voltage stability. These are the points at which the first derivative of equation (9) equal 

to zero, as follows: 

2

024 3

a
V

or

aVV

cr





                                                                          (11)      

 

It is clear that for stable operation , the control parameter  a  should be less than zero, 

and 
2

2
0 










a
c  to get real solution and is considered here a new indicator for voltage 

stability. The indicator can now be determined for each load bus in the power system. 

The weakest bus in the system will have the smallest magnitude for the indicator c as 

well as the smallest eigenvalue of the Jacobian Jx  indicating that the system is on the 

verge of instability.  
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The singularity set  Ѕ is then projected down onto a two-dimensional  control space 

(a,c) to obtain the bifurcation set β  . The bifurcation set is the image of catastrophe 

manifold in the control space which provides the region of all possible stable voltage 

operations in terms of the control variables (a, c), which usually represent the system 

parameters as illustrated in figure 2.  
 

By substituting equation (7) at critical operation into equation (11), we obtain the value 

of critical voltage: 

cos2

th
cr

E
V                                                                            (12) 

 
3.2  The  Maximum  Power  Loading  
 

Corresponding to maximum loading, there is one value of  Vcr as the two values are 

superimposed, then the term under the root of equation (10) must vanishes, i.e, the term 

under the root becomes zero, then, 
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Figure 2: The New Voltage Indicator.
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Equation (13) can be rewritten in the general form as : 
 

02  MKPLP                                                                                 (14) 
 

P in equation (14) is Pmax of the node under study. Solution of equation (14) results in 

two values of P, one of them is negative and the other is positive. Evidently the positive 

value should be considered. Therefore, 
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As seen the presence of a reactive component of load Q and system impedance affects 

the loading power limit. 

 
4 -  VOLTAGE  STABILITY  EVALUATION  USING  

JACOBIAN  MATRIX  ELEMENTS 
 

The use of the singularity of power flow Jacobian matrix as an indicator of steady state 

stability was first pointed out by reference [19] , where the sign of the determinant of Jx 

was used to determine if the studied operating point was stable or not.  

From energy conservation, the following active and reactive load flow equations for P  

and Q can be obtained from equations (7) and taken negative (injected at load bus): 
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From the linearized Power flow equations (16) and (17) we obtain 
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where, the elements of the Jacobian matrix of the system is 
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f

P




 = (Xth+2Rthf)/Zth    ,     

e

P




 = Rth(2e-1)/Zth 

 

f

Q




 = (2Xthf – Rth)/Zth    ,       

e

Q




 = Xth(2e -1)/Zth   

 
and the determinant of the Jacobian matrix is 
 

 | Jx | = Zth(2e – 1)                                                                                        (19) 
 

The singular  points corresponding to the system critical voltage stability occur when 

the determinant of the Jacobian matrix is zero. Then at | Jx | = 0, we obtain 
 

ecr   = ½                                                                                             (20) 
 

or 

cos2

th
cr

E
V                                                                                              (21) 

 

Equation (21) represents the critical load bus voltage and as seen the same equation 

obtained using the catastrophe theory (equation (12)). After a little manipulation for 

equations (16) and (17) we have: 
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where, the value of  f  is given in equation (7) and the value of e is recalculated  and 

given by: 
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Equations (22)  define  two  circles  on ( e–f )  plane  Shown in figure 3, with centers at 
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respectively. The radiuses vary with the real and reactive load respectively. The heavier 

the load is, the smaller the radiuses will be. The intersection points define the possible 

values of voltages ( e , f  ) at the load bus. 
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From figure 3, it is clear that there are two solutions (higher and lower) for the load bus 

voltage ( e , f ) as  long as 

th

thth

Z

QRPX 
 is less than the radius of the circle. Also to get 

the real roots for  e , we have: 
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Z
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Equation (20) represents the vertical line connects the centers of the circles defined by 

equations (22). This line can be considered as the border between the stable (area A 

right hand side) and unstable (Area B left hand side) areas in the voltage plane, which 

is similar to the border curve obtained at 
cos2

th

cr

E
V   or  at  ecr   = ½  from the 

catastrophe theory . 

