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It's clearly obvious that the use of computer pags, especially finite
element method in structural analysis, gained airtisiished popularity in
the presence of expensive hard experimental workke field of concrete
structures, modeling with a proper finite elemerdgovam in idealization the
considered structure is greatly needed. Today, uke of shotcrete for
strengthen of the concrete structures in large eséalincreasing due to it's
advantage, the properties and the factors effecitohas been discussed.
This work presents an theoretically investigatimmeerning the efficiency
for the reinforced concrete columns Four Columr@xgdx100) were tested
under compression loading and had the same cressos of dimensions
and main longitudinal reinforcement distributionchoross sections for all
columns. (Usama 2002) made four Columns (20x20xd/202 tested under
compression loading and The deformations were nmedsiy linear
variable differential transducers LVDT's, two trahgers in both sides to
measure the longitudinal deformations (LO) ande¢hin the lateral
direction to measure the lateral deformations: finst (EQ1) was near the
end of the column, the second (EQ2) was in thelmalad the third (EQ3)
was in the middle between the fist and the secahti@same cross section
of dimensions and main longitudinal reinforcemeistribution and cross
sections for all columns. These Columns had fodordesd longitudinal
steel bars 10 mm diameter. New formula in the thdeeensional for
numerical modeling to compare between strengtlieisislumns [5] was
produced by the author.
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1. INTRODUCTION

For studying the subject of this paper, the diffies lie in the selection of the
parameters, which are mainly responsible for therall behavior and failure,
respectively. Thus, the aim is to define a modelciviis developed with respect to a
successful reduction of the physical problem. Tlaénnoharacteristics of the composite
materials appear at the interactive compound of ih@ividual components.
Whereupon, it is impossible to know exactly theamogeneity in each constituent.
Models for the description of failure can be depeld based on micromechanic and
macromechanic analysis.
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The study of these effects requires highly soptastid models, developed in the field
of material scientists. Here, a great importanceatimched to use measurable,
mechanical values in the respective material modEte distinction between the

properties of these materials is governed by thesiphl properties of the phases and
the phase interface geometry. Considering compositasisting of phases with three-
dimensional internal geometries embeded in thergkpbase, the material is denoted
as particulate composite.

2. MODELLING-REBAR ELEMENT
The discrete reinforcrement modeling is used taadtarize composites with large,
distinct reinforcrements. a homogeneous displacefredd. Futhermore. it is assumed
that the plane of reinforcement is perpendiculatht® element faces. The conceptual
illustratration is shown iffigure 1.

Fig. 1: Three dimensional solid with embedded, skew rebar.

The element stiffness matri ® is represented by equation (1)
Ke=[ B'D B .dV+| B'DB_.dV 1)
Ve vr

where

strain displacement matrix for the (3D) pareletment

Dm = elasticiy matrix of the matrix

Ve = element volume

Dr = elasticiy matrix of the rebar with respectdodl coordinares

Bm

In the above equation (1) it can be seen thatttAens-displacement matrix 4B of the
rebar is expressed by the same Shape Functiom tefmatrix portion.
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By using the eight points Gauss numerical integrafn=8) in the r, s, and z direction,
the following matrix [ H ] contain the interpolatiofunction hij=1,......., 8 and is
defined as :

hOoOROOKROOHROOKROOROOROOROO
H=[0h 0O0h 00h 00Oh 00RQR 00K 00K 00K O
0O0RhOOHBOOKROO ROOKROOKOOHKOO h

The strains in both domains of the element andrredn@ referenced to the local
coordinate (x,y,z), whereas the displacements apreased in terms of natural
coordinate systems (r,s,t) derivatives and the{xgerivatives is of the form [4]

%r :Jaax

whereJ is Jacobian operator.

The elements of strain-displacement transformatratrix Bm are affected by the
Jacobian operator as

[Bm] =[Lm] [H]

where Ly, is the differential operator representing smafbd®aation under conditions

of stress [3]
7S 0
0 %y 0
=l Vo
U % ey O
Y%r Yo
O Y Dy

For a smeard modeling of the reinforcement, thaarical integration of the element
stiffness matrix equals the terms as shwon in éguét2 ), [3].

K°=3>'B/D,B, .detla +>B.T.D,T,B,V @

m,i " B, rji B

where
Gpm= number of Gauss points associated to the madritcon

detJ = Jacobian determinant
a; = weight of Gauss point
GPr = number of Gauss points associated to the rebar
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transformation matrix from the local to th&tural axis
rebar volume within an element

T8
Vr

The skew reinforcement orientation is merely takdgo account by the incorporation
of transformation matrix fI.

Considering a discrete modeling of reinforcemdre,riumerical integration of element
stiffness matrix reads

K= ZBTD B, det.Ja’+Z ZBTTTDT B...,LA, ©®

= mi S ri B
where
nr = number of rebars
Iri = length of the i-th rebar
Ar,i = cross-sectional area of the i-th rebar

From equation (3) it is obvious, that the lendth of each rebar has to be estimated.
Thereby, the intersection points of rebars with #lement faces are detected.
Accordingly, the user has to map these points bawgkobal coordinates, or to give the

isoparametric coordinates back as input to the éiputation [1], [2].

With the knowledge of the intersection points, theation of the integration points
associated to the rebars can be detemined. Comglqubke element stiffness matrix
in equation (3) can be evaluated.

3. MODELING OF CONCRETE

Advanced methods for the design of concrete strestthave placed increasing
emphasis on the stress-strain behavior of consrdigected to bi-axial stresses. Under
such state of stress concrete exhibits not onigferent stress-strain behavior but also
varying strength characteristics. The considerederiz constitutive relations are
those for orthotropic one. These relations are fremtliwhen failure is detected to
represent the gradual decay of strength due tortket of failure. The failure includes
either crushing and for cracking reduced the eleisctmodules of concrete by half
precentage of elastic modules.

4. EXPERIMENTAL PROGRAM
In order to verify the analytical results obtair®adthe finite element analysis , a group
of seven Columns (20x20x100) were tested under pessn vertically loading and
had the same cross section of dimensions and roamgitlidinal plain and fibrous
concrete walls are adopted. This experimental wesked by the auther [5] aimed to
compare between the different strengthening systems

5. COMPARISON BETWEEN THERETICAL AND
EXPERIMENTAL PROGRAM
Axial stress-axial strain and axial stress-latstedin curves for columns are shown in
Figs. 2 t09.
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Fig. 2: Behaviour of column specimen Co without strengthening under axial load [5].
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Fig. 3: Behaviour of column specimen CO with [USA] program.
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Fig. 4: Behaviour of column specimen C2 strengthened with SpB under axial load [5].
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Fig. 5: Behaviour of column specimen C2 with [USA] Program.
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Fig. 8: Behaviour of column specimen C5 without strengthening under axial load [5].
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6. CONCLUSIONS
The new formula in the three dimensional for nucermodeling gives results closer
to with the experimental work in cracking loadstimbate loads, displacements,
deflections and the longitudinal and lateral stsaine smaller.
The influence of shotcrete on the structural penBmice of reinforced concrete
columns retrofitted with fibers was investigatedl [5
1- For RC columns strengthened with SpB and havingefacwith longitudinal steel
reinforcement and stirrups have high loading cdpattian these strengthened
without reinforced jackets.
2- Using the shotcrete strengthening layer gives sompeovement for the jacket than
the concerte jacket and subsequently in the lopdaity.
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