Journal of Engineering Sciences, Assiut University, Vol. 34, No. 4, pp. 1283-1292, July 2006

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT
ARITHMETIC MODULES

M. Taher

Electronic Engineer in Tibben Institute for Metallurgical Studies
Address: El_hadeed wa El_soulb st., Tibben, Cairo, Egypt

E. mail: marwa t 1979@yahoo.com

M. Aboulwafa, A. Abdelwahab and E. M. Saad
Faculty of Engineering, Helwan University, Cairo, Egypt

(Received April 8, 2006. Accepted May 20, 2006)

ABSTRACT- In this paper, single-precision floating-point |EEE-754
standard Adder/Subtractor and Multiplier modules with high speed and
area efficient are presented. These modules are designed, simulated,
synthesized, optimized, and implemented on an FPGA based system. A
comparison between the results of the proposed design and a previously
reported one is provided. The effect of normalization unit at the single-
precision floating-point multiplier and adder/Subtractor modules on the
area, and speed is explained.

1. INTRODUCTION

The floating-point arithmetic modules were virtyalimpossible to be
implemented on the older generations of FPGAs duts limited density and speed.

Recently, the density and speed of FPGA are iseaso it becomes easy to
implement floating-point arithmetic modules onWith the appearance of high-level
languages such as VHDL, rapid prototyping of flogtipoint units has become
feasible. Simulation and synthesis tools at adndével design aid the designer for a
more controllable and maintainable product. Altholgw-level design specifications
were alternately possible, the strategy used indgsdgn that is presented here is to
specify every aspect of the design in VHDL and rely automated synthesis to
generate the FPGA mapping.

The usage of floating point helps to manipulate tinderflow and overflow
problems often seen in fixed-point formats. Thipgraexamines the implementations
of floating-point arithmetic modules using singleegsion floating-point IEEE-754
standard format [1]. These modules have been ssiathee on Xilinx Virtex-ll
XC2V6000bfa57 FPGAS [2].

The general computing world has settled on floagomt formats, which
conform to IEEE-754 standard [3]. These standatdg p crucial role in ensuring
numerical robustness and code compatibility amoraghimes of vastly different
architectures. However, the choice of floating-péanmat has such a dominant impact
on FPGA implementation cost that the starglard often bent, giving thaesigner

1283

1284 M. Taher, et al

freedom to choose a custom floating-point formatriter to spend FPGA resources as
efficiently as possible. For example, work has bdene to automatically determine
custom floatingsoint bit widths for each node of a computation [4]; others have
demonstrated the suitability of very tiny floatipgint formats with much less
precision and range than IEEE single-precision [5].

2. FLOATING-POINT FORMAT REPRESENTATION

The floating-point format, which is used in thissag, is the single-precision
floating-point of IEEE-754 standard format [1] &®wn inFigure 1.

S e f

Bit # 31 30 23 22 0

Figure 1. 32 Bit Floating Point Format.

The floating-point value (V) is computed by:
V = (-1)Sx 239y (1.f) (1)

As illustrated inFigure 1, the sign field, s, is bit number 31 and is used t
specify the sign of the number, if s equals oneviiee will be negative, but if s equals
zero the value will be positive. Bits 30 down to &8 the exponent field. This 8-bit
quantity is a signed number represented by usingsof 127. Bits 22 down to 0 are
used to store the binary representation of thetitnador the floating-point number.
The leadig one in the mantissa, 1.f, does not appear in the representation; therefore
the leading one is implicit. For example, -3.62Bdjchal) or -11.101 (binary) will be
normalized as illustrated in equation (2) and theber is stored as fFigure 2.

V= (-1)! 2428127(1.1101) (2)

S e f
1]1]ololojolojo]o]J1i]1]ol1]o]o]ojololo]o]lo]lololojo]lo]lololo]lolo]0
C 0 6 8 0 0 0 0

Figure 2: Representation of —3.625 in a single precision floating-point format.

Where s = 1, e = the times of right shifting foe humber + the bias, the bias
for single precision is 127, and the times of righifting for this value “ 11.101" is
one, so e = 1+127 = 128(decimal) = 80 (hex), atd@@900 (hex). Therefore, -3.625 is
stored as: C0680000 (hex) as illustrate8igure 2.