 
5 - VOLTAGE STABILITY EVALUATION USING  MODAL ANALYSIS 

 

Voltage stability characteristics of the system can be identified by computing the 

eigenvalues of the reduced Newton-Raphson load flow Jacobian matrix. The linearized 

steady-state system power voltage equations are illustrated in equation (18) and the 

variation in  reactive load flow ∆Q at constant active power component  (i.e ∆P = 0 ) is 

given by:  

 

Figure 3: Load Bus Voltage Solutions. 
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Jpf  = (Xth+2Rthf)/Zth    ,     Jpe = Rth(2e-1)/Zth 

 

JQf  = (2Xthf – Rth)/Zth    ,      JQe =Xth(2e -1)/Zth   

 

JxR is a reduced Jacobian matrix of  two node system, and its dimension is 1 x 1 matrix. 

Eigenvalue of this reduced Jacobian matrix is used as indicator of voltage stability. If 

the eigenvalue  of JxR is positive, the system is considered voltage stable. The system is 

considered voltage unstable if the eigenvalue  of JxR is negative . At each operating 

point we keep the active power component  constant and evaluate voltage stability by 

considering the incremental relationship between  the reactive power Q and the 

magnitude of active bus voltage  e. 

 
6 – NUMERICAL EXAMPLE 

 

In order to study the intrinsic characteristics of the catastrophe control parameters      

(a, c), the singularity of power flow through the determinant sign of the Jacobian matrix 

and the eigenvalue of the reduced Jacobian matrix using modal analysis and their 

relations to voltage instability state, a theoretical test system has been adopted. The test 

system is the Ward-Hale 6-bus Network [20] shown in figure 4. This system, generally 

used for testing the new developed techniques in comparison to the known ones. The 

initial data for generation and load of the system is given in Table 2. The results of the 

conventional load flow run of the test system are shown in Table 3. In this run, bus 1 is 

taken as the slack bus and bus 2 is maintained at constant voltage of 1.1 p.u. An 

accuracy of 0.00001 was achieved in both voltage magnitude and angle. 

 

 

                                         1                        4                             3 

                                                                        

 

 

 

                                                                               

 

                                                                      

      

 

                                          6                        5                            2                             
 

Figure 4: Ward-Hale 6-bus Network. 
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Table 2: Bus Loading and Voltages. 

 

 

 

 

 

 

 

 

 

 

For this system, the Thevenin’s equivalent ( Eth and Zth ) at each load node with its load 

separated is firstly calculated. The Thevenin’s p.u. voltages Eth and impedances Zth for 

the load nodes (nodes 3 – 6) are found to be as given in  Table 4. 
 

Table 3: Load Flow Results. 

               
Table 4: Thevenin’s equivalents. 

 

 
 

The new indicator c , the singular value of the Jacobian | Jx | and the eigenvalues   

using modal analysis are applied and calculated for each load node at the nominal load 

setting. In order to test these indicators, two tests are carried out :  
 

6.1 The First Test 
Stressing each load node of the test Ward-Hale 6-bus Network with keeping the 

reactive power constant at each load node by gradually increases the active power, 

starting from the base load up to 130% Pmax . The results show complete agreement, 

also, it shows the value of the critical voltage Vcr for each load node and its 

corresponding consumed max power Pmax.. The criteria for the system to be stable, the 

new indicator c should be less than (a/2)
2
 , the determinant values of the Jacobian | Jx | 

and the eigenvalues   also should be positive values as shown in Table 5. The new 

Bus 
Number 

Bus 
Voltage 

Active 
Power 

 Reactive 
Power 

1   1.050  ……    …… 

2   1.100    0.500    …… 

3     …… - 0.550   - 0.13 

4     …… - 0.000   - 0.000 

5     …… - 0.300   - 0.18 

6     …… - 0.500   - 0.05 

  Bus Number        Bus Voltage Active Power  Reactive Power 

1 1.050 0  0.952 0.433 

2 1.100 34.3  0.500 0.184 

3 1.0008 78.12  - 0.550 - 0.13 

4 0.9290 84.9  0.000 0.000 

5 0.9198 33.12  - 0.300 - 0.18 

6 0.9192 24.12  - 0.500 - 0.05 

Bus Number Thevenin’s Voltage  Eth Thevenin’s  impedance  Zth 

3 0.975  023.1  0.2740 64.75  

4 0.954  93.9  0.2220 81.75  

5 1.000  1987.3  0.32315 43.75  

6 0.987  21.3  0.2370 54.75  
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indicator c using the catastrophe theory provides a way to determine the stable and 

unstable zones as shown in figure 5. As seen the break away point which represents the 

critical loading point at each bus  occurs at loading with maximum value. This point 

corresponding  to the saddle point obtained from P-V relationship as shown in       

figure 1-b which separates between the stable and unstable zones. 
   

