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This paper presents stability analysis for the well known generalized 

predictive control (GPC) when dealing with uncertain systems. This 

analysis is based on the step response coefficients and its explicit relation 

with the system transfer function. It reveals a part of the mystery behind 

the stability strength of the GPC. 
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1.  INTRODUCTION 
The GPC is widely used in the industry despite the need of global assurance of its 

significant performance and stability (which is always debatable within the research 

society). Therefore, it cannot be claimed that the stability has reached a mature stage 

yet. The investigation of the GPC stability, can be traced back to Clarke et al (1987) 

[1], where the stability problem was approximated, under certain conditions, to the 

state space LQ controller. Later, using results in state space theory [2] and [3], some 

stability results were presented in [4] and [5]. However, the most significant 

contribution can be ascribed to the work presented in [6], in which, a clear 

representation for the closed loop system in terms of the impulse response coefficients 

was introduced. Reference [7] used this representation and introduced some results 

under certain conditions for the stability of GPC. On the other hand, reference [8] used 

the same principle with a different approach and referred to it: as an explicit closed 

loop description. A different approach [9] was introduced where a terminal state 

constraint is employed in linear unconstrained systems. Later, many stability results 

which dealt with wide range of GPC parameters were introduced in [10]. Using the 

explicit relation between the system transfer function and the step response 

coefficients, a stability analysis for the system transfer function was investigated in 

[11].  
 

However, most of the aforementioned researches deal only with nominal systems and 

rarely with unstructured uncertainties as in [10] and [11] without paying any attention 

to other systems uncertainties (errors) such as unmodelled poles. Accordingly, it is 

useful to investigate the stability of the GPC when applied to the possible value of 

these errors. In this paper, the condition of GPC stability is investigated by obtaining 

the necessary and sufficient conditions for the roots of the characteristic equation to lie 

inside the unit circle. The new stability results reveal a new part of the mysteries GPC. 

 
539 



Hesham W. Gomma 
________________________________________________________________________________________________________________________________ 

 

540 

2.  MODELLING  OF  THE  SYSTEM 
The GPC approaches are applicable to both single-input/single-output (SISO) and 

multi-input/multi-output (MIMO) systems. In general, non-linear models can 

frequently be linearised around a particular operating point and described by 
 

)()()1()()()( 111 tzCtuzBtyzA                          (1) 
 

where y(t) is the output, u(t) is the control sequence, )(t  is the zero mean white 

noise. A, B and C are polynomials in the backward shift operator 
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This model is known as a CARMA (Controlled Auto-Regressive and Moving-

Average) model. In industrial applications where the disturbances are non-stationary, 

an integral action is more appropriate [1] This will lead to automatic steady state 

reference setpoint tracking despite the presence of unmodelled disturbances 
 


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where   is the differencing operator 
11  z . This model is known as CARIMA model 

(Controlled Auto-Regressive Integrated Moving-Average). For simplicity the C 

polynomial is chosen to be 1 or 1C  is truncated and absorbed into the A and B 

polynomials. 

 

3.  THE  OPTIMAL  PREDICTION 
The main idea of GPC [1] is to find a control sequence to minimise the multistage cost 

function of the form: 
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where )(ˆ tjty   is the predicted output j steps into the future based upon information 

available to time t, )( jtw   is the future reference trajectory, E{.} denotes the 

expectation operator which has been used to indicate that the control values chosen are 

calculated conditional to the data available up to and including time t and presuming 

the stochastic disturbance model. From the above, the tuning parameters are 1N , the 

minimum costing horizon, 2N , the maximum costing horizon, )( j , the weighting 

function to penalise the control sequence. In addition without loss of generality, 

suppose that the system has no time delay and let NNN  21 and1 (
u

N ). 
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To minimise any of the above functions the future values of the output )(ˆ jty   should 

be obtained by performing long division of 1 by )( 1 zA . In fact, for long control 

horizon, an alternative method such as the recursion of the following Diophantine 

equation can be used: 
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where 
  )()(

