• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Issue No 6
Issue No 5
Issue No 4
Issue No 3
Issue No 2
Issue No 1
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Essai, M., Magdy, M. (2018). EFFICIENT HARDWARE IMPLEMENATATIONS OF FEEDFORWARD NEURAL NETWORKS USING FIELD PROGRAMMABLE GATE ARRAY. JES. Journal of Engineering Sciences, 46(No 5), 539-555. doi: 10.21608/jesaun.2018.110510
Mohamed H. Essai; Marina Magdy. "EFFICIENT HARDWARE IMPLEMENATATIONS OF FEEDFORWARD NEURAL NETWORKS USING FIELD PROGRAMMABLE GATE ARRAY". JES. Journal of Engineering Sciences, 46, No 5, 2018, 539-555. doi: 10.21608/jesaun.2018.110510
Essai, M., Magdy, M. (2018). 'EFFICIENT HARDWARE IMPLEMENATATIONS OF FEEDFORWARD NEURAL NETWORKS USING FIELD PROGRAMMABLE GATE ARRAY', JES. Journal of Engineering Sciences, 46(No 5), pp. 539-555. doi: 10.21608/jesaun.2018.110510
Essai, M., Magdy, M. EFFICIENT HARDWARE IMPLEMENATATIONS OF FEEDFORWARD NEURAL NETWORKS USING FIELD PROGRAMMABLE GATE ARRAY. JES. Journal of Engineering Sciences, 2018; 46(No 5): 539-555. doi: 10.21608/jesaun.2018.110510

EFFICIENT HARDWARE IMPLEMENATATIONS OF FEEDFORWARD NEURAL NETWORKS USING FIELD PROGRAMMABLE GATE ARRAY

Article 1, Volume 46, No 5, September and October 2018, Page 539-555  XML PDF (823.92 K)
Document Type: Research Paper
DOI: 10.21608/jesaun.2018.110510
View on SCiNiTO View on SCiNiTO
Authors
Mohamed H. Essai email orcid 1; Marina Magdy2
1Electrical Eng. Depart, Faculty of Engineering-Qena, Al-Azhar University, Egypt
2Electronics & Communications Engineering Department, Higher Institute of Engineering and Technology, Luxor – El Tod, Egypt
Abstract
Hardware implementation of Artificial Neural Network (ANNs) depends mainly on the efficient implementation of the activation functions. Field Programmable Gate Array is the most appropriate tool for hardware implementation of ANNs. In this paper we introduce FPGA-based hardware implementation of ANNs using five different activation functions. These implemented NNs are described using Very High Speed Integrated Circuits Hardware Description Language (VHDL) and carried out by Digilent Basys 2 Spartan-3E FPGA platform from Xilinx. The performances of the implemented NNs were investigated in terms of area efficient implementation, and correct prediction percentages for solving XOR, and Full-Adder problems.
Keywords
Artificial system; VHDL; FFNN; FPGA; Back-propagation; Activation function
Main Subjects
Electrical Engineering, Computer Engineering and Electrical power and machines engineering.
Statistics
Article View: 159
PDF Download: 602
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.