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This study presents an artificial neural network (ANN) model to predict 
the values of the longitudinal dispersion coefficient   in rivers and streams 
from their main hydraulic parameters. The model can be considered as a 
useful aid to water quality and sediment transport monitoring in rivers. 
The ANN model is a relatively new promising technique which can make 
use of the river width, depth, velocity, and shear velocity for predicting 
longitudinal dispersion coefficient. The used ANN model is based on a 
back propagation algorithm to train a multi-layer feed-forward network. 
The proposed model was verified using 116 sets of field data collected 
from 62 streams ranging from straight manmade canals to sinuous 
natural rivers. The ANN model predicts longitudinal dispersion 
coefficient, where more than 83% of the calculated values range from 
0.50 to 2.0 times the observed values in the field. A comparison of the 
ANN model estimates with the outputs of the most recent and accurate 
equations in the literature, for the longitudinal dispersion coefficient, 
using three different statistical methods for analysis, has shown that the 
accuracy of the ANN model compared favourably with other equations. 
Finally, a new accurate predictor for the values of longitudinal dispersion 
coefficient in polluted rivers and streams that based on readily 
measurable hydraulic quantities is presented. 
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1. INTRODUCTION 

The longitudinal dispersion of pollutants and sediments in rivers is important to 
practicing hydraulics and environmental engineers for designing outfalls or water 
intakes and for evaluating risks from accidental releases of hazardous contaminants. 
The ability of rivers or other surface water bodies to disperse added substances is 
measured by the dispersion coefficients. The longitudinal dispersion coefficient can be 
introduced as a measurement of the one-dimensional dispersion process described by 
the classical convection-dispersion equation as: 
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in which C  is the cross-sectional averaged concentration; lD  the longitudinal 

dispersion coefficient, U  the mean longitudinal velocity; t  the time; and x  the 
longitudinal coordinate oriented in the direction of the mean flow. As the transport 
process and hence the fate of pollutants in surface water bodies depend to a large 
extent on lD , many theoretical and empirical formulations have been proposed to 

determine it, Chatwin and Sullivan [1], Piasecki and Katopodes [2]. Since many of 
these studies have been dependent upon different assumptions in the flow conditions, 
the values obtained for lD  have often varied widely. 

In open channel flow, Elder [3] presented the first-published analysis of lD  

based on laboratory measurements and Taylor’s [4] method, by assuming a logarithmic 
vertical-velocity distribution to give the well known equation 
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where k  is the von-Karman constant, which is approximately equal to 0.41; H  the 
depth of flow (m); and *U  the bed shear-stress velocity (m/s) which can be given as: 
 

gRSU =*                                                                                          (3) 
 

in which g  is the gravitational acceleration; R  the hydraulic radius; and S  the slope 
of the energy gradient line. However, it has been found that Elder’s equation 
significantly underestimates the dispersion coefficient. Studies undertaken using many 
measured data sets for natural rivers have shown that the value of */ HUDl  may vary 

from 6.8  to 7500, Fischer et al. [5], with values generally being much greater than 
Elder’s equation constant 93.5 . Guymer and West [6] confirmed the importance of 
both vertical and transverse shear components of the longitudinal dispersion 
coefficient. Seo and Cheong [7] derived a new equation using dimensional and 
regression analysis, their equation can be written as: 
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in which W  is the channel width. Koussis and Mirasol [8] presented a predictor for the 
longitudinal dispersion coefficient for streams based on readily measurable hydraulic 
quantities in the form of; 
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Values of Φ  is found to be equal to 0.6 from optimising of field data of lD . Recently, 

Kashefipour and Falconer [9] developed the most recent, common, and accurate 
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equation available in the literature for predicting the longitudinal dispersion coefficient 
in rivers flows, using dimensional and regression analysis. Furthermore, their equation 
was linearly combined with Seo and cheong’s equation, led to a further improved 
equation for predicting the longitudinal dispersion coefficient in river and channel 
flows, giving. 
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Incorporating the effect of stream bends or the variation of local flow depth and 
hence the local velocity along the course of natural streams, Deng et al. [10, 11] 
derived a new triple integral expression of the longitudinal dispersion coefficient. 
Guymer [12] conducted a series of laboratory experiments on a large scale channel 
with sinuous plan form geometry. These have been used to obtain the magnitude the 
longitudinal dispersion coefficient. He concluded that there are a need for an improved 
method for incorporating the effect of longitudinal variations in cross-sectional shape. 

