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ABSTRACT–  In this paper, single-precision floating-point IEEE-754 
standard Adder/Subtractor and Multiplier modules with high speed and 
area efficient are presented. These modules are designed, simulated, 
synthesized, optimized, and implemented on an FPGA based system. A 
comparison between the results of the proposed design and a previously 
reported one is provided. The effect of normalization unit at the single-
precision floating-point multiplier and adder/Subtractor modules on the 
area, and speed is explained. 

 
1. INTRODUCTION 

 

 The floating-point arithmetic modules were virtually impossible to be 
implemented on the older generations of FPGAs due to its limited density and speed. 
 Recently, the density and speed of FPGA are increased, so it becomes easy to 
implement floating-point arithmetic modules on it. With the appearance of high-level 
languages such as VHDL, rapid prototyping of floating point units has become 
feasible.  Simulation and synthesis tools at a higher-level design aid the designer for a 
more controllable and maintainable product. Although low-level design specifications 
were alternately possible, the strategy used in the design that is presented here is to 
specify every aspect of the design in VHDL and rely on automated synthesis to 
generate the FPGA mapping. 
 The usage of floating point helps to manipulate the underflow and overflow 
problems often seen in fixed-point formats. This paper examines the implementations 
of floating-point arithmetic modules using single precision floating-point IEEE-754 
standard format [1]. These modules have been synthesized on Xilinx Virtex-II 
XC2V6000bf957 FPGAs [2].  

The general computing world has settled on floating-point formats, which 
conform to IEEE-754 standard [3]. These standards play a crucial role in ensuring 
numerical robustness and code compatibility among machines of vastly different 
architectures. However, the choice of floating-point format has such a dominant impact 
on  FPGA  implementation  cost  that  the  standards are often bent, giving the designer 
a   
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freedom to choose a custom floating-point format in order to spend FPGA resources as 
efficiently as possible. For example, work has been done to automatically determine 
custom floating-point bit widths for each node of a computation [4]; others have 

demonstrated the suitability of very tiny floating-point formats with much less 
precision and range than IEEE single-precision [5]. 

 
2. FLOATING-POINT  FORMAT  REPRESENTATION 

 

The floating-point format, which is used in this design, is the single-precision 
floating-point of IEEE-754 standard format [1] as shown in Figure 1. 

 

 
 
 
                Bit #        31        30                  23  22                        0 

 
Figure 1:   32 Bit Floating Point Format. 

 
The floating-point value (V) is computed by: 
 

 V = (-1) s x 2 (e-bias) x (1.f)                                                     (1) 
 

As illustrated in Figure 1, the sign field, s, is bit number 31 and is used to 
specify the sign of the number, if s equals one the value will be negative, but if s equals 
zero the value will be positive. Bits 30 down to 23 are the exponent field. This 8-bit 
quantity is a signed number represented by using a bias of 127. Bits 22 down to 0 are 
used to store the binary representation of the fraction for the floating-point number. 
The leading one in the mantissa, 1.f, does not appear in the representation; therefore 

the leading one is implicit. For example, -3.625 (decimal) or -11.101 (binary) will be 
normalized as illustrated in equation (2) and the number is stored as in Figure 2. 

 

V= (-1)1 2(128-127) (1.1101)                                                       (2) 
 

f e S 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1 

0 0 0 0 8 6 0 C 
 

Figure 2:   Representation of –3.625 in a single precision floating-point format. 
 

Where s = 1, e  = the times of right shifting for the number + the bias, the bias 
for single precision is 127, and the times of right shifting for this value “ 11.101” is 
one, so e = 1+127 = 128(decimal) = 80 (hex), and f=680000 (hex). Therefore, -3.625 is 
stored as: C0680000 (hex) as illustrated in Figure 2. 
 

3.  FLOATING  POINT  MULTIPLIER 
 

Floating-point multiplication is similar to integer multiplication, because 
floating-point numbers are stored in sign-magnitude form; the multiplier needs only to 
deal with unsigned integer numbers and normalization. The optimized design of the 
single-precision floating-point multiplier has a latency of one clock cycle. The 

              s e f  
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presented design has some ideas of that of Shirazi’s 18-bits floating-point format 
multiplier [8]. The bottleneck of this design is the normalization unit. The optimization 
of the normalization unit is presented in this paper which allows the multiplier to run at 
slightly faster clock speed. It also helps in reducing the usage area.   
 
