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This study presents an artificial neural network (ANN) model to predict
the values of the longitudinal dispersion coefficient in riversand streams
from their main hydraulic parameters. The model can be considered as a
useful aid to water quality and sediment transport monitoring in rivers.
The ANN model is a relatively new promising technique which can make
use of the river width, depth, velocity, and shear velocity for predicting
longitudinal dispersion coefficient. The used ANN model is based on a
back propagation algorithm to train a multi-layer feed-forward network.
The proposed model was verified using 116 sets of field data collected
from 62 streams ranging from straight manmade canals to sinuous
natural rivers. The ANN model predicts longitudinal dispersion
coefficient, where more than 83% of the calculated values range from
0.50 to 2.0 times the observed values in the field. A comparison of the
ANN model estimates with the outputs of the most recent and accurate
equations in the literature, for the longitudinal dispersion coefficient,
using three different statistical methods for analysis, has shown that the
accuracy of the ANN model compared favourably with other equations.
Finally, a new accurate predictor for the values of longitudinal dispersion
coefficient in polluted rivers and streams that based on readily
measurable hydraulic quantities is presented.

KEYWORDS: Water quality; Dispersion coefficient; Rivers; Neural
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1. INTRODUCTION

The longitudinal dispersion of pollutants and seshits in rivers is important to
practicing hydraulics and environmental engineens designing outfalls or water
intakes and for evaluating risks from accident&ases of hazardous contaminants.
The ability of rivers or other surface water bodtesdisperse added substances is
measured by the dispersion coefficients. The longial dispersion coefficient can be
introduced as a measurement of the one-dimensiispérsion process described by
the classical convection-dispersion equation as:

2
a_C = DI a_C -U a_C (1)
ot x> dx
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in which C is the cross-sectional averaged concentratiBy; the longitudinal

dispersion coefficientU the mean longitudinal velocityt the time; andx the
longitudinal coordinate oriented in the directiohtibe mean flow. As the transport
process and hence the fate of pollutants in surfeater bodies depend to a large

extent on D, , many theoretical and empirical formulations hdeen proposed to

determine it, Chatwin and Sullivan [1], Piaseckdafatopodes [2]. Since many of
these studies have been dependent upon differsaingsions in the flow conditions,

the values obtained fdD, have often varied widely.
In open channel flow, Elder [3] presented the {irsblished analysis oD,

based on laboratory measurements and Taylor’'s ¢thod, by assuming a logarithmic
vertical-velocity distribution to give the well knm equation

D, = (0'424]4 EJHU* or D, = 593HU, )
k 6

where K is the vonKarman constant, which is approximately equal to 0.41; H the

depth of flow (m); andJ. the bed shear-stress velocity (m/s) which caniengs:

U. =/gRS @3)

in which g is the gravitational acceleratiol the hydraulic radius; an® the slope
of the energy gradient line. However, it has beennfl that Elder's equation
significantly underestimates the dispersion cogffit Studies undertaken using many
measured data sets for natural rivers have shoatrttih value oD, / HU, may vary

from 86 to 7500, Fischer et al. [5], with values generally beingaim greater than
Elder's equation constanb93. Guymer and West [6] confirmed the importance of
both vertical and transverse shear components ef ltngitudinal dispersion
coefficient. Seo and Cheong [7] derived a new egoatising dimensional and
regression analysis, their equation can be wraten

062 1428
D _ 591'{Wj L (4)
HU. H U.

in which W is the channel width. Koussis and Mirasol [8] praed a predictor for the
longitudinal dispersion coefficient for streams dh®n readily measurable hydraulic
guantities in the form of;

W 2
D, = ¢(ﬁj U.H ©)

Values of ® is found to be equal to 0.6 from optimising oldieata of D, . Recently,
Kashefipour and Falconer [9] developed the mosemgccommon, and accurate
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equation available in the literature for predictthg longitudinal dispersion coefficient
in rivers flows, using dimensional and regressinalgsis. Furthermore, their equation
was linearly combined with Seo and cheong’'s equoatied to a further improved

equation for predicting the longitudinal dispersiooefficient in river and channel

flows, giving.

062 0572
D, :{7.428+ 1.775{\;—\/} (%j }HU(E j (6)

Incorporating the effect of stream bends or theatian of local flow depth and
hence the local velocity along the course of natateeams, Deng et al. [10, 11]
derived a new triple integral expression of thegiardinal dispersion coefficient.
Guymer [12] conducted a series of laboratory expents on a large scale channel
with sinuous plan form geometry. These have beed ts obtain the magnitude the
longitudinal dispersion coefficient. He concludédttthere are a need for an improved
method for incorporating the effect of longitudinvakiations in cross-sectional shape.