 

The artificial neural network (ANN) method is an artificial intelligence technique 
that attempts to mimic the human brains way of solving problems. In recent years, 
artificial neural network (ANN) models have attracted researchers in many disciplines 
of science and engineering, since they are capable of correlating large and complex 
data sets without any prior knowledge of the relationships among them. Artificial 
neural networks are capable to learn and organize themselves by extracting patterns 
and concepts directly from historical data. The first recorded use of ANN modelling in 
the field of civil engineering occurred in the early of 1980, when the technique was 
applied to the optimisation of construction tasks, Flood and Kartam [13]. 

 

The overall objective of the present study is to device and evaluate an artificial 
neural network (ANN) model for predicting the longitudinal dispersion coefficient for 
rivers based on readily measurable hydraulic parameters, which is as accurate as or 
more accurate than the existing empirical equations. 
 

2. THEORY 
 
2.1  Factors  Influencing  The  Dispersion  Process  in  Rivers 

Major factors which influence dispersion characteristics of pollutants in natural 
streams can be categorized into three groups, Seo and Cheong [7]: fluid properties, 
hydraulic characteristics of the streams, and geometric configurations. The fluid 
properties include fluid density )(ρ , viscosity )(µ , and so on. The cross-sectional 

mean velocity )(U , bed shear-stress velocity )( *U , channel width )(W , and  depth of 

flow )(H  can be included in the category of bulk hydraulic characteristics. The bed 
forms and sinuosity can be regarded as the geometric configurations. The dispersion 
coefficient can be related to these parameters as: 
 

),,,,,,,( * nfl SSHWUUfD µρ=                                                     (7) 
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in which fS  is the bed shape factor and nS  the sinuosity. Since the flow in natural 

rivers and channels is generally fully turbulent and rough, with Reynolds number 
effects generally being negligible, ρ  and µ  can be ignored as a first approximation. 

fS  and nS  are vertical and transverse irregularities in natural streams, respectively, 

they cause secondary currents and shear flow that affect the hydraulic mixing processes 
in streams. In this study, however, fS  and nS  were dropped because they represent 

parameters not easily collected for natural streams, and furthermore, the influences of 
them can be included in the friction term. Dimensional analysis shows that there are 

many different combinations of *,,, UandUHW , which can lead to the same 

dimensions as lD . 
 

2.2  Overview  of  The  Artificial  Neural  Network  
The artificial neural network (ANN) modelling approach is a computer 

methodology that attempts to simulate some important features of the human nervous 
system; in other words, the ability to solve problems by applying information gained 
from past experience to new problems. Analogous to human brain, an ANN model uses 
many simple computational elements, named artificial neurons, connected by variable 
weights. Although each neuron, alone, can only perform simple computations, the 
hierarchical organization of a network of interconnected neurons makes an ANN 
capable of performing complex tasks such as pattern classification and prediction. 

Artificial neural network (ANN) models are generally grouped into two broad 
categories, feed-forward networks and feed-backward networks, according to the 
pattern of flow of the model input information within the architecture. In feed-forward 
networks, the neurons on the first layer send their output to the neurons on the second 
layer, but they do not receive any input back from the neurons on the second layer. The 
network prediction error information may, however, be propagated in a backward 
direction through the network. In feed-backward networks, recurrent loops exist within 
the architecture that permit the network to retain a short-term memory with respect to 
previous input information. Such information is incorporated into the current 
information processing, making feed-backward networks particularly useful for time-
series modelling. 
 