~ 11 zAzA . For a unique solution the degree of the polynomials Ej and 

Fj should be equal to 1j  and na respectively. From Equation (4), it is clear by 

dividing 1 by )(
~ 1zA  the polynomial Ej is the quotient and the remainder is the 

factorisation of 
j

jFz . By multiplying each side in Equation (4) by 
j

j zzE )( 1 , it is 

easy to see that the prediction output could be written as (see: [1]) 
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where )()()( 111   zBzEzG jj
. From Equation (5), the optimal output predictions 

could be stated as: 
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which can be written as: 
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where f is the free response and Gu is the forced response where  
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Now the cost function in Equation (3) and (4) can be written as: 
 

uuw)f(Guw)f(GuJ
TT

GPC      (10) 
 

Minimizing the J in the above Equation (10) assuming that there are no constraints in 

the future, can lead to   
 

w)(fG)G(Gu
T-1T                                                                      (11) 

 

The first element, )(tu , of the matrix u, will be applied to the system and will be 

repeated at every sampling period. In non-adaptive design with a time invariant model, 

this leads to a time invariant controller. In general, to reduce the computation needed in 

GPC, it is assumed that the control signals will be constant after the control horizon. 

The stability results of the above control law is summarised in the following sections. 

 

4.  SYSTEMS  UNCERTAINTY 
In spite of the model used in the design, there is no controller that can be considered to 

be robustly stable without taking into account the modelling errors (uncertainties). 

Hence, it is useful to design a controller which can deal with the largest possible value 

of these errors and which provides acceptable performance and stability. This section 

presents a class of theses errors called structure uncertainties which will be considered 

in this paper.  

 

Unmodelled  Poles 
Considering that the real process has the following transfer function with extra stable 

poles 
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where 
~

( )A z1  is the denominator of the real process that have other stable poles apart 

form the ones appearing in the model and 
~
K  is added so there are no discrepancies 

between the static gain of the process and that of the model. 

 
5.  STEP  RESPONSE  COEFFICIENTS  AND  THE  TRANSFER 

FUNCTION 
It should be mentioned that the step response is one of the simplest mechanisms which 

can be used to predict the output of a process. In this paper this mechanism will be 

used intensively through the introduced results. The predicted output is related to the 

input by the equation 
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where ig  are the sampled output values for the step input and  is the differencing 

operator (
11  z ) with 

1z  the backward shift operator.  



STABILITY  ANALYSIS  FOR  GENERALIZED  PREDICTIVE…. 
________________________________________________________________________________________________________________________________ 

 

   543 

Lemma 1: If the system transfer function is a stable first order system that can be 

written as 
11

1
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where nh  is the impulse response coefficient at n-instant and the step response 

coefficients can be written as follows 
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It is clear that  gggg k 210  which completes the proof. 

Lemma 2 :  If the system transfer function is a stable n-order system that can be 
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then the system response coefficients satisfy  gggg k 210 . 

Proof  

Using Lemma 1, it is clear that  gggg k 210 .which completes the 

proof. 
 

It should be mentioned that the above Lemmas will be the key element of the following 

theorems. 

 

6.  STABILITY  WITH  FINITE  MAXIMUM  PREDICTION  HORIZON  
The first theorem presents a description of the closed loop system in terms of the step 

response coefficients, which will be the key element in this paper. However, the main 

objective of the theorem is to study a popular case in GPC where the control horizon 

( uN ) is set to one. Under this condition, the control law will be unique and can be 

evaluated with no matrix inversion.  
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Theorem 1 

If the open loop model )(
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real process transfer which has extra stable poles (see: Equation 12) and 

NNNNu  21 ,1,1 , 0  and the step response coefficients of the model 

satisfy 
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then the closed loop system is stable. 
 

Proof 
From the assumption above it can be seen that the control horizon 

u
N  has been set to 

one. Thus, the control law can be written as 
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From the original algorithm the prediction output can be written as 
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while, by recalling the definition of the open loop step response  
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Therefore, if k  takes different values from 1 to N  the future outputs can be written as 
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By comparing (20) and (22) the free response term f will be represented in the 

following form 
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and from Equation (19) 
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Substituting Equation (24) into Equation (19) (the control law) leads to 
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For simplicity, let the reference be constant over the prediction horizon N-i.e. 
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considering that the real process has the following transfer function with an extra  
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Substituting Equation (24) into (27) gives 
 













  






















N

i i Ni

iN

iN

i

i

i

i

iii

N

i

i

zggzggzgggA

gBK

ty

1 2 13

2

2

12

1

~

~

)(





          (28) 

 

Thus, the characteristic polynomial can be written in the following form 
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which can be written as 
 







1

0~
i

i

i z
A

H
                                                                (30) 

 

From Rouche’s theorem [12], as A
~

 is stable, for all roots to lie in the unit circle it is 

sufficient that 
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As all terms in the summation are positive, thus Equation (31) holds if 
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which is true by assumption. This completes the proof of the theorem.  

