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ABSTRACT–   This paper proposes a method to design sliding mode 
control (SMC) for the position tracking control of a permanent magnet 
linear synchronous motor (PMLSM). The controller is designed to achieve 
accurate performance in the presence of unknown disturbance and 
parameter uncertainties. The components of the control law, the 
equivalent component and the robust component, are designed such that 
the nominal system exhibits desirable dynamics and the reaching 
condition is guaranteed. Switching surface is designed based on pole 
placement and generalized matrix inverse. Simulation results show that 
the suggested procedure provides high performance dynamic 
characteristics and robust with regard to external disturbance and 
parameter variations.  
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1. INTRODUCTION 

    

   The control of motors used in high performance servo drives is one of the most 
fundamental problems that considered in the field of automatic control. The controller 
design for a plant must satisfy that the outputs are tracking any input reference value 
and must be independent of the parameter uncertainty and disturbances as much as 
possible. 
 

   Variable structure control with sliding mode has been known for its robustness 
properties such as insensitivity to parameter variations, external disturbance rejection 
and satisfactory dynamic responses [see, e.g. 1-3]. These robustness properties make 
sliding mode control a good candidate for industrial applications. Sliding mode control 
generally involves two main steps: firstly, the selection of a sliding surface which 
induces assigned stable reduced order dynamics, and secondly, the synthesis of a 
control law to force the closed loop system trajectories onto and subsequently remain 
on the sliding surface [4-6]. Several researches deal with the design and the 
applications of SMC on the control of motors [e.g. 1,3,7,8]. In [1] a proposed sliding 
mode control method based motion control drive design in accordance with a 
trapezoidal velocity profile for permanent magnet synchronous motor is given. A 
robust controller is designed in [7] by using proportional integral (PI) control algorithm  
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and a sliding mode control. In [8] a robust controller is designed by employing variable 
structure and linear quadratic method for PMSM. Also, robust control method for 
PMLSM based on recurrent fuzzy neural network using sliding mode control is given 
in [3]. 
 

    In this paper a method is proposed to design the control law and the switching 
hyperplane of the sliding mode control. The robustness against matched disturbance 
and the system stability are discussed. Simulation results of the PMLSM servodrive are 
given and its show good performance for the tracking in presence of input disturbance 
and parameter uncertainties. For the sake of comparison purposes, simulations are 
carried out for the same reference trajectories with a classical proportional-integral (PI) 
controllers. It should be noted that, the PI-type controller is still the most popularly 
used for motor drives, especially among permanent magnet synchronous motor drives; 
this is due to its relatively simple implementation. However, PI-type control methods 
are not enough to accommodate the variations of external disturbance and parameter 
uncertainties during operation. This is obvious from the given simulated results. 
  

2.  SYSTEM  DESCRIPTION  AND  PROBLEM  FORMULATION 
      
Consider a dynamical system described by 
 

           )),()(()()( txftuBtAxtx ++=
•

                                                                      (1a) 
 

          )()( tCxty =                                                                                                       (1b)  
 

where ntx ℜ∈)(  is the state vector, mtu ℜ∈)(  is the control input, pty ℜ∈)(  is the 

output vector and  mxtf ℜ∈),(  represents the uncertainties and /or/ disturbances. 

Note that ),( xtf  is assumed unknown but bounded, i.e. )(),( tfxtf o≤  where 

)(tfo represents known upper bound and .  denotes the Euclidean norm. nnA ×ℜ∈ ,   
mnB ×ℜ∈ , and npC ×ℜ∈ , are real constant matrices of the nominal system. Define 

the integral vector of tracking error as [8] 
 

          ∫ ∫ −==
t t

dy dyydttet
0 0

))(()()( ττζ                                                                  (2) 

 

where p
y te ℜ∈)(  is the tracking error,  p

d ty ℜ∈)(  is the desired reference input and 
pt ℜ∈)(ζ  . Equivalently, (2) can take the following differential form     

 

           )()( tCxytyy dd −=−=
•
ζ                                                                              (3) 

 

The newly defined augmented system can be rewritten in the following form 
 

          dNytxftuHtMztz +++=
•

)),()(()()(                                                          (4) 
 

where   
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Therefore, the problem is to design a switched robust control that drive the plant state 
to the switching surface and maintain it on the surface upon interception. A Lyapunov 
approach is used to characterize this task.  Also, switching surface that gives desired 
system dynamics on sliding will be designed. Moreover, simulation results will be 
given to clarify the effectiveness and robustness of the suggested method. 
 