2.3  Description  of  The  Artificial  Neural  Network  Modelling 

The artificial neural networks (ANNs) are a relatively new technique, which 
can be used to predict the longitudinal dispersion coefficient by building a multi-layer 
feed-forward network. As shown in Fig. 1, the network consists of an input layer 
consisting of neuron(s) of so called node(s) representing various input variable(s), the 
hidden layer(s) that consisting of many hidden neurons for each layer, and an output 
layer consisting of neuron(s) representing various output variable(s). The number of 
hidden layers and neurons on each hidden layer is determined by a trial and error 
process. The input neurons pass on the input signal values to the neurons on the first 
hidden layer unprocessed. The values are distributed to all neurons on the first hidden 
layer depending on the connection weights )( ijw  between the input neuron )(i  and the  
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 input layer with two neurons

hidden layer (there may be 
several hidden layers) 

output layer with a single neuron

a neuron a neuron 
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Figure 1:  A schematic diagram of a simple feed-forward neural network. 
 
 
 

hidden neuron )( j . On the first hidden layer, each unit j receives incoming signals 

from every unit i  on the input layer.  Associated  with each  incoming  signal )( ix  is a  

weight )( jiw . The effective incoming signal )( js  to the unit j  is the weighted sum 

of all the incoming signals as 
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in which n  is the number of neurons on the input layer. The effective incoming signal, 

js , is passed through a non-linear activation function, called a transfer function, to 

produce the outgoing signal ))(( jj sfy =  of the unit j . The most commonly used 

transfer function in a multi-layer perceptron network (MLP) is the sigmoid function. 
The characteristics of the sigmoid function are that it is bounded above and below, 
continuous and differentiable every where. In this study, the type of the hyperbolic 
sigmoid function used for the ANN model in the hidden layers is the tansig function, 
which can be written as 

 

1
exp1

2
)(

2
−

+
= − jsjsf                                                                                       (9) 

in which js  can vary on the range ± ∞ , but )( jsf  is bounded between 1−  and 1. In 

an analogous manner the processed signals from the neurons on the first hidden layer 
are distributed to the neurons on the second hidden layer and so on till the last hidden 
layer. In the output layer all weighted incoming signals from neurons on the last hidden 
layer are summed and processed using a linear transfer function of the purelin type, 
which can be written as 
 

jj SSf '' )( =                                                                                                      (10) 
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  Finally, the actual and network outputs are compared and the square of error is 
computed and summed for all variable patterns. The computed error is propagated 
backward from the output neurons to the hidden neurons to the input neurons based on 
the gradient delta rule. The connection weights are then updated to minimize the total 
network error. Once the training process is satisfactory completed, the final weights are 
saved and used for the evaluation of the model in the testing phase. 

 
3.  NUMERICAL  PROCEDURE 

 
3.1  Input  and  Output  Parameters 

 

In order to build up an ANN model to predict the longitudinal dispersion 
coefficient )( lD  for rivers, 116 data sets for more than 62 rivers and experimental 

flumes were collected from Fischer [5, 14, 15], Seo and Cheong [7], and McQuivey 
and Keefer [16]. The selection of the input variables had to be done in a way that 
enables the neural model to accomplish the task. The longitudinal dispersion 
coefficient has been related separately to all of the main hydraulic parameters. As 
shown in Fig. 2, lD  can be related to the channel width (Fig. 2a), depth of water   

(Fig. 2b), and velocity (Fig. 2c), whereas the data scattered in the *UDl −  plane  

(Fig. 2d). A perfect fit would result in a correlation coefficient )( 2R  of a value of “1” 
while a value of “0” means very poor fit. The corresponding correlation coefficients, 
for the relationships between lD  and W , H , U and *U  in Figs. 2a-d are 0.4816, 

0.3781, 0.4129 and 0.085 respectively. The figures demonstrate that lD  as an output 

parameter appears to have some dependency on all these variables, as the input 
parameters, even though the data somewhat scattered. 