Table 5-a: The New and Different Voltage Stability Indicators 
         for  Load Bus 3 for  6 – Bus Power System. 

 

Bus 
Number 

 

New indicator Jacobian 
Value 
| Jx | 

Eigenvalue 

  

Critical 
Voltage 

Vcr 

Bus 
Loading 

System 
State     c     A 

BUS 3 
 

Maximum 
Loading 

p.u 
1. 2289 

0.0265 -0.8319 0.2097 3.3350 0.629 Base Load Stable 

0.0327 -0.8205 0.2018 3.2540 0.625 50% Pmax Stable 

0.0465 -0.7987 0.1842 3.0559 0.616 60% Pmax Stable 

0.0719 -0.7663 0.1500 2.6074 0.604 75% Pmax Stable 

0.1.03 -0.7340 0.9751 1.8067 0.591 90% Pmax Stable 

0.1268 -0.7122 0.0000 0.1219 0.582 100% Pmax 
Critical 

Stable 

0.1532 -0.6908 -0.41100 -7.403087 0.573 110% Pmax Unstable 

0.1820 -0.6690 -0.41100 -7.624514 0.564 120% Pmax Unstable 

0.2134 -0.6475 -0.41100 -7.859595 0.555 130% Pmax Unstable 

    
 

 

 

 

 

  

 

 

 

 

                    

 

   

 

 

 

 

 

 

 

 
 

Figure 5-a: Operating Zones for Bus 3. 
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Table 5-b: The New and Different Voltage Stability Indicators 
       for  Load Bus 4 for 6 – Bus Power System. 

 

Bus 
Number 

 

New indicator Jacobian 
Value 
| Jx | 

Eigenvalue 

  

Critical 
Voltage 

Vcr 

Bus 
Loading 

System 
State     c     A 

BUS 4 
 

Maximum 
Loading 

p.u 
1. 573 

0.0000 -1.000 0.222 4.943280 0.674580 Base Load Stable 

0.0368 -0.900 0.17595 4.531556 0.634206 50% Pmax Stable 

0.0530 -0.860 0.16139 4.277920 0.625819 60% Pmax Stable 

0.0828 -0.826 0.13414 3.688300 0.613023 75% Pmax Stable 

0.1193 -0.791 0.85462 2.608000 0.599955 90% Pmax Stable 

0.1473 -0.768 0.00000 0.287339 0.591082 100% Pmax 
Critical 

Stable 

0.1783 -0.744 -0.333000 -9.384356 0.582073 110% Pmax Unstable 

0.2122 -0.721 -0.33300 -9.707075 0.572923 120% Pmax Unstable 

0.2490 -0.698 -0.33300 -10.05278 0.563625 130% Pmax Unstable 
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Figure 5-b: Operating Zones for Bus 4. 
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Table 5-c: The New and Different Voltage Stability Indicators 
        for  Load Bus 5 for  6 – Bus Power System. 

 

Bus 
Number 

 

New indicator Jacobian 
Value 
| Jx | 

Eigenvalue 

  