The artificial neural network (ANN) method is artificial intelligence technique
that attempts to mimic the human brains way of inglyproblems. In recent years,
artificial neural network (ANN) models have attedtresearchers in many disciplines
of science and engineering, since they are capstbt®rrelating large and complex
data sets without any prior knowledge of the retaghips among them. Atrtificial
neural networks are capable to learn and orgamiemgelves by extracting patterns
and concepts directly from historical data. Thetfrecorded use of ANN modelling in
the field of civil engineering occurred in the gadf 1980, when the technique was
applied to the optimisation of construction tasisod and Kartam [13].

The overall objective of the present study is teicke and evaluate an artificial
neural network (ANN) model for predicting the longlinal dispersion coefficient for
rivers based on readily measurable hydraulic patensiewhich is as accurate as or
more accurate than the existing empirical equations

2. THEORY

2.1 Factors Influencing The Dispersion Process in Rivers

Major factors which influence dispersion charastirs of pollutants in natural
streams can be categorized into three groups, B@dCheong [7]: fluid properties,
hydraulic characteristics of the streams, and géwneonfigurations. The fluid
properties include fluid densityp), viscosity (), and so on. The cross-sectional

mean velocity(U ), bed shear-stress velocify. ), channel width(W) , and depth of

flow (H) can be included in the category of bulk hydracharacteristics. The bed

forms and sinuosity can be regarded as the geanenfigurations. The dispersion
coefficient can be related to these parameters as:

D =f(o, 4, U, U., W, H, S;, S,) (7)
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in which S; is the bed shape factor a8} the sinuosity. Since the flow in natural

rivers and channels is generally fully turbulend amugh, with Reynolds number
effects generally being negligiblgg and 4 can be ignored as a first approximation.

S; and S, are vertical and transverse irregularities in ratstreams, respectively,

they cause secondary currents and shear flow titeat ¢he hydraulic mixing processes
in streams. In this study, howeve®; and S, were dropped because they represent

parameters not easily collected for natural streand furthermore, the influences of
them can be included in the friction term. Dimensioanalysis shows that there are

many different combinations o/, H, U, and U., which can lead to the same
dimensions ad), .

2.2 Overview of The Artificial Neural Network

The artificial neural network (ANN) modelling appch is a computer
methodology that attempts to simulate some impoffieatures of the human nervous
system; in other words, the ability to solve profdeby applying information gained
from past experience to new problems. Analogousitoan brain, an ANN model uses
many simple computational elements, named artifiegarons, connected by variable
weights. Although each neuron, alone, can only guarfsimple computations, the
hierarchical organization of a network of interceated neurons makes an ANN
capable of performing complex tasks such as patfassification and prediction.

Artificial neural network (ANN) models are geneyafjrouped into two broad
categories, feed-forward networks and feed-backwastivorks, according to the
pattern of flow of the model input information witththe architecture. In feed-forward
networks, the neurons on the first layer send thefput to the neurons on the second
layer, but they do not receive any input back ftbmneurons on the second layer. The
network prediction error information may, howevee propagated in a backward
direction through the network. In feed-backwardameks, recurrent loops exist within
the architecture that permit the network to retishort-term memory with respect to
previous input information. Such information is oemgorated into the current
information processing, making feed-backward nekeqrarticularly useful for time-
series modelling.

2.3 Description of The Artificial Neural Network Modelling

The artificial neural networks (ANNSs) are a relativ new technique, which
can be used to predict the longitudinal dispersioeifficient by building a multi-layer
feed-forward network. As shown iRig. 1, the network consists of an input layer
consisting of neuron(s) of so called node(s) reprtisg various input variable(s), the
hidden layer(s) that consisting of many hidden amsirfor each layer, and an output
layer consisting of neuron(s) representing variougput variable(s). The number of
hidden layers and neurons on each hidden layeetisrined by a trial and error
process. The input neurons pass on the input sigilaés to the neurons on the first
hidden layer unprocessed. The values are distdbatall neurons on the first hidden

layer depending on the connection weigfig ) between the input neurdin) andthe
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Figure 1. A schematic diagram of a simple feed-forward neural network.

hidden neuron(j). On the first hidden layer, each unit j receivesoiming signals
from every uniti on the input layer. Associated with each incamsignal(X;) is a
weight (w;;) . The effective incoming signg(s; ) to the unit j is the weighted sum
of all the incoming signals as

i=n

SHE _%Wji X; (8)

in which n is the number of neurons on the input layer. Tifextve incoming signal,

S;, is passed through a non-linear activation fumcticalled a transfer function, to

produce the outgoing signdly; = f(s;)) of the unit j. The most commonly used
transfer function in a multi-layer perceptron netkv@MLP) is the sigmoid function.