 
3.2  Model  Training 

 

In developing the ANN model for predicting lD  in polluted rivers based on 

their main hydraulic parameters, three configurations were evaluated: (i) training was 
carried out using the raw data values of the river width )(W , depth )(H , mean 

velocity )(U  and shear velocity )( *U  as input parameters and the longitudinal 

dispersion coefficient )( lD  as an output parameter; (ii) the input parameters were 

putted as dimensionless values of HW / and */UU  while */ HUDl  as an output 

dimensionless parameter; and (iii) the dimensionless parameters of the second 
configuration were transformed to a logarithmic scale. Configuration (iii) yielded an 
optimal ANN model. The ANN configuration employed an input layer having              
2 neurons, with one corresponding to each of )/log( HW and )/log( *UU  and an 
output layer consisting of a single neuron representing the output parameter 

)/log( *HUDl . 
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Figure 2: Relationship between lD  and (a)W , (b) H , (c) U , and (d) *U . 

 
 
 In the training of the ANN model 69 data sets for 37 natural rivers and 

experimental flumes are randomly picked among the available 116 data sets, i.e. 60 % 
of the available data. In order to find the optimal network, several configurations were 
tried in which the number of hidden layers varied from 1 to 4 and the number of 
neurons on each hidden layer was varied from 5 to 30. Once a given neural network 
was trained using the input data sets, its performance was then evaluated using the 
same data sets. It was found that the optimal configuration for the network, 4 hidden 
layers with 30, 20, 10, and 5 neurons on each layer, respectively. All the computations 
are made with the MATLAB@ software (Release 12.1) and its neural modelling 
application, Neural Network Toolbox (version 4.4).  

Figure 3 illustrates a comparison between the observed values of lD  in the 

field and those predicted by the ANN model, Seo and Cheong model (Eqn. 4), and 
Kashefipour and Falconer model (Eqn. 6). As the equation of Seo and Cheong (Eqn. 4) 
and the equation of Kashefipour and Falconer (Eqn. 6) are the most recent, common, 
and frequently used in computing lD , they were chosen for comparison. It is clear 

from the figure that the outputs of the ANN model agree with the field observations 
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while the other equations roughly estimate lD . It is a rational result because the ANN 

model was trained on both the input parameters, )/log()/log( *UUandHW , at the 

same time with the output parameter, lD , in the form of )/log( *HUDl . Thus, 

another new data sets are required to verify and compare the ANN model with the 
other equations. 

 

0.1

1

10

100

1000

0.1 1 10 100 1000

Eq. 4
Eq. 5
ANN model
Zero error line

P
re

d
ic

te
d

  D
l (

m
2
/s

) 

Observed  Dl  (m
2
/s) 

 
 

Figure 3: Comparison between the observed values of lD  and those predicted by 

Eqn. (4), Eqn. (6), and the ANN model for the trained data. 
 
 

4.  RESULTS  AND  DISCUSSION 
In order to test the accuracy and feasibility of the ANN model for predicting 

the longitudinal dispersion coefficient )( lD  in natural streams, 47 data sets measured 

in 25 streams were used. The trained ANN model has never seen these data either in an 
input or output form and it was then used to predict the values of lD  as an output 

parameter based on the input parameters from the field measurements 
),,,( *UandUHW . The ANN model output values of lD  were then compared 

with both those values obtained from field observations and the outputs of the 
equations proposed by other investigators, as shown in Fig. 4. Compared to Eqn. (4) 
and Eqn. (6) outputs, it is clear from Fig. 4 that the developed ANN model improves 
the prediction of lD  and its estimates are more closer to the observed values from the 

field. In general, predicted longitudinal dispersion coefficients often deviate from 
observed ones by orders of magnitude. The deviation is attributed  mainly to the 
inability to account for  meandering  and  other  non-uniform  conditions  of  the rivers.  
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Figure 4: Comparison between the observed values of lD  and those predicted by 

Eqn. (4), Eqn. (6), and the ANN model for the tested data. 
 

 
Also, it is found from the statistical calculations that the ANN model predicts 

lD  with an accuracy in which 83% of the predicted values range from 0.50 to 2.0 

times of the observed values form the same rivers and data sets. In comparison, values 
of 48.9% and 51.1% of the calculated values of lD  by Eqn. (4) and Eqn. (6), 

respectively, range from 0.50 to 2.0 times the observed ones. 
 