It should be noticed that for a special case when 1N , Equation (32) can be written 

as the single inequality 
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Remark: To apply the above theorem to a non-minimum phase system where the step 

response will have a different behaviour, the different conditions which have been 

applied in [7] namely   ggg kk 10  and the minimum prediction horizon 

kN 1 , should be considered. The advantage of theorem 1 is that it can be applied to 

many systems such as gas turbine engine, which has stable open loop and monotonic 
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step response. Moreover, this theorem can provide a good explanation of the effect of 

the prediction horizon on the closed loop stability. More precisely, it can be seen that 

for large values of N , the summation of the left-hand side, 
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guarantees the stability for all large N . More precisely, 
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                                                                   (36) 

 

Then the closed loop system is stable.   
 

Proof 
By using Equations (11) and (13), the control law can be written as 
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




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
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







N

i

i

N

i

i

g

itwitfg
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From the control law it is clear that 
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




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
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i

i

i

i

N

i

i

N

i

i
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tu




    (38) 

 

Following the same procedures of the above theorem and applying Rouche’s theorem, 

for closed loop poles to lie in the unit circle it is sufficient that 
 

 










N
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N

i
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N

i
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1
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1

1

1

2 )()(      (39) 

 

By the assumption (Equation 13), all elements are positive and hence the inequality 

holds if 

  






N

i

ii

N

i

i gggg
11

2 )(                          (40) 

or 
 









N

i

ii

N

i

i gggg
11

2 )(2      (41) 

 

which completes the proof.  

 

Remark: From Equation (41) it can be seen that   is a very influential parameter in 

the system stability, where increasing   by a reasonable amount to satisfy the 

conditions stated above (Equations 35 and 41) can lead to the stability of the closed 

loop system. Moreover, this theorem is essential in giving an interpretation for the 

effect of   on the system performance/robustness. From Equation (15), it is clear that 

the gain of the control law increases as   decreases, which in turn improves the 

performance and diminishes the robustness. However, it is still worth mentioning that, 

from Equation (35), the maximum value of   which can be used in the theorem is 

bounded by 
 

)(

)(

)()(

1

11

1

1

1

1max

ggg

ggg

gggggg

N

N

i

ii

N

i

iii

















 

                                       (42) 

 

It is clear that increasing the maximum prediction horizon can allow larger values of   

to be used with guaranteed stability. However, the effect of an infinite maximum 

prediction horizon will be investigated in more detail, in the following section. 
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7.  LARGE  VALUES  OF  MINIMUM  AND  MAXIMUM  PREDICTION 
HORIZON 

In this section the idea of designing a controller with a very large minimum prediction 

horizon will be considered. Similar conditions were presented by [7]; however, it 

cannot be considered as a precise result due to the approximations which were used in 

developing the proof. In the mean time, uncertainties were not considered Thus, the 

next theorem will shed some light on the effect of setting the minimum prediction 

horizon to a relatively large value with application to uncertain systems. 
 

Theorem 2 

If the open loop model )(
)(

)(
)(

1

1

tu
zA

zB
ty





  is stable and )(
)(

~
)(

~

)(
1

1

tu
zA

zBK
ty





  is the 

real process transfer which has extra stable poles (see: Equation 12), 
12

NN  , 1uN , 

0  and the step response coefficients achieve 
 

 ggg NN 
21

0       (43) 
 

then the closed loop system is stable for all large enough values of 
1

N . 
 

Proof 
From Equation (18), the control law can be represented as 
 

 

M

itwitfg

tu

N

Ni

i



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2

1
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)(                                                                 (44) 

 

where 



2

1

2
N

Ni

igM                                                                              (45) 

 

Similar to Equation (37), Equation (44) can be written in the following form 
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M
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                (46) 

 

Substituting Equation (46) into Equation (44) gives the characteristic polynomial 
 


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
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For stability (Rouche’s Theorem), it is sufficient that 
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As  01)
1

(
2

1

1 




N

Ni

iigg
M

 and 0)( 1   kikii ggg     (49) 

 

where ,2,1k , the condition reduces to 
 

11)
1

(
2

1


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

N

Ni

i gg
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      (50) 

 

which is valid for all large enough 1N  as 1lim

2

1

1








 M

gg
N

Ni

i

N
                     (51) 

 

Thus the system is stable and the proof is completed.  
 

