
Journal of Engineering Sciences, Assiut University, Vol. 34, No. 4, pp. 1283-1292, July 2006

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT
ARITHMETIC MODULES

M. Taher
Electronic Engineer in Tibben Institute for Metallurgical Studies
Address: El_hadeed wa El_soulb st., Tibben, Cairo, Egypt
E. mail: marwa_t_1979@yahoo.com

M. Aboulwafa, A. Abdelwahab and E. M. Saad
Faculty of Engineering, Helwan University, Cairo, Egypt

(Received April 8, 2006. Accepted May 20, 2006)

ABSTRACT– In this paper, single-precision floating-point IEEE-754
standard Adder/Subtractor and Multiplier modules with high speed and
area efficient are presented. These modules are designed, simulated,
synthesized, optimized, and implemented on an FPGA based system. A
comparison between the results of the proposed design and a previously
reported one is provided. The effect of normalization unit at the single-
precision floating-point multiplier and adder/Subtractor modules on the
area, and speed is explained.

1. INTRODUCTION

 The floating-point arithmetic modules were virtually impossible to be
implemented on the older generations of FPGAs due to its limited density and speed.
 Recently, the density and speed of FPGA are increased, so it becomes easy to
implement floating-point arithmetic modules on it. With the appearance of high-level
languages such as VHDL, rapid prototyping of floating point units has become
feasible. Simulation and synthesis tools at a higher-level design aid the designer for a
more controllable and maintainable product. Although low-level design specifications
were alternately possible, the strategy used in the design that is presented here is to
specify every aspect of the design in VHDL and rely on automated synthesis to
generate the FPGA mapping.
 The usage of floating point helps to manipulate the underflow and overflow
problems often seen in fixed-point formats. This paper examines the implementations
of floating-point arithmetic modules using single precision floating-point IEEE-754
standard format [1]. These modules have been synthesized on Xilinx Virtex-II
XC2V6000bf957 FPGAs [2].

The general computing world has settled on floating-point formats, which
conform to IEEE-754 standard [3]. These standards play a crucial role in ensuring
numerical robustness and code compatibility among machines of vastly different
architectures. However, the choice of floating-point format has such a dominant impact
on FPGA implementation cost that the standards are often bent, giving the designer
a

1283

M. Taher , et al
__
1284

freedom to choose a custom floating-point format in order to spend FPGA resources as
efficiently as possible. For example, work has been done to automatically determine
custom floating-point bit widths for each node of a computation [4]; others have

demonstrated the suitability of very tiny floating-point formats with much less
precision and range than IEEE single-precision [5].

2. FLOATING-POINT FORMAT REPRESENTATION

The floating-point format, which is used in this design, is the single-precision
floating-point of IEEE-754 standard format [1] as shown in Figure 1.

 Bit # 31 30 23 22 0

Figure 1: 32 Bit Floating Point Format.

The floating-point value (V) is computed by:

 V = (-1) s x 2 (e-bias) x (1.f) (1)

As illustrated in Figure 1, the sign field, s, is bit number 31 and is used to
specify the sign of the number, if s equals one the value will be negative, but if s equals
zero the value will be positive. Bits 30 down to 23 are the exponent field. This 8-bit
quantity is a signed number represented by using a bias of 127. Bits 22 down to 0 are
used to store the binary representation of the fraction for the floating-point number.
The leading one in the mantissa, 1.f, does not appear in the representation; therefore

the leading one is implicit. For example, -3.625 (decimal) or -11.101 (binary) will be
normalized as illustrated in equation (2) and the number is stored as in Figure 2.

V= (-1)1 2(128-127) (1.1101) (2)

f e S
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 1

0 0 0 0 8 6 0 C

Figure 2: Representation of –3.625 in a single precision floating-point format.

Where s = 1, e = the times of right shifting for the number + the bias, the bias
for single precision is 127, and the times of right shifting for this value “ 11.101” is
one, so e = 1+127 = 128(decimal) = 80 (hex), and f=680000 (hex). Therefore, -3.625 is
stored as: C0680000 (hex) as illustrated in Figure 2.

3. FLOATING POINT MULTIPLIER

Floating-point multiplication is similar to integer multiplication, because
floating-point numbers are stored in sign-magnitude form; the multiplier needs only to
deal with unsigned integer numbers and normalization. The optimized design of the
single-precision floating-point multiplier has a latency of one clock cycle. The

 s e f

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT….
__

1285

presented design has some ideas of that of Shirazi’s 18-bits floating-point format
multiplier [8]. The bottleneck of this design is the normalization unit. The optimization
of the normalization unit is presented in this paper which allows the multiplier to run at
slightly faster clock speed. It also helps in reducing the usage area.