Critical 
Voltage 

Vcr 

Bus 
Loading 

System 
State     c     a 

BUS 4 
 

Maximum 
Loading 

p.u 
1. 0398 

0.0104 -0.8787 0.276166 2.936918 0.663 Base Load Stable 

0.0316 -0.7856 0.226402 2.510242 0.627 50% Pmax Stable 

0.0440 -0.7647 0.206671 2.345026 0.618 60% Pmax Stable 

0.0668 -0.7337 0.168214 1.977991 0.606 75% Pmax Stable 

0.0948 -0.7025 0.109354 1.334347 0.593 90% Pmax Stable 

0.1162 -0.6817 0.000000 0.000000 0.584 100% Pmax 
Critical 

Stable 

0.1399 -0.6612 -0.161575 -2.013231 0.575 110% Pmax Unstable 

0.1659 -0.6403 -0.161575 -2.066252 0.566 120% Pmax Unstable 

0.1941 -0.6197 -0.161575 -2.122141 0.557 130% Pmax Unstable 
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Figure 5-c: Operating Zones for Bus 5. 
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Table 5-d: The New and Different Voltage Stability Indicators 
        for  Load Bus 6 for  6 – Bus Power System. 

 

Bus 
Number 

 

New indicator Jacobian 
Value 
| Jx | 

Eigenvalue 

  

Critical 
Voltage 

Vcr 

Bus 
Loading 

System 
State     c     a 

BUS 6 
 
 

Maximum 
Loading 

p.u 
1. 5357 

0.0149 -0.902 0.205823 4.216143 0.663 Base Load Stable 

0.0350 -0.862 0.184078 3.949922 0.648 50% Pmax Stable 

0.0503 -0.839 0.168060 3.709058 0.639 60% Pmax Stable 

0.0786 -0.805 0.136814 3.159393 0.626 75% Pmax Stable 

0.1132 -0.770 0.088957 2.169858 0.613 90% Pmax Stable 

0.1397 -0.748 0.000000 0.074827 0.603 100% Pmax 
Critical 

Stable 

0.1690 -0.724 -0.35550 -8.825145 0.594 110% Pmax Unstable 

0.2011 -0.702 -0.35550 -9.108338 0.585 120% Pmax Unstable 

0.2360 -0.679 -0.35550 -9.410307 0.575 130% Pmax Unstable 
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Figure 5-d: Operating Zones for Bus 6. 

 
 

6.2  The Second Test 
 

As illustrated in Table 5-c the values of the control parameter c of bus 5 as compared 

to the other buses are the smallest values as well as its eigenvalues obtained. Therefore 

bus 5 is considered here the weakest bus in the system. In order to test the three criteria 
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for this bus with load active power is kept constant at 0.3 p.u and load reactive powers 

are assumed to be increased gradually from 0.18 p.u up to 402.8 % of its nominal value 

i.e reactive power of that bus is increased to 0.725 p.u. The node critical voltages 

nearly dropped down by 25 % from stable to unstable cases. 
 

The criteria for the system to be stable, the new indicator c should be less than (a/2)
2
 , 

the determinant values of the Jacobian | Jx | and the eigenvalues   also should be 

positive values as shown in Table 6. As shown in figure 6 the break away point which 

represents the critical reactive power loading point at bus 5 occurs at  0.715 p.u . This 

agree with the given results . 
  

Table 6: The New and Different Voltage Stability Indicators for Bus 5 at  
            different Loading VARs With Constant  Active Power 0.3 p.u. 
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Figure 6: Operating Zones for Bus 5 at Different VARs With Constant active Power. 

Bus 
Number 

 

New indicator Jacobian 
Value 
| Jx | 

Eigenvalue 

  

Critical 
Voltage 

Vcr 

Bus 5 
VARs 
p. u 

System 
State 

    c     a 

BUS 5 
 
 

Base 
Loading 

p.u 
0.3 

0.01040 -0.87865 0.276166 2.936918 0.6630 0.18 Stable 

0.02229 -0.71861 0.210677 2.201371 0.6000 0.36 Stable 

0.03890 -0.60795 0.148268 1.530762 0.5510 0.54 Stable 

0.05080 -0.44281 0.103353 1.060713 0.5260 0.63 Stable 

0.06200 -0.50359 0.024072 0.245756 0.5020 0.710 Stable 

0.06230 -0.50239 0.018062 0.184371 0.5010 0.712 Stable 

0.06240 -0.50159 0.014128 0.144204 0.5009 0.713 Stable 

0.06260 -0.50119 0.008541 0.087175 0.5006 0.714 Stable 

0.62700 -0.50040 -0.161575 -1.501579 0.5003 0.715 Unstable 

0.63500 -0.49719 -0.161575 -1.500193 0.4988 0.720 Unstable 

0.06420 -0.49437 -0.161575 -1.498810 0.4972 0.725 Unstable 

e 
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7- CONCLUSIONS 
 

1. This paper has developed a new voltage stability indicator for integrated power 

systems using the catastrophe theory.  