The characteristics of the sigmoid function arg ihas bounded above and below,
continuous and differentiable every where. In tbtisdy, the type of the hyperbolic

sigmoid function used for the ANN model in the heddayers is the tansig function,
which can be written as

2
f(sj))=———=-1 9)
Sj
1+exp
in which s; can vary on the rangec, but f(s;) is bounded between1 and1. In
an analogous manner the processed signals frometlm®ns on the first hidden layer
are distributed to the neurons on the second hitldgar and so on till the last hidden
layer. In the output layer all weighted incomingrals from neurons on the last hidden

layer are summed and processed using a linearfdrafusiction of the purelin type,
which can be written as

f(Sj))=S] 10
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Finally, the actual and network outputs are camgpand the square of error is
computed and summed for all variable patterns. ddmputed error is propagated
backward from the output neurons to the hiddenaruto the input neurons based on
the gradient delta rule. The connection weightstiae@ updated to minimize the total
network error. Once the training process is satisfg completed, the final weights are
saved and used for the evaluation of the moddiertdsting phase.

3. NUMERICAL PROCEDURE

3.1 Input and Output Parameters
In order to build up an ANN model to predict thend@tudinal dispersion
coefficient (D,) for rivers, 116 data sets for more than 62 rivemd experimental

flumes were collected from Fischer [5, 14, 15], &®ad Cheong [7], and McQuivey
and Keefer [16]. The selection of the input vamabhad to be done in a way that
enables the neural model to accomplish the taske Tmgitudinal dispersion

coefficient has been related separately to allhef nain hydraulic parameters. As

shown inFig. 2, D, can be related to the channel widtig( 2a), depth of water
(Fig. 2b), and velocity Kig. 2c), whereas the data scattered in thBe—U. plane

(Fig. 2d). A perfect fit would result in a correlation céiefent (Rz) of a value of “1”
while a value of “0” means very poor fit. The capending correlation coefficients,
for the relationships betweeD, andW, H, U and U. in Figs. 2a-d are 0.4816,
0.3781, 0.4129 and 0.085 respectively. The figaersonstrate thaD, as an output

parameter appears to have some dependency onesk tariables, as the input
parameters, even though the data somewhat scattered

3.2 Model Training

In developing the ANN model for predicting, in polluted rivers based on
their main hydraulic parameters, three configuretiovere evaluated: (i) training was
carried out using the raw data values of the riwedth (W), depth (H), mean
velocity (U) and shear velocityU.) as input parameters and the longitudinal
dispersion coefficient{D,) as an output parameter; (ii) the input parametesse

putted as dimensionless values\W&f/H and U /U. while D, /HU. as an output

dimensionless parameter; and (iii) the dimensianlparameters of the second
configuration were transformed to a logarithmiclec&onfiguration (iii) yielded an
optimal ANN model. The ANN configuration employed anput layer having

2 neurons, with one corresponding to eachlag(W/H) and logU /U.) and an
output layer consisting of a single neuron représgnthe output parameter
log(D, / HU.).
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Figure 2: Relationship between D, and ()W, (b) H, (c) U , and (d) U..

In the training of the ANN model 69 data sets 8f natural rivers and
experimental flumes are randomly picked among tlalable 116 data sets, i.e. 60 %
of the available data. In order to find the optimatwork, several configurations were
tried in which the number of hidden layers variednf 1 to 4 and the number of
neurons on each hidden layer was varied from 50toC8ice a given neural network
was trained using the input data sets, its perfoomavas then evaluated using the
same data sets. It was found that the optimal gardtion for the network, 4 hidden
layers with 30, 20, 10, and 5 neurons on each Jagspectively. All the computations
are made with the MATLAB software (Release 12.1) and its neural modelling
application, Neural Network Toolbox (version 4.4).

Figure 3 illustrates a comparison between the observedesatd D, in the

field and those predicted by the ANN model, Seo @heong model (Eqgn. 4), and
Kashefipour and Falconer model (Eqn. 6). As thea&éqn of Seo and Cheong (Eqn. 4)
and the equation of Kashefipour and Falconer (Byrare the most recent, common,

and frequently used in computin, , they were chosen for comparison. It is clear
from the figure that the outputs of the ANN modgtee with the field observations
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while the other equations roughly estimdde. It is a rational result because the ANN
model was trained on both the input parameteg(W/H) and logU /U.), at the

same time with the output parametdd,, in the form of log(D, /HU.). Thus,

another new data sets are required to verify amdpaoe the ANN model with the
other equations.
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Figure 3: Comparison between the observed values of D, and those predicted by
Eqn. (4), Eqn. (6), and the ANN model for the trained data.