3.  SLIDING  MODE  CONTROL  DESIGN 
 

     Define the sliding function, )(zσ , as 

            )()( tSzz =σ                                                                                                  (5) 
 

where )( pnmS +×ℜ∈ matrix and will be determined such that the sliding mode 
dynamics in the sliding surface  
 

             }0)(|{ )( ==ℜ∈= + tSzzS pn σ                                                                  (6) 
 

have (n+p-m) desired eigenvalues. The choice of S is often referred to as hyperplane 
design. This will be discussed latter. Now, the controller is designed to drive the 
system trajectories into sliding motion and once the system is in sliding motion, the 
controller should be keep the system in sliding motion despite the presence of 
uncertainties/ and/ or disturbances. The reachability condition is chosen to make the 
sliding manifold attractive to the remaining state space. This reachability condition 
makes sure that the selected Lyapunov function [4] 
 

           2/σσ TV =                                                                                                    (7) 
 

satisfy that 
 

           0<
•

σσ T                                                                                                         (8) 
So, define the control law as 
          

RE uuu +=                                                                                                     (9) 
 

where Eu  is the equivalent control that may be obtained from a conventional method 

of the linear system theory applied to the nominal system and Ru  is the robust control 
which is switching in nature. The control law will be developed to guarantee the 
reaching condition (8). Using (4) and (6), Eu  can be obtained as follows 
 

          dE SNySHuSMzzSz ++==
••

)(σ                                                              (10)                       
 

Therefore, 

          dE SNySHSMzSHu 11 )()( −− −−=                                                               (11) 
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Also, Ru  is assumed as follows 
 

          )sgn())(( 1 σρβµ −+−= SHuR                                                                        (12) 
 

in which  ,,,0 SHf ≥≥> ρβµ and )sgn(σ  is the sign function of σ  that 

defined as 
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Consequently, the control law will be 
 

          )sgn())(()()( 111 σρβµ −−− +−−−= SHSNySHSMzSHu d                     (13)              

 
Lemma:  
The control vector represented by (13) is satisfying the reaching condition given in (8). 
 

Proof: 
   Using (4), (7) and (13), yields  
 

         
••

= zSTT σσσ  

                  ))(( d
T NyfuHMzS +++= σ  

                  [ d
T SNySHHSMzSHHzMS 11 )()( −− −−= σ  

                     ]dyNHfSHH +++− − )sgn())(( 1 σρβµ  

                  [ ]fSHT )()sgn()( ++−= σρβµσ  

                  fSHTT )()sgn()( σσσρβµ ++−=  

                  fSHTT )()(
1

σσρβµ ++−=  

                  fSHTT σσρβµ ++−≤
1

)(  

                  0<  
 

whereas  TT σσ ≥
1

                                                                                                   �  
 

   Now, the sliding matrix S is chosen by assigning the system dynamic on sliding 
motion. So, in surface represented by (6), the system dynamics properties are 
determined by suitable choice of (n+p-m) eigenvalues, say, mpn −+λλλ .........,,, 21 . The 

rest of m eigenvalues are assigned to be zeros [9]. However, in [10], these m 
eigenvalues are placed at some stable value, ∗λ , and called the sliding margin. So, 
substituting from (11) into (4), then the system dynamics on sliding is described by 
 

         zHKMz )( −=
•

                                                                                             (14) 
where 

          SMSHK 1)( −=                                                                                              (15) 
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is the state feedback gain matrix. Clearly, the matrix K can be found using pole 
placement method by choice the desired system eigenvalues. Therefore, if the 
eigenvalues  ∗∗−+ λλλλλ ,,.........,.........,,, 21 mpn   are suitably chosen, then the matrix S 

will be determined such that 
 

           SHKMS ∗=− λ)(                                                                                      (16) 
 