3.1. Algorithm

The flowchart for a single-precision semi-parallel floating-point multiplier is
shown in Figure 3.

Enter V1 &V 2

Divide V1 into s1, e1, f1 & Divide V2 into s2, e2, f2
e = e1 + e2

m =1.f1* 1.f2

Is
s1=s2

s = 1

Y

N

Truncate the least significant 23 bits (m)

Left Shift (m)

e = e - 1

Y

N

s = 0

Is
V1=0 or V2 =0

N Y

s = 0
e = 0
f = 0

Zero = 1

Is
m (24) = 0

Start

W

X

M. Taher , et al
__
1286

 Figure 3: Flowchart for single precision floating-point multiplier.

W

OverFlow = 1

Y
Is

 e=0&m=0.f&f=0

N

Is
e=0&m=0.f&f >0

N

Y

UnderFlow = 1

UnNormalized = 1

Y
N

V = Concatenation of s, e, f

End

Y

NaN = 1
Y

N

Round (m)
e = e - 127

X

Is
e=127&m=1.f&f >0

Is
e=0&m=1.f&f = 0

Is
 e=127&m=1.f&f=0

Zero = 1

N

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT….
__

1287

Where:
 V: value represented in a single precision format
 s: sign bit.
 e: exponent.
 f: fraction.
 m: mantissa.
 NaN: Not a Number.

3.2. Results

The proposed single-precision semi-parallel floating-point multiplier module is
implemented using VHDL language. It is mapped on the same FPGA chip that is used
in [7] (Xilinx Virtex-II XC2V6000bf957). The synthesis results of the proposed
configuration are compared with previous published results in [7] as shown in Table 1.

Table 1: The comparison of the synthesis results.

The results of the proposed configuration The results in [7]
Function generator

(F.G.)
Speed

Function generator
(F.G.)

Speed

202 11.24 ns = 89 MHZ 452 49 ns = 20.4 MHZ

By comparing the results of the proposed technique that are given in Table 1
with those results in [7] also shown in the same table, it can be seen that the used area
in our design is reduced by 55% while the speed is increased by 336.3%.

4. FLOATING POINT ADDER/SUBTRACTOR

An optimized design of the 32-bit floating-point Adder/Subtractor has a latency
of one clock cycle is proposed. The presented design has some idea as that of Shirazi’s
18-bit floating-point format Adder/Subtraction in [8]. But, the configuration of the
normalization module allows the Adder/Subtraction to run at a slightly faster clock
speed and also helps to reduce the used area. The bottleneck of this design was the
normalization unit.

4.1. Algorithm

The flowchart of a single-precision cascaded floating-point Adder/Subtraction is
shown in Figure 4.

Where:
 V: value represented in a single precision format
 s: sign bit.
 e: exponent.
 f: fraction.
 m: mantissa.
 e_sub: selection line to perform the addition or subtraction processes.
 NaN : Not a Number.

M. Taher , et al
__
1288

Start

Enter V1, V2, and e_sub

Y

N

Divide V1 into s1, e1, and f1 & divide V2 into s2, e2, and f2

Opposite the sign of V2

Is
e_sub = 1

e = e1 – e2

Is
e = 0

Right shift (1.f2)

e = e-1

N

Y

m = 1.f1 + 1.f2

Is
e1< e2

Swap s1, s2
Swap e1, e2
Swap f1, f2

Y

N

Is
s1=s2

Y

s = s1

N

X

W

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT….
__

1289

X

Is
1.f1 >1.f2

Y

s = s1

m = 1.f1 – 1.f2

s = s2

Is
1.f2 >1.f1

N

m = 1.f1 – 1.f2

Y

s = 0
f = 0
e1 = 0

Zero = 1

W

Round (m)

Normalize (m)
Adjust (e1)

Is
e1=127&m=1.f&f>0

NaN = 1

Y

Is
e1=0&m=1.f&f=0

N

N

Zero = 1

R

Y

S

N

R

M. Taher , et al
__
1290

Figure 4: Flowchart for single precision floating-point adder/subtraction.

4.1.1. Normalization

Every four bits of the mantissa will be the inputs to an OR-gate. Then, “which of
the six outputs of the OR-gates that is the leading one” can be detected rapidly, and the
leading-one detection logic decides which of the six nibbles of the mantissa value
contains the leading-one.