Remark: Theorem 2 differs from the one developed by [7] in which the control 

strategy of a stable open loop system was considered to tend towards a mean-level law. 

To reach this conclusion, reference [7] ignored the coefficients of the higher order of 

the shift operator (
1z ) (see: Equation 39), they considered the differences between 

1kig  and kig  , in the summation 


 
2

1

)( 1

N

Ni

kikii ggg  goes to zero, when 
1

N , 

which means ignoring any residual errors could appear. In addition, reference [7] did 

not consider any system uncertainties. Therefore to avoid this approximation and to 

prove the closed loop stability, in Theorem 2, Rouche’s theorem has been used. In 

addition to the above results which have been based on Rouche’s theorem, new results 

will be introduced. The following condition is based on Jury’s table, when [8] has 

shown (based on [13]) that by using Hurwitz’s Theorem in complex analysis, given 

  2

2

1

1

1 1)( zLzLzL , as a characteristic equation, if 01 1  nLL  

then )( 1zL  will never equal to zero when 1z , i.e. )( 1zL  is stable. It is clear that 

more stability results can be obtained by the using the above conditions. 

 

Theorem 3 

If the open loop model )(
)(

)(
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ty





  is stable and )(
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~
)(

~

)(
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zBK
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



  is the 

real process transfer which has extra stable poles (see: Equation 12) and step response 

coefficients have the following relation 
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then choices 1uN , 11 N , NN 
2

 and 0 results in closed loop stability. 
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Proof 
From [8] and by recalling Equation (29), the closed loop system is stable (all roots 

within the unit circle) if 
 

0)()(
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which completes the proof.  

 
8.  STABILITY WITH CONTROL HORIZON GREATER THAN OR 

EQUAL TO ONE ( 1uN ) 

The reader’s attention is now brought to a common case in GPC, where the control 

horizon is chosen to have values greater than ( 1uN ). Although the increase in the 

value of uN  increases the amount of computation required, it is still preferable in most 

applications, as it provides better performance with high optimality to the GPC [1]. 

The following theorems present new sufficient conditions for stability with a special 

case of 1uN  when systems uncertainties are considered. The stability of this case 

has been tackled before considering only nominal models ([1], [14], and [3]), however, 

none of them have dealt with the problem through an explicit representation of the 

closed loop system. The stability was proved by observing that the predictive scheme 

in question tends to the steady-state LQ controller for which there is a stability 

guarantee or by using the monotonicity of the optimal cost function such as [15] and 

[11]. It should be mentioned that the main difficulty in finding a clear expression for 

the closed loop system is the presence of the square matrix ( uu NN  ) inversion. Thus, 

the following theorem will try to approach this problem through certain conditions 

considering system uncertainties. 

 

Theorem 4 

In GPC, if the open loop model )(
)(

)(
)(

1

1

tu
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zB
ty





  is stable and )(
)(

~
)(

~

)(
1

1
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zBK
ty




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is the real process transfer which has extra stable poles such as 

)()()(
~ 111   zAzAzA  (see: Equation 12) where )( 1 zA  is a polynomial that 

contains the unmodelled stable poles then choices 11 N , NNNN u  )1( 12  

and 0 , results in closed loop stability. 
 