4. RESULTS AND DISCUSSION
In order to test the accuracy and feasibility & &iNN model for predicting

the longitudinal dispersion coefficiefD,) in natural streams, 47 data sets measured
in 25 streams were used. The trained ANN modehbasr seen these data either in an
input or output form and it was then used to pretlie values ofD, as an output
parameter based on the input parameters from thed fimeasurements
W, H, U, and U.). The ANN model output values dD, were then compared
with both those values obtained from field obseoret and the outputs of the

equations proposed by other investigators, as showiy. 4. Compared to Eqn. (4)
and Eqgn. (6) outputs, it is clear frafig. 4 that the developed ANN model improves

the prediction ofD, and its estimates are more closer to the obserfegs from the

field. In general, predicted longitudinal dispersiooefficients often deviate from
observed ones by orders of magnitude. The deviasioattributed mainly to the
inability to account for meandering and othem4uniform conditions of thdvers.
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Figure 4: Comparison between the observed values of D, and those predicted by
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Eqn. (4), Eqn. (6), and the ANN model for the tested data.

Also, it is found from the statistical calculatiotigat the ANN model predicts

D, with an accuracy in which 83% of the predictedueal range from 0.50 to 2.0

times of the observed values form the same rivedsdata sets. In comparison, values
of 48.9% and 51.1% of the calculated values@f by Eqn. (4) and Eqgn. (6),

respectively, range from 0.50 to 2.0 times the nlexbones.

Also, for statistical comparisons the coefficiehtletermination(C4) and the

mean relative absolute errdMRAE) are used to compare the performance of the

ANN model with both Egn. (4) and Egn. (6). The dim&nt of determination is a

statistical indicator that varies fromoo for bad models to 1.0 for good models. It

represents the fraction of the total variance efdhserved variable that is explained by

the model. The coefficient of determinatidd, , is mathematically described as

_ DliPrd)Z

n

Z(Dliobs

1_ _i

(11)

n

d

C

1

Z(DliObS _ 5' ObS)Z
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where the parameteDIiPrd represents the predicted output Bf from the ANN
model or any of the other two equations for a giveut while DliObs is the desired

output for the same input which was observed infigsie; D1 the meanDI ™

values; andn the total number of data records. The another eneasure that is used
for comparison is the mean relative absolute eliRAE , which can be defined as

1 i:n| D|Obs _ p Prd |
MRAE = ﬁzl\ : IO : | (12)

Table 1 shows the values of the coefficient of determoratithe mean relative
absolute error, and the percent of the prediédpdhat lies in the range 0.50~2.0 times

the observed field values, for the ANN model, E@), and Eqn. (6). It is clear from
the table that the ANN model performs much bettantthe other two equations for all
values of the three error measures. It follows friv@ above investigations that the
new optimised model of the ANN is capable of prawida superior prediction of the
longitudinal dispersion coefficient for natural eis.

Table 1: Comparison of the ANN model, Seo and Cheong model (Egn. 4), and
Kashefipour and Falconer model (Eqn. 6) using three statistical methods.

Model Type Coefficient of | Mean relative |Percent of Dlgys / Dlp,y values
determination |absolute error that ranges from 0.5 to 2.0
ANN model 0.9483 0.620 83.0 %
Eqn. (4) 17.377 2.837 48.9 %
Eqgn. (6) -8.203 5.556 51.1 %

5. CONCLUSIONS
Using the promising technique of the artificial redunetwork (ANN), an

accurate predictor for the longitudinal dispersamefficient, D,, for streams that is

based on readily measurable hydraulic quantitiggésented. The ANN model relates
D, to the main hydraulic parameters of the river wjdtepth, velocity, and bed shear-
stress velocity. In developing the ANN model, 1#62f field data collected from 62

streams ranging from straight manmade canals tmasnatural rivers were used. The
ANN estimates were compared with the outputs of tter existing equations,

frequently used to predidD, in riverine flows, with the comparisons based bre¢
different statistical methods. It was found that tlew method of ANN has the least
error and improves the prediction & for natural rivers. The ANN model predicts

D, with an accuracy in which 83% of the calculatebliga range from 0.5 to 2.0 times

the observed values in the field. The developed ANbddel can be considered as a
useful aid to water quality monitoring in rivershiwh is as accurate as or more
accurate than the most recent empirical equations.
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