After that, the 5-bit shift value using the data word from the leading-one
detection logic that determines which of the six nibbles in the resulting mantissa the
one resides in. The data word can be used to determine what the upper three bits of the

S

Is
e1=127&m=1.f&f=0

OverFlow = 1

Y

Is
e1=0&m=0.f&f=0

N

UnderFlow = 1

Y

Is
e1=0&m=0.f&f>0

N

UnNormalized = 1

Y

V = concatenation of s, e1, f

End

N

R

HIGH-SPEED, AREA-EFFICIENT FPGA-BASED FLOATING-POINT….
__

1291

shift value are to be while the lower two bits are determined by the bit values in the
nibble containing the leading one. The combinational logic to determine the lower two
bits can be constructed from two, 4-variable logic equations:

 S0 = (not n3) and (n2 or ((not n1) and n0)) (3)

S1 = (not n3) and (not n2) and (n1 or n0) (4)

Where: s0 and s1 are bits 0 and 1 of the constructed shift value, respectively. The

n3, n2, n1, and n0 values represent bits 3 to 0, respectively, of the nibble containing the
leading-one.

4.2. Results

The proposed single-precision cascaded floating-point adder/subtractor module
is implemented using VHDL language. It is mapped on the same FPGA chip that is
used in [7] (Xilinx Virtex-II XC2V6000bf957). The synthesis results of the proposed
configuration are compared with previous published results in [7] as shown in Table 2.

Table 2: The comparison of the synthesis results.

The results of the proposed configuration The results in [7]
Function generator

(F.G.)
Speed

Function
generator (F.G.)

Speed

490 30.67 ns = 32.6 MHZ 521 51.5 ns = 19.4 MHZ

By comparing the results of the proposed technique given in Table 2 with
corresponding results in [7] that are shown in the same table, it can be seen that the
used area in our design is reduced by 6% while the speed is increased by 68%.

5. CONCLUSION

A design of the single-precision floating-point arithmetic modules with an
optimized area and speed is presented. The effect of normalization on the area and
speed has been examined experimentally. The design has been mapped on Xilinx
vertex-II XC2V6000bf957. Comparisons of results between the proposed systems and
previously published results have been demonstrated. The presented single-precision
floating-point multiplier, adder, and subtractor modules run at slightly faster clock
speed with used area less than that used previously.

REFERENCES

[1] IEEE Task P754, “A Proposed Standard for Binary Floating-Point Arithmetic,”

IEEE Computer, Vol.14, No.12, pp.51-62, Mar.1981.
[2] Xilinx, Inc., the Programmable Logic Data Book, San Jose, California, 1993.
[3] IEEE Standards Board. IEEE Standard for Binary Floating-Point Arithmetic,

ANSI/IEEE STD 754-1985 edition, 1985.

M. Taher , et al
__
1292

[4] A. A. Gaffar, O.Mencer, W.Luk, P.Y.Cheung, and N.Shirazi. "Floating Point Bit
width Analysis via Automatic Differentiation". Proceedings of the International
Conference on Field Programmable Technology, 2002.

[5] J. Dido et al. "A Flexible Floating-Point Format for Optimizing Data-Paths and
Operators in FPGA Based DSPs". ACM/SIGDA Tenth ACM International
Symposium on Field-Programmable Gate Arrays (FPGA’02), 2002.

[6] GH. A . At y, A. Hussein, I. Ashour, and M. Mones, “High-speed area-efficient
FPGA-based floating-point multiplier", Proceedings of ICM 2003 Conference,
Dec.2003, Cairo, EGYPT, pp.274-277.

[7] Bryan Cantanzaro, Brent Nelson, “Higher Radix Floating-Point Representations
for FPGA-Based Arithmetic” in Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machiens, 2005.

[8] N. Shirazi, A. Walters, and P. Athanas, “Quantitative analysis of floating point
arithmetic on FPGA based custom computing machines“, in Proceedings of IEEE
Symposium on FPGAs for custom Computing machines, pp.155-162, 1995.

����ً������א����������و������א�
��א
�א�������������������א�

�א����!���! ����

#��א�"���"FPGA" � �

��)��ذא
�����א&���%�$������و����������1و��.�א�0+/�و�و��.�א-�,�وא��+*���������א����(�א�

�2�(��
�)�א
��������.��"IEEE-754"��א����7א6��د3��4!��������>�;�):��א��)+���9وא&�)����א&�)

�א����!)���! �)����א�����(�=���>�������(�
���אم����
#��א�"?�����%��"FPGA"�����@��(�و���A2)��א��

����?��%+BA�<�C��@�א���
�FGH(���I�(Jو�)�.�א���"�),�������.��D���Eא��+��9وא&������������<��(�=

 .������وא��+���9�!��Kא�
��א
�C!9א&

