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ABSTRACT- Scientific datasets are often contaminated withs@pi
either because of the data acquisition and transiors processes, or
because of naturally occurring phenomena such asogpheric
disturbances. A first pre-processing step in analyzsuch datasets is
denoising, that is, estimating the signal of inggréom the available
noisy data. Wavelet transforms represent signats aihigh degree of
sparsity. This is the principle behind the non-tinevavelet based signal
denoising technique and is what distinguishes dmfrentire linear
denoising techniques such as least squares. leliskwown that the use of
non-decimated (Stationary) Wavelet Transforms (S§WBEs a redundant
representation of an input signal, which minimizbe artifacts in the
reconstructed data. In this work the stationary elav basis and the
Wavelet Packet Transform (WPT) method are explditedievelop a
Stationary Wavelet Packet Transform (SWPT)-basedidieg algorithm.
The decomposition of noisy signals is performed gtationary wavelets
according to the optimum decomposition tree stmgtudetermined
through the WPT methodThe thresholding is performed on the
coefficients of the best tree, to make the dergpisiacessmore efficient.
The performance of the denoising algorithm is assgsn terms of the
Mean Squared Error (MSE) as a measure of the quafidenoisignThe
obtained simulation results indicate that the camalion of the SWT and
WPT achieves superior denoising than the applicatd each of them
separately. The proposed SWPT-based denoisingithligois efficiently
implemented on Xilinx Virtex Field Programmable &atray (FPGA).

INDEX TERMS: Denoising, stationary wavelets, wavelet packet
transform, FPGA.

1. INTRODUCTION
Wavelet denoising has been recently introducednaisdound efficient applications in
restoration of different types of signals, rangirgm medical imaging, astronomy and
computer vision to synthetic aperture radar. Thieagonal discrete wavelet transform
DWT has high energy compaction and decor relatiapgrties, which make most of
the energy of the processed original signaldimepacted into a few highagnitude
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coefficients. If the input signal is corrupted iditive white noise, components which
correspond to noise will be distributed among lovagmitude high frequency
components. Hence, a shareholding algorithm irotlleogonal transform domain will
remove most of the noise components, while featurethe original signal remain
sharp after denoising. Various examples show h@anthise is largely suppressed by
the above approach in contrast with traditionakdin methods of smoothing which
trade-off noise suppression against a broadenirsigofl features. Authors addressed
the problem of denoising and retrieval of signalgdd in excessive noise extensively.
The early work of Donohue and Johnston [1] andaRjvell as the work of Chang [3]
exploited the decomposition of the data into théhagonal wavelet basis and gave
rigorous justification of denoising via coefficieshareholding. Other authors used
stationary wavelets transform for denoising sucthaswork in [4], [5] and recently in
[6], in which they showed the capability of SWTdfer better denoising performance
than the ordinary orthogonal wavelets. Other methodre proposed using different
wavelet-based operators, such as the wavelet paakatform. Improved results in the
area of speech and image coding, as well as sagtattion and identification, have
been reported using this kind of wavelet analyg]s Ih [8] a WPT-based denoising
technique was introduced to serve aapreprocessor for compensation for hearing
impairments in hearing aids design. In [9] the auttpresented the FPGA
implementation of the algorithm. The implementatwas based on folded-serial word
architecture with a high degree of complicity. SWRethod for denoising is yet less
exploited than the previous methods as a literaturey on the existing methods
shows. FPGA implementations of an algorithm for alsing based on orthogonal
SWPT are given in [10] and [11]. For the aim of dveare area reduction in that
implementations, the filter coefficients were quzed, which affected the selectivity
of the filters. The goal of this work is to furtheddress the issue of combining the use
of the wavelet packet method and the stationaryelevanalysis for denoising,
exploiting the features of each method. The decaitipa and best tree selection of a
signal corrupted with additive Gaussian white naise performed in the biorthogonal
basis. An adaptive threshoding method based on thoasholding is applied on the
wavelet detail coefficients, before the clean sig@a be reconstructed. The proposed
algorithm is efficiently implemented on Xilinx FPGAhe dyadic biorthogonal filter
coefficients are realized with shift registers with quantization to preserve selectivity.
The mentor Graphics tools are applied for desigrtwre in VHDL, simulation and
synthesis. Device utilization report including amezupation and operating frequency
is provided.