Also, for statistical comparisons the coefficient of determination )( dC  and the 

mean relative absolute error )(MRAE  are used to compare the performance of the 
ANN model with both Eqn. (4) and Eqn. (6). The coefficient of determination is a 
statistical indicator that varies from ∞−  for bad models to 1.0 for good models. It 
represents the fraction of the total variance of the observed variable that is explained by 
the model. The coefficient of determination, dC , is mathematically described as  
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where the parameter d
iDl Pr  represents the predicted output of lD  from the ANN 

model or any of the other two equations for a given input while Obs
iDl  is the desired 

output for the same input which was observed in the field; ObslD  the mean Obs
iDl  

values; and n  the total number of data records. The another error measure that is used 
for comparison is the mean relative absolute error, MRAE , which can be defined as  
 

∑
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Table 1 shows the values of the coefficient of determination, the mean relative 
absolute error, and the percent of the predicted lD  that lies in the range 0.50~2.0 times 

the observed field values, for the ANN model, Eqn. (4), and Eqn. (6). It is clear from 
the table that the ANN model performs much better than the other two equations for all 
values of the three error measures. It follows from the above investigations that the 
new optimised model of the ANN is capable of providing a superior prediction of the 
longitudinal dispersion coefficient for natural rivers.  
 

Table 1:  Comparison of the ANN model, Seo and Cheong model (Eqn. 4), and 
Kashefipour and Falconer model (Eqn. 6) using three statistical methods. 

 

 
Model Type 

 

Coefficient of 
determination 

 

Mean relative 
absolute error 

Percent of dObs DlDl Pr/  values 

that ranges from 0.5 to 2.0 
ANN model 0.9483 0.620 83.0 % 
Eqn. (4) -17.377 2.837 48.9 % 
Eqn. (6) -8.203 5.556 51.1 % 
 
 

5. CONCLUSIONS 
Using the promising technique of the artificial neural network (ANN), an 

accurate predictor for the longitudinal dispersion coefficient, lD , for streams that is 

based on readily measurable hydraulic quantities is presented. The ANN model relates 

lD  to the main hydraulic parameters of the river width, depth, velocity, and bed shear-

stress velocity. In developing the ANN model, 116 sets of field data collected from 62 
streams ranging from straight manmade canals to sinuous natural rivers were used. The 
ANN estimates were compared with the outputs of two other existing equations, 
frequently used to predict lD  in riverine flows, with the comparisons based on three 

different statistical methods. It was found that the new method of ANN has the least 
error and improves the prediction of lD  for natural rivers. The ANN model predicts 

lD  with an accuracy in which 83% of the calculated values range from 0.5 to 2.0 times 

the observed values in the field. The developed ANN model can be considered as a 
useful aid to water quality monitoring in rivers, which is as accurate as or more 
accurate than the most recent empirical equations. 
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 UC R0�6C ��N6Y62 >O�C 7ىFC . X�D �+ر�6C A*= �*[lD  ھ;ا UC �K�N�ا!/< =X ا!W ?ل 

�� ا!*6��0 وا!6�X ا!/< =L _IW?ا0@� أY-ث ا!*$�د1ت  ا!�*?ذجN6W!ا X�UC B[ QC ا!6
�0/.-ام Lا01/.-ام و �$O��� N/.C`� 3ا!'O� Y*?ذج ا!*7/6ح . ط7ق إ�و5- أن ا! -Dو

 X�D >@$4lD  �#I+ أن d�WL �6�Dر�5 د-L83 % ى-C >P Q6= RL �L?IW*!ا X�UC ا!6
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Seo and Cheong, 1998  �#I�!ھ;ه ا eN#=د!� % 51.1و�$*!Kashefipour and 
Falconer, 2002  . VN@*!ا >#I�!ا g@.!ا f0?/C UC B[ >/*�D و5- أن �*[)(MRAE 
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