Proof 
As the weighting function   is selected to be equal to zero, the GPC control law can 

be written in the following form: 
 

w)(fGG)(Gu
T

P

-1T 
          (54) 

 

As G is a square matrix then for all G: 
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1T1T
GGG)(GP

       (55) 
 

where the matrix G is a square matrix consists of the plants’s step responses ( ig ) (see: 

Equation 9).Thus, the control law can be given in the following form 
 

 )1()1()( 1

11   twtfgtug NN
                                                  (56) 

 

Let the reference trajectory be constant over the prediction horizon, Equation 47 can be 

written as 
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which can be written 
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Recalling the system transfer function 
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Consequently, substituting Equation (57) into (58) leads to the following closed loop 

system 
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B
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From the above, the characteristic equation can be written as 
 









 





 2

23

1

121

2

1

1 )()(~ zggzgggzgg
A

H

i

i

i                        (61) 

 

If the step response can be written as 
 





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)()(
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i
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Thus the relation between the step responses and plant transfer function can be written 

as 
 

    323
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But, from Equation (61), the closed loop characteristic equation can be written as 
 

    223
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121~
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STABILITY  ANALYSIS  FOR  GENERALIZED  PREDICTIVE…. 
________________________________________________________________________________________________________________________________ 

 

   553 

By comparing Equations (63) and (64), it can be found that  
 

)()()( 1111   zAzBzzH       (65) 
 

By recalling the closed loop transfer function Equation (52), and substituting from 

Equation (65) 

    )(
)(

1
)(

1
t

zzA
ty 


                                                                           (66) 

 

From the above conditions, it is clear that the closed loop systems is stable which 

completes the proof.         

 

Theorem 5 

In GPC, assume the open loop model )(
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  is stable with a monotonic 

step response i.e.  
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
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  is the real process transfer which has extra stable poles (see: 

Equation 12), if 1
1
N , NNNNu  )1( 12 , 0 , and 

2
1


g

g , then the 

closed loop system is stable. 
 

Proof 
 

Similar to the above, from Rouche’s theorem [12], as A is stable, in Equation (56) for 

all roots to lie in the unit circle it is sufficient that 
 

 )( 11 ggg                                                                                       (68) 
 

or alternatively 

2
1


g
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which completes the proof.     

 

Theorem 6 

In GPC, assume the open loop model )(
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  has a convex step response 
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process transfer which has extra stable poles (see: Equation 12), then if 11 N , 

NNN  )1( 12 , 0 , the closed loop system is stable. 

 

Proof 
Following the proof of Theorem 4, from Equation (55), the characteristic polynomial 

can be written as: 
 

    223

1

121

  zggzggg
A

H
                                                        (70) 

 

Thus, from the sufficient condition in [8], the closed loop system will be stable if: 
 

    023121  ggggg     (71) 
 

Which completes the proof.  

 

Remark: It is important to note that many systems such as gas turbines have a convex 

step response [10]. Accordingly, the significant of the above theorems (Theorems 5 

and 6) that they have a great importance in GPC  stability as they show new sufficient 

condition where the system can be stable when 1)1( 12  NNNN u . 

Furthermore, it should be noticed that when the above theorems are applied to systems 

with time delay (d), the minimum prediction horizon (
1

N ) can be selected such as 

11  dN . 

 

9. CONCLUSION 
In this paper various stability results for GPC algorithms when deals with uncertain 

systems namely unmodelled poles are presented. In contrast to most existing theorems, 

which relied on state space representation or the monotonicity decrease of the receding 

cost function (without paying attention to uncertain systems), this paper introduced 

new theorems using an explicit representation for the closed loop system. These results 

cover many sufficient conditions for stability, of uncertain systems (unmodelled poles) 

which can be considered as design guidelines for plants with monotonic or convex step 

responses such as gas turbine engines [10]. In general, the analyses are based on 

representing the closed loop system in terms of the step response coefficients. This 

concept can be extended to cover other forms of uncertainties which will be considered 

in future research. However, it should be mentioned that the complexity of developing 

a general stability theorem for the aforementioned algorithms could be attributed to the 

complexity of the square inversion matrix which involves all system’s parameters. 
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 تحليل الاتزان لنظام التحكم التوقعي العام عند تطبيقه على الأنظمة
 النمذجة يذات الأخطاء ف
 

علن   يقدم هذا البحث مجموعة من  الظريين ل للحلينت الناا  النلحتم اللنود ت عظند ل بيقن 
الأظرمة ذال الأخ  ء ف  الظمذجة مسلخدم  ال لادة بي  م  ملال مظحظي ل الاسنلج بة من  
دالة اللحويت و ل لبي هنذ  الظريين ل مح ولنة لتانغ ال منوص الملن حا للالناا  ال يني 

 ت مت اللفسيي عظد ل بيق لظر م اللحتم اللود ت ال  م م  ال ديد م  الظرم .
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