The organization of the rest of this paper is ds¥ies. Section 2 is a brief introduction
to the concepts and theory of stationary wavelahdform and wavelet packet
transforms algorithms. In section 3 the proposetbidéng algorithm combining both
criteria is presented. Simulations are run on Medlad MSE is calculated to assess the
efficiency of the denoising algorithm objectivelncasubjectively. In section 4 the
proposed algorithm is implemented on FPGA. Findhg, conclusion and summary of
the paper are given in section 5.

2. THE PRINCIPLES OF SWT AND WPT
In this section a brief overview on the principbesd theory of the SWT and WPT is
given to emphasize the features of each method.
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A. Stationary Wavelet Transform

Although the classical Discrete Wavelet TransfoDWUT) wavelet transform has been
shown to offer effective denoising performanceuitfers the drawback, that it is not a
time- invariant transform. This means that a tratish of the original signal does not
necessarily imply a translation of the correspogdiwavelet coefficients. The
translation invariance property is useful for savemportant applications, such as
breakdown point estimation and detection. To restiois desirable property lost by the
classical DWT some slightly different DWT, callgtetStationary Wavelet Transform
(SWT) is introduced [12]. The SWT algorithm is aos the DWT one, but the
downsampling operation is suppressed. The decotiosbbtained is then a
redundant representation of the signal. The bewéfihis redundant representation
over the memory-efficient decimated DWT is the wmdthn of artifacts at
discontinuities and irregularities in reconstrucsgghals. These artifacts are caused by
unpredictable changes in coefficients with difféarégime shifts. In practice, the
structure of the cascaded filter bank does not@haore precisely, for the first level
of decomposition, the SWT coefficients for a gisgnal are obtained by convolving
the input signal with the appropriate filters as tiee DWT case but without
downsampling. The approximation and detail coeffits at the first level are of the
same length as the input signal The general decsitigro step j+1 convolves the
approximation coefficients at level j, with upsaetblversions of the appropriate
original filters, to produce the approximation ahetail coefficients at level j+1. The
filters are dilated by inserting zeros betweenfilter coefficients of the previous scale.
This can be visualized Iiigure 1. Figure 1(a) shows the general decomposition step
andFigure 1(b) shows the stationary wavelet filter calculatiodg, and CD represent
the approximation and detail coefficients of leyelrespectively and Hand G
represent the low- and high pass decompositicerdilat the same level.
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Figure 1: (a) Stationary Wavelet Decomposition.
(b) Stationary Wavelet Filter Calculation.
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As the stationary wavelet coefficients are gendrdig many different bases, the
Inverse Stationary Wavelet Transform (ISWT) opearasonot unique and different

methods can be used to perform reconstructiona{®érf the inverse transform results
are same. The idea of the inverse discrete stajiovavelet transform is to average the
inverses obtained for every non-decimated DWT. Téa® be done recursively,

starting from level j down to level 1. In this walye main features of the analyzed
signal is captured. One important application ef8WT is denoising.

B. Wavelet Packet Transform

The wavelet packet method is a generalization ofeled decomposition that offers a

richer range of possibilities for signal analy$PT was first introduced by Coifman

et al. [13] and [14] for dealing with the non sbatarity of the data in a better manner
than DWT does. In wavelet packet analysis, theildeda well as the approximations

can be split to give the wavelet packet decompmsitree. The ordinary wavelet

decomposition tree is a part of this complete hinaee. The main feature of the

wavelet packet analysis is that it allows signalesentations that are not possible with
ordinary wavelet analysis. The idea of this decositmm is to start from a scale-

oriented decomposition, and then to analyze theaimbd signals on frequency

subbandsFigure 2 shows the structure of a typical wavelet packebdgosition tree.