3. FLOATING POINT MULTIPLIER

Floating-point multiplication is similar to integemultiplication, because
floating-point numbers are stored in sign-magnittaten; the multiplier needs only to
deal with unsigned integer numbers and normaliratidhe optimized design of the
single-precision floating-point multiplier has atdacy of one clock cycle. The

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT.... 1285

presented design has some ideas of that of Shird8-bits floating-point format
multiplier [8]. The bottleneck of this design ithormalization unit. The optimization
of the normalization unit is presented in this papeich allows the multiplier to run at
slightly faster clock speed. It also helps in redge¢he usage area.

3.1. Algorithm

The flowchart for a single-precision semi-paralfiielating-point multiplier is

shown inFigure 3.

Enter V; &V,
N Is Y
V=0 or \, =0 » s=0
e=0
f=0
- . Y - . e=e+e
Divide V;into 5, &, f; & Divide V,into s, &,f, ™ m =1.*1.f, v
l Zero=1
Truncate the least significant 23 bits (m
Y »
Y
N s=0] %
Left Shift (m)

1286 M. Taher, et al

Round (m)
e=e-127

Is
e=127&m=1.f&f >0

NaN =1

Is

e=0&m=1.f&f=0

Is
e=127&m=1.f&f=0

Is
e=0&m=0.f&f=0

Is

e=0&m=0.f&f >0 OverFlow =1

v
UnderFlow = 1 @

UnNormalized = 1

\ 4 \ 4 \ 4 \ 4 A 4 A4 v

V = Concatenation of s, e, f

Figure 3: Flowchart for single precision floating-point multiplier.

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT.... 1287

Where:
V: value represented in a single precision format
s: sign bit.
e: exponent.
f. fraction.
m: mantissa.
NaN: Not a Number.

3.2. Results

The proposed single-precision semi-parallel flagtdoint multiplier module is
implemented using VHDL language. It is mapped andhme FPGA chip that is used
in [7] (Xilinx Virtex-Il XC2V6000bf957). The syntr@s results of the proposed
configuration are compared with previous publishesililts in [7] as shown ifable 1.

Table 1: The comparison of the synthesis results.

The results of the proposed configuratign The tesnl[7]
Function generatoy Function generatot
(F.G) Speed (F.G) Speed
202 11.24 ns = 89 MHZ 452 49 ns = 20.4 MKHZ

By comparing the results of the proposed technitpaé are given imable 1
with those results in [7] also shown in the sanidetat can be seen that the used area
in our design is reduced by 55% while the spe@dcieased by 336.3%.

4. FLOATING POINT ADDER/SUBTRACTOR

An optimized design of the 32-bit floating-point d&f/Subtractor has a latency
of one clock cycle is proposed. The presented ddsag some idea as that of Shirazi’s
18-bit floating-point format Adder/Subtraction i8][But, the configuration of the
normalization module allows the Adder/Subtractionran at a slightly faster clock
speed and also helps to reduce the used area.dfthenbck of this design was the
normalization unit.

4.1. Algorithm

The flowchart of a single-precision cascaded flggpoint Adder/Subtraction is
shown inFigure 4.

Where:
V: value represented in a single precision farma
S: sign bit.
e: exponent.
f: fraction.
m: mantissa.
e_sub: selection line to perform the additioswbtraction processes.
NaN : Not a Number.

1288 M. Taher, et al
v
Enter \, V,, and e _sub
v
Opposite the sign of)/
N
l [
Divide V; into s, e, and { & divide V,into , &, and §
‘ Swap $S
Swap g &
Swap {, f,
\ 4
€e=a-6
A
m=1f+1%
v
Right shift (1.f) A4
s=g

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT....

1289

59 Zero=1 @
v

v

Round (m)

v

Normalize (m)
Adjust (g)

Is
e=127&m=1.f&f>0

Is

e,=0&m=1.f&f=0

Na

Zero=1

A

1290 M. Taher, et al

Is
e,=127&m=1.f&f=0

OverFlow =1

Is
€,=0&m=0.f&f=0

Is
€,=0&m=0.f&f>0

\4
UnNormalized = 1 @

\ 4 \ 4 \ 4 \ 4
V = concatenation of sy &f

G

Figure 4. Flowchart for single precision floating-point adder/subtraction.

A 4

4.1.1. Normalization

Every four bits of the mantissa will be the inptdsan OR-gate. Then, “which of
the six outputs of the OR-gates that is the leadimgj’ can be detected rapidly, and the
leading-one detection logic decides which of the ribbles of the mantissa value
contains the leading-one.

