• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Issue No 6
Issue No 5
Issue No 4
Issue No 3
Issue No 2
Issue No 1
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Soliman, T., Al Ommar, K., Mahdy, Y. (2015). DEVELOPING SPATIO-TEMPORAL DYNAMIC CLUSTERING ALGORITHMS FOR IDENTIFYING CRIME HOT SPOTS IN KUWAIT. JES. Journal of Engineering Sciences, 43(No 1), 1-15. doi: 10.21608/jesaun.2015.111010
Taysir H. A. Soliman; Khulood Al Ommar; Youssef B. Mahdy. "DEVELOPING SPATIO-TEMPORAL DYNAMIC CLUSTERING ALGORITHMS FOR IDENTIFYING CRIME HOT SPOTS IN KUWAIT". JES. Journal of Engineering Sciences, 43, No 1, 2015, 1-15. doi: 10.21608/jesaun.2015.111010
Soliman, T., Al Ommar, K., Mahdy, Y. (2015). 'DEVELOPING SPATIO-TEMPORAL DYNAMIC CLUSTERING ALGORITHMS FOR IDENTIFYING CRIME HOT SPOTS IN KUWAIT', JES. Journal of Engineering Sciences, 43(No 1), pp. 1-15. doi: 10.21608/jesaun.2015.111010
Soliman, T., Al Ommar, K., Mahdy, Y. DEVELOPING SPATIO-TEMPORAL DYNAMIC CLUSTERING ALGORITHMS FOR IDENTIFYING CRIME HOT SPOTS IN KUWAIT. JES. Journal of Engineering Sciences, 2015; 43(No 1): 1-15. doi: 10.21608/jesaun.2015.111010

DEVELOPING SPATIO-TEMPORAL DYNAMIC CLUSTERING ALGORITHMS FOR IDENTIFYING CRIME HOT SPOTS IN KUWAIT

Article 1, Volume 43, No 1, January and February 2015, Page 1-15  XML PDF (1.26 MB)
Document Type: Research Paper
DOI: 10.21608/jesaun.2015.111010
View on SCiNiTO View on SCiNiTO
Authors
Taysir H. A. Soliman email 1; Khulood Al Ommar1; Youssef B. Mahdy2
1Information Systems Dept., Faculty of Computers and Information, Assiut University, Egypt
2Computer Science Dept., Faculty of Computers and Information, Assiut University, Egypt
Abstract
As crime rates are increasing worldwide, crime mining requires more efficient algorithms that can handle current situations. Identifying crime hot spot areas via clustering spatio-temporal data is an emerging research area. In this paper, dynamic clustering algorithms for spatio-temporal crime data are proposed to detect hot crime spots in Kuwait. Kuwait governorates are taken as case study: the capital, Hawalli, Al-Ahmady, Al-Jahra, Al-Farawaniya, and Mubarak Al-kebeer. In addition, different crime types are considered: act of discharge and humiliation, adultery, aggravated assault, bribery, counter fitting, drugs, embezzlement, fight or resist employee on job, forging of official documents, weapon, robbery and attempted robbery, suicide and attempted suicide, and bank theft. Applying Random subspace classification to those clustered data, 98% accuracy and 99.4% ROC are obtained, having precision (98.7%), recall (98.4%), and F1 (98.28%).
Keywords
Spatio-temporal data mining; hot spot detection; intelligent crime mining; random subspace classification; and clustering
Main Subjects
Electrical Engineering, Computer Engineering and Electrical power and machines engineering.
Statistics
Article View: 122
PDF Download: 473
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.