CA10 CDhu

Il [

CA30 CD3a1 CD32 CD33 CD3s CD36 CD37

CA20 CD21 CD22

Figure 2: Wavelet Packet Decomposition Tree.

The complete WPT tree is not necessary for pemreobnstruction of the analyzed
signal, usually a subtree is chosen based on abdatd cost function. Classical
entropy-based criteria are used to select the suitible decomposition of a given
signal, as the number of various signal represemstmay be very large. This
selection is called the best tree structure. Eamitenof the decomposition tree is
examined to quantify the information gained by perfing each split. In general a
node N is split into two nodes N1 and N2 if andyaiflthe sum of the entropy of N1
and N2 is lower than the entropy of N. This is aalocriterion based only on the
information available at the node N. Several entrtype criteria can be used to gain
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the optimal decomposition selection. Commonly usattopy types in the field of
signal processing are the Shannon entropy, theitbgaof the energy entropy and the
threshold entropy. De-noising and compression @iads are interesting applications
of wavelet packet analysis.

3. THE PROPOSED STATIONARY WAVELET PACKET
DE-NOISING METHOD
The general de-noising procedure in the waveletailoimmvolves three steps, namely:
1. The wavelet decomposition of the noisy signal teval n.
2. The thresholding of the detail coefficients at tiferent levels with suitable
thresholding steps.
3. The reconstruction using the original approximatiocoefficients and the
denoised detail coefficients of levels 1 to n.
The thresholding in the second step can be eittrer dr soft. Hard thresholding can be
described as the usual process of setting to herelements whose absolute values are
lower than the threshold. Soft thresholding is atemsion of hard thresholding. It
involves first setting to zero the elements wholsolute values are lower than the
threshold, and then shrinking the nonzero coefiisigowards zero. The proposed
denoising method exploits the features of the weivghcket analysis in the stationary
wavelet basis domain for decomposition. To getdapgmum representation of the
decomposed signal, the best tree selection algorishapplied on the non-decimated
stationary wavelet coefficients. Denoising of theefficients is achieved via soft
thresholding given by the following equation [1]:

T, =Jj\/2InN/21 1)

where N is the length of the input signal adglis the standard deviation of noise at

scale j. The soft threshold is calculated on alidependent basis, rather than global
calculation in which one threshold is used forcaléfficients (also called fixed form
threshold). Here, different thresholds exist fag thfferent multiresolution. The local
thresholding criterion increases the capabilitytted denoising strategies in handling
the variance of noise and improves the limits efdttassical de-noising strategies. The
local thresholding is based on the work of Marc iee about detection of change
points using dynamic programming [15]. In this waitke B-spline biorthogonal
stationary wavelets are chosen for the decompasitia signal corrupted by additive
white noise generated by Maltab wavelet toolboxe Baspline biorthogonal wavelet
families are symmetric, smooth and their coeffitsebuild a bilinear series. This
symmetry in FIR filters guarantees linear charasties for the frequency response and
phase, which is in general a very desirable prgpersignal processing applications.

The following steps summarize the proposed method:
1. The first level of stationary wavelet decompositisrperformed to obtain non
decimated-wavelet coefficients in the biorthogomalelet basis.
2. Each node is checked for further splitting basedtlo®m chosen entropy
criterion.
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3. In the second (as well as in further) level(s) oécamposition the
approximations and/or details are split by convavihem with the upsampled
versions of the biorthogonal wavelet filters apglie the first step.

4. Successive splitting of the coefficients and updarmgpof the decomposition
filters is repeated until the best tree structure @redefined decomposition
level is obtained.

5. For each wavelet packet (except for the approxonatoefficients) level
dependent thresholding is determined.

6. Soft thresholding is performed on the wavelet dogdiits to kill the effect of

the noise.