3.1. Algorithm 
 

The flowchart for a single-precision semi-parallel floating-point multiplier is 
shown in Figure 3.  
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    Figure 3:   Flowchart for single precision floating-point multiplier. 
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Where: 
 V: value represented in a single precision format 
 s:  sign bit. 
 e:  exponent. 
 f:  fraction. 
 m:  mantissa. 
 NaN: Not a Number. 

   
3.2. Results 
 

The proposed single-precision semi-parallel floating-point multiplier module is 
implemented using VHDL language. It is mapped on the same FPGA chip that is used 
in [7] (Xilinx Virtex-II XC2V6000bf957). The synthesis results of the proposed 
configuration are compared with previous published results in [7] as shown in Table 1. 

 
Table 1: The comparison of the synthesis results. 

 

The results of the proposed configuration The results in [7] 
Function generator 

(F.G.) 
Speed 

Function generator 
(F.G.) 

Speed 

202 11.24 ns = 89 MHZ 452 49 ns = 20.4 MHZ 
 

By comparing the results of the proposed technique that are given in Table 1 
with those results in [7] also shown in the same table, it can be seen that the used area 
in our design is reduced by 55% while the speed is increased by 336.3%. 

 
4. FLOATING  POINT  ADDER/SUBTRACTOR 

 

An optimized design of the 32-bit floating-point Adder/Subtractor has a latency 
of one clock cycle is proposed. The presented design has some idea as that of Shirazi’s 
18-bit floating-point format Adder/Subtraction in [8]. But, the configuration of the 
normalization module allows the Adder/Subtraction to run at a slightly faster clock 
speed and also helps to reduce the used area. The bottleneck of this design was the 
normalization unit. 

 
4.1. Algorithm 

 

The flowchart of a single-precision cascaded floating-point Adder/Subtraction is 
shown in Figure 4.  

 

Where: 
 V:   value represented in a single precision format 
 s:    sign bit. 
 e:    exponent. 
 f:    fraction. 
 m:   mantissa. 
  e_sub: selection line to perform the addition or subtraction processes. 
 NaN : Not a Number. 
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Figure 4:   Flowchart for single precision floating-point adder/subtraction. 
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shift value are to be while the lower two bits are determined by the bit values in the 
nibble containing the leading one. The combinational logic to determine the lower two 
bits can be constructed from two, 4-variable logic equations: 

 

 S0 = (not n3) and (n2 or ((not n1) and n0))                                       (3)   
  

S1 = (not n3) and (not n2) and (n1 or n0)                                          (4)   
 
Where: s0 and s1 are bits 0 and 1 of the constructed shift value, respectively. The 

n3, n2, n1, and n0 values represent bits 3 to 0, respectively, of the nibble containing the 
leading-one. 

 
4.2. Results 
 

The proposed single-precision cascaded floating-point adder/subtractor module 
is implemented using VHDL language. It is mapped on the same FPGA chip that is 
used in [7] (Xilinx Virtex-II XC2V6000bf957). The synthesis results of the proposed 
configuration are compared with previous published results in [7] as shown in Table 2. 

 
Table 2: The comparison of the synthesis results. 

 

The results of the proposed configuration The results in [7] 
Function generator 

(F.G.) 
Speed 

Function 
generator (F.G.) 

Speed 

490 30.67 ns = 32.6 MHZ 521 51.5 ns = 19.4 MHZ 
 

By comparing the results of the proposed technique given in Table 2 with 
corresponding results in [7] that are shown in the same table, it can be seen that the 
used area in our design is reduced by 6% while the speed is increased by 68%. 

          
5. CONCLUSION 

 

A design of the single-precision floating-point arithmetic modules with an 
optimized area and speed is presented. The effect of normalization on the area and 
speed has been examined experimentally. The design has been mapped on Xilinx 
vertex-II XC2V6000bf957. Comparisons of results between the proposed systems and 
previously published results have been demonstrated. The presented single-precision 
floating-point multiplier, adder, and subtractor modules run at slightly faster clock 
speed with used area less than that used previously. 
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