      A swallowtail manifold has been shown to be appropriate for this new indicator. 
 

2. An algorithm has been presented in this paper and a developed C – language 

program is used to calculate the new indicator in terms of the system parameters; 

load active and reactive powers, transmission impedance, and the voltage source . 

These system parameters can be measured or calculated with a speed adequate for 

on-line steady-state voltage stability assessment. It has been shown that the zone 

inside the border curve which represents the curve of critical points and the curve 

of bus operating points represents the steady voltage stable zone, and the voltage 

collapse occurs in the zone that produced after the system is loaded with value 

greater than maximum load Pmax. 
 

3. Coincidence  of  the  obtained  results of  the new indicator,   determinant of the 

Jacobian, and the eigenvalues is proved for system load nodes of different       

active and reactive power loadability  conditions leading to stable and unstable 

voltage cases. 
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 دــــمؤشر الاقتراب الجديد لانهيار الجه

لقد أصبحت مشاكل الاتزان فى الجهد لشبكات القوى الكهربية واحدة من أكبر اهتماماات 
 مرافق تقديم الخدمات الكهربية.

 

الجهد مستخدماً نظرية  يالاقتراب لحالة الانهيار فدة لمؤشر هذا البحث سجل طريقة جدي
هااذا المجااالل ملاال الطريقااة الم ااردة  يالنكبااة مقارنااة مااق الطاارق التقميديااة المسااتخدمة فاا

(Singularity)  لمحدد مص وفة الجاكوبيان لتدفق الطاقة الكهربية وكذلك طريقاة التحميال
. أوضحت هذه الطريقة وسيمة لتعيين منطقة التشغيل المتزنة (Modal analysis)الناقص 

جهد  ييحدث الانهيار ف       بعدها يلشبكات القوى الكهربية، وكذلك النقطة ال اصمة الت
 Ward-Hale 6-bus Network         . تمات الدراساة ىماى شابكة كهربياةتشغيل النظام

 قضبان التحميل كلا ىمى حدة. لهذه الشبكة ىند فصل   Thevenin مستخدما مكافئ 
 

جمياق حاالات  يالتاام فا تطاابقهاذه الدراساة أىطات ال يتام التوصال يليهاا فا يالنتائج التا
منطقة الجهد المتزن تحدث ىنادما  يالتحميل، حيث أىتبر المؤشر الجديد حالة التشغيل ف
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(a/2)موجبة وأقل من  cتكون قيمة 
ان ماق قيماة محادد مصا وفة ساري تطابقوهو ما ي  2

   Eigenvaluesالطاقة الموجب وكذلك القيمة الموجبة لمـ 
الاختبااار الول تاام فياال تحمياال قضاابان  لتاام يجاارات اختباااران ىمااى الشاابكة المسااتخدمة 

تاام  يالااذ % ماان الحماال القصااى 031تصاال يلااى لمقاادرة ال عالااة الحمااال المختم ااة بقاايم 
فعالاة لهاذه الحماال لابتاة لا استنتاجل خلال هاذا البحاث ماق فارك مركباة القادرة الغيار 

مق الطرق التقميدياة الخارى .  تتطابقتم الحصول ىميها  ي، حيث كانت النتائج التتتغير
 يتام تحديادها أيضاا فا يفقد تم فيل الدراسة ىمى القضابان الواهناة التا يأما الاختبار اللان

فعالة متغيرة القيمة,  هذا البحث وتحميمها بأحمال ذات قدرة فعالة لابتة القيمة وبقدرة غير 
بعادها يحادث  يوأيضاً أمكن تحدياد منطقاة التشاغيل المتزناة وكاذلك النقطاة ال اصامة  التا

 يجهد تشغيل النظام مماا يعطاى لهاذا المؤشار الجدياد يمكانياة التطبياق العمما يالانهيار ف
 والمراقبة ال ورية لمناطق تشغيل قضبان التحميل بشبكات القوى الكهربية.

   