Approximations and details are reconstructed froendenoised coefficients.

The clean signal is reconstructed from the diffeegproximations and details

according to the ISWT algorithm.

© N

The idea of the inverse discrete stationary wawvedgtsform is to average recursively
the inverses obtained form every non-decimated DWTthis way nothing of the
detail information is lost. For the WPT analysise tShannon entropy is used for
efficient searching to compute the optimal treeraftecomposition. Equation (2) for
the Shannon entropy E involves the logarithm of shieared value of each signal
sample [14]:

E=-> s"log(s") @

According to the characteristics of wavelet decositfmn, the more the decomposition
scale is, the better the filtering result, therefeuccessive splitting of the coefficients
and upsampling of the filters is repeated to tffign fievel. The selected best tree is
shown inFigure 3.

a )
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Figure 3: The Selected Best Tree Structure.

For the aim of comparison the denoising of the aigm performed applying SWT and
WPT separately prior to applying the SWPT denoismeghod. The simulation results
and calculated MSE are comparetigure 4(a) shows the original noisy signal S while
Figures 4(b-d) shows the denoised signals applying the varioushods. They are
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labeled SWT-S, WPT-S and SWPT-S. Although the testilSWT denoising in
Figures 4(b) and show the capability of the SWT to suppressenfiom the signal
better than the WPT iFigure 4(c) does, the denoised signal is over smoothed,
especially in the regions of sharp edges and itaeges. On the other hand, the effect
of decimation is obvious in denoising with WPT,itasauses false detection at some
intervals, for example at the interval from 2002&0. The denoising of the proposed
method inFigure 4(d) is more satisfactory as the abrupt changes arectddtend
preserved and no false detections occur. Furthernbe residuals look like a white
noise sample. The residuals are illustrateigure 5.

The calculated MSE are given imable 1. The values of the MSE support the
superiority of the proposed method in denoisingr daath traditional methods, WPT
and SWT as it provides the smallest error.
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Figure 4: (a) The Original Noisy Signal S, (b) Denoised Signal with SWT,
(c) Denoised Signal with WPT and (d) Denoised Signal with SWPT.
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Figure 5: The Residuals.

Table 1: The Calculated MSE.

Denoising Method MSE
SWT 25.79

WPT 31.833
SWPT 24.69

4. HARDWARE IMPLEMENTATION

As mentioned before, the main drawback of the S®Vitsiheavy computation burden.
In the proposed hardware design of the SWPT dewnpiaigorithm, the reduction of
the computation burden is achieved as followingsthi, according to the best tree
selection algorithm not all the nodes are splieréifiore only the biorthogonal filters
corresponding to the best adapted wavelet paclei bee implemented. Multiplexers
select the wavelet packet domain to analyze. Ségoride upsampling of the
decomposition filters in further levels is achieveg increasing the number of delay
elements in the delay lineFigure 6, shows the hardware implementation
schematically. The structure follows the reguldtefi bank structure suppressing
decimation blocks between the successive stagesadst units and multiplexers are
the decoupling elements between the filter modubes.entropy based control unit
based on the entropy criterion mentioned beforerdehes the proper select signal for
the multiplexers. Accordingly, the coefficients areither split for further
decomposition or passed as final outputs. The dasignplemented of Xilinx Virtex
FPGA. In the following sections the area efficieatlization of the decomposition
stages is described.

A. First Level Of Decomposition

For the implementation of the symmetric low- anghhpass biorthogonal filters, the
multiplierless structure described in [16] is exf@d with slight modifications. The
symmetric wavelet filter coefficients are givenTiable 2.
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Figure 6: The Block Diagram for the Hardware Implementation.

mux

Table 2: The Wavelet Filter Coefficients .