Letting   T
CpnC MIYandHKMM )(, −=−= +∗λ  , then (16) reduces to  

 

            0=TYS                                                                                                        (17) 

Using the generalized matrix inverse [11], the general solution of (17) for TS  is 
 

            WYYIS g
pn

T )( −= +                                                                                   (18) 
 

where gY  is the generalized inverse of Y  and  W  is an (n+p)×m arbitrary matrix that 
must be chosen to get matrix S such that (SH) is invertable matrix. 

 
4.  PMLSM  SERVODRIVE  MODEL  AND  SIMULATION 

 

    To demonstrate the effectiveness and robustness of the proposed approach, 
simulation is done on the PMLSM servodrive. The model of the PMLSM servodrive is 
shown in Fig. 1  [3,12], 
 
                                            _   w 

             iq                Fk      +                    
DMs +

1
     v        

s

1
                y 

                   
                         

Fig. 1: PMLSM servodrive model 
 
 

where Fk  is the thrust coefficient, qi  is the command thrust current, M is the total 

mass of the moving element system, D is the viscous friction and iron loss coefficient, 
w is the external disturbance, v is the linear velocity and y is the output position. 
Consider the assumptions as in [3, 12], the nominal values of the parameters are  
 

            VNDandVNsMANkF /2982.5/1254.0,/20 ===  
 

Letting vxandyx == 21 , then the state space representation will take the following 
form 
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where Fkwf /−= . Choosing the desired eigenvalues as –30, –35, –10, and letting  
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              [ ]1058 −=W                 
 

 

then the switching matrix will be 
 

              [ ]4732.9009.05864.0 −−=S  
 

Also, taking 2.0=µ , and using Matlab package, the simulated results of the output 

( 1x ), control )(u , robust control and )sgn(σ  (sign of sigma) for a rectangular position 
command input (command = 4 mm) are given according to the following cases: 
 

(i)  Nominal values of parameters without disturbances is presented in Fig. 2.  
(ii) Uncertainty in the mass, M = 2*nominal, and disturbance w = 20 is applied in the 

shown intervals of time is shown in Fig. 3. 
(iii) Uncertainty in the mass, M=3*nominal, and disturbance as in case (ii) is shown in 

Fig. 4. 
 

Obviously, from the shown figures, the output position is tracking the command input 
in despite of the existence of disturbance and parameter uncertainties. This clarifies the 
robustness property of the suggested sliding mode control design approach, in 
comparison with the conventional PI controller, 6123.3=pK  and 9.0=iK , which is 

shown in Figs. 5-8. 
 

 
 

Fig. 2: simulation response of nominal system. 
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Fig. 3: simulation response with disturbance w=20 added from t=3 to t=7, 
and  M=2nominal value. 

 
 

Fig. 4: simulation response with disturbance w=20 added from t=3 to t=7 , 
and M=3 nominal value 
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Fig. 5:   PMLSM servodrive model with PI-type controller. 

 
Time (sec) 

Fig. 6: simulation response of nominal system with PI controller. 

 
Time (sec) 

Fig. 7: simulation response of system with PI controller, w=20 added from 
t=3 to t=8, and M=2 nominal value. 
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Fig. 8: simulation response of system with PI controller, w=20 added from t=3 
to t=8,  and M=3 nominal value. 

 
 

5. CONCLUSIONS 
  

       The design of a robust controller for a plant to solve the servomechanism problem 
has been considered. The proposed SMC control law can force the system trajectories 
onto the sliding motion and subsequently maintain the trajectories on this motion. Also, 
this control law can reject the parameter uncertainties and the external disturbance so 
that the output fulfills satisfactory performance. The design technique is simple and 
straightforward. Simulation results show the high output performance especially in 
presence of external disturbance and parameter uncertainties. Comparison with 
conventional PI-type controllers is included. 
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