After that, the 5-bit shift value using the datarvdrom the leading-one
detection logic that determines which of the silzbhes in the resulting mantissa the
one resides in. The data word can be used to dieiemiat the upper three bits of the

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT.... 1291

shift value are to be while the lower two bits determined by the bit values in the
nibble containing the leading one. The combinatidogic to determine the lower two
bits can be constructed from two, 4-variable lagications:

S = (not i) and (n or ((not n) and R)) 3)
S, = (not) and (not) and (R or ny) (4)
Where: g and s are bits 0 and 1 of the constructed shift valaspectively. The

ns, N, My, and g values represent bits 3 to O, respectively, ofritble containing the
leading-one.

4.2. Results

The proposed single-precision cascaded floatingtpaider/subtractor module
is implemented using VHDL language. It is mappedtlom same FPGA chip that is
used in [7] (Xilinx Virtex-1l XC2V6000bf957). Theyathesis results of the proposed
configuration are compared with previous publisresiilts in [7] as shown ifable 2.

Table 2: The comparison of the synthesis results.

The results of the proposed configuratign The tesnl[7]
Function generator Speed Function Speed
(F.G) b generator (F.G.) P
490 30.67 ns = 32.6 MHZ 521 51.5ns = 19.4 MHZ

By comparing the results of the proposed technigwen in Table 2 with
corresponding results in [7] that are shown inghme table, it can be seen that the
used area in our design is reduced by 6% whilspeed is increased by 68%.

5. CONCLUSION

A design of the single-precision floating-point tametic modules with an
optimized area and speed is presented. The effesbronalization on the area and
speed has been examined experimentally. The dégignbeen mapped on Xilinx
vertex-Il XC2V6000bf957. Comparisons of resultswesn the proposed systems and
previously published results have been demonstrdtee presented single-precision
floating-point multiplier, adder, and subtractor dntes run at slightly faster clock
speed with used area less than that used previously

REFERENCES

[1] IEEE Task P754, “A Proposed Standard for Binaryakim-Point Arithmetic,”
IEEE Computer, Vol.14, No.12, pp.51-62, Mar.1981.

[2] Xilinx, Inc., the Programmable Logic Data Book, Sarse, California, 1993.

[3] IEEE Standards Board. IEEE Standard for Binary filgaPoint Arithmetic,
ANSI/IEEE STD 754-1985 edition, 1985.

1292 M. Taher, et al

[4] A. A. Gaffar, O.Mencer, W.Luk, P.Y.Cheung, and Nr8hi. "Floating Point Bit
width Analysis via Automatic Differentiation". Preedings of the International
Conference on Field Programmable Technology, 2002.

[5] J. Dido et al. "A Flexible Floating-Point Formatr f@ptimizing Data-Paths and
Operators in FPGA Based DSPs". ACM/SIGDA Tenth Adternational
Symposium on Field-Programmable Gate Arrays (FPGA'R002.

[6] GH. A . Aty, A. Hussein, I. Ashour, and M. Monésligh-speed area-efficient
FPGA-based floating-point multiplier", Proceedings ICM 2003 Conference,
Dec.2003, Cairo, EGYPT, pp.274-277.

[7] Bryan Cantanzaro, Brent Nelson, “Higher Radix RlogPoint Representations
for FPGA-Based Arithmetic” in Proceedings of IEEEn$osium on Field-
Programmable Custom Computing Machiens, 2005.

[8] N. Shirazi, A. Walters, and P. Athanas, “Quanti#atanalysis of floating point
arithmetic on FPGA based custom computing machjrasProceedings of IEEE
Symposium on FPGAs for custom Computing maching4,55-162, 1995.

louiuno A0 bl AL Ay A Lol Dol Sy sonc
"FPGA" dowo yld Al Silgd| Bsicro

O3 Sl Al Arpas ¢ pally ol B9 9 Uyl B9 aenl CJgld Wlaed! o
Slogll Aonstiws)| 1Luadly de pudl s oF . "IEEE-754" Loy Bal>Y1 BI
LN 0 liog " FPGA" dmo yld Al DLsgll i ploduinly il oF oS iyl
il 3oy WU gemgd of Los” Ll bd pid o3 1 Ll A leod g g g Cuns (g0

WOlosgl A A g ALl e