Filter Coefficient Value
Hg -0.0625
H, 0.0625
H, 0.5000
Hs 0.5000
H, 0.0625
Hs -0.0625

Figure 7 shows the block diagram of the filter module uded computing the
approximation and detail coefficients in one cydteconsists of a clock generator, a
series of delay elements, parallel shift registadslers and finally an accumulator. The
main feature of that design is that it avoids tee af multiplies completely by the use
of shift registers instead. The delay elementsuaesl for aligning and synchronizing
the input data sequence to the following shift sesgs. The adders shown are used to
sum the input words which are supposed to be nfielippo the same filter coefficients,
to decrease the number of shifts. This is a dilmugtefit of the symmetry of the
biorthogonal wavelet filters. The accumulator cosgmthe terminating element of the
low pass filters in the design. The outputs of deceumulator are the approximation
coefficients. As the high pass filter has only twoefficients it was possible to
compute the detail coefficients in the same cydmgionly on delay element and a
subtractor. The approximation and detail coeffitseare now passed to multiplexers to
select the following operation, either to split thdurther or bypass them as final
outputs. The select signal to the multiplexer (labésel’) is determined according to
the best tree structure. The approximation andld=iefficients are labeled GAand
CDy, respectively.
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Figure 7: FPGA Implementation of the Filter Modules.

B. Second And Higher Levels Of Decomposition

For further decomposition of the coefficients thecamposition filters have to be
upsampled. To avoid the use of generality in tregieof the wavelet filters, the same
structure based on adders and shift registers [, kehile the number of delay

elements is increased. This can be explained bydesalence of passing the input
data through further delay elements and weightiegnt with a zero filter coefficients.

Accordingly the delay elements of the low- and hjgss filters is increased to nine
and two, respectively. However the number of adders shift registers remains as it
is.

C. Features Of FPGA Implementation

The tools of the Mentor Graphics, FPGA Advantag@spaickage, are utilized for the
simulation and synthesis of the design. The distitmcks are captured by VHDL, and
then, the design structure is represented as galdilock diagrams to ease scalability.
After successful compilation, the design is potieilinx Virtex FPGA. TheVirtex
families are a fast high-volume production FPGAusioh that delivers all the key
requirements for ASIC replacemerithis particular XCV600E chip used has 48x72
CLB array (row x column) and 985,882 system gat&$.[The storage units for storing
the computed coefficients are implemented usingfrise built-in Block Select RAM
incorporated by Virtex E. To get a compact layout aan optimal clock speed,
placement and timing constraints are added to ¢&s&ggd. The hardware area required
for the realization of the complete system for figeels SWPT systens 3022 giving
area occupancy of 87% of the total device. Thelt®swme summarized in the device
utilization report inTable 3. After synthesis, placement and routing the maxinaata
throughput is over 30 MHz. The obtained resultscaraparable with the results of the
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work in [10] and [18]. The increase in number ofECis because more decomposition
levels are implemented and because of the on-cmifyal unit.

Table 3: FPGA Device Utilization Summary

Resource Used Available Utilization %
IOBs 172 512 36
CLB 3022 3456 87

5. CONCLUSION
In this work a signal denoising algorithm basedstetionary wavelets and wavelet
packet transform is developed. The main idea setect the best tree structure of the
decomposed noisy signal in the stationary biorthafjovavelet domain and apply a
local denoising threshold on the detail coeffickerthe proposed method as well as the
traditional denoising methods SWT and WPT is applen a noisy test signal.
Software simulation results via Matlab proved tihat denoising effect of the SWT and
WPT is observably enhanced by combining them ih® proposed method and is
superior to the effect of each method separatdig. dalculated MSE values supported
the simulation results. The algorithm is efficigntmplemented on Xilinx Virtex
FPGA. In spite of the clearly heavier computatioad of stationary wavelet, it was
possible to provide VLSI architecture with accepgadrea and operating frequency in
comparison with other architectures reported inliteeature. The main advantages of
the proposed architecture is that it is regulaaladde and interconnection follows a
simple strategy which facilitates extending it tarther decomposition levels by
cascading the main building blocks.
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