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ABSTRACT — The paper presents a method to design sliding mode
control for uncertain dynamical system using only output information.
Switching surface is designed through system transformations and pole
placement technique. The control law that comprises both equivalent and
robust components is investigated. System stability is discussed by using
Lyapunov function. Illustrative numerical examples are included to show
the applicability and simplicity of the suggested method.

1. INTRODUCTION

Variable structure control with sliding modeasobust nonlinear control strategy
employing feedback of a discontinuous signal argleen widely applied to various
systems [1,2]. A salient feature of this contraihat it is completely robust to matched
uncertainties that lie in the range space of tpatimatrix.

In sliding mode control (SMC), there are two ibagdesign problems, the reaching
condition and the sliding condition. The formerohxes choosing a control to move
the trajectories of the system onto a preselectadifold within the state space. The
latter involves selecting that manifold to give dodynamic characteristics to the
closed loop system.

Sliding mode control for linear uncertain systemmnder the assumption that all
system states are available for measurement, s dtedied by using many authors
[see, e.g. 1, 2, 3]. The preceding assumption isugoally the case and to overcome
this difficulty an estimator may be used to esteniite unmeasured states or use only
output variables to implement the control law.

The problem of SMC design for uncertain dynamnisgstems using output
information only has been considered by many astf#42]. The advantage of output
feedback sliding mode control is using the avadahitputs of the system and it avoids
using an observer to estimate the unmeasurabksstat

The purpose of this paper is to investigatestiting mode control design using only
output information for uncertain dynamical systefrst, the switching surface is
designed by using coordinate transformations amel placement approach. Switching
surface existence condition is obtained. Secoredctimtrol vector that comprises both
equivalent and robust components is constructeld gat the trajectories are driven to
and maintained on the sliding surface. System lgtabinder matched uncertainty is
guaranteed by using Lyapunov function. Also, nuoamexamples are included.
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2. SYSTEM DESCRIPTION

Consider an uncertain dynamical multivariableesysof the form

X= [A+ AA(t, x)]x+ B[u +w(t, X, u)] + f (t,x,u) (1a)

y =Cx (1b)
wherexJO", udO™ and yOOP are the state, the input and the output vectors,
respectively, withm< p<n . A, B and C are constant matrices with approeriat

dimensions. B and C have full rank, rank (CB) =rd éA,B) is controllable. The term
AA(t, X) represents the uncertainty in the linear portibrthe plant andf (t,x,u)

symbolizes the nonlinearities of the plant whilt,Xx,u) can be viewed as the
nonlinearities or disturbances at the input. WeiasthatAA, f andw are bounded.

Furthermore, the following matching conditions assumed to be valid. There exist
functionsa(.) and y(.) such that

f (t,x,u) =Ba(t,x,u) 2
AA(L, X)X = By(t, x) (3)
Under the matching conditions (2) and (3), systéa) tan be simplified to

;(=Ax+ B[u+5(t,x,u)] (4a)
y =Cx f4b
where O (t, x,u) represents the lumped uncertainties and/ or nesnlities:
o(t,x,u) =a(t,x,u) + p(t,x) + w(t,x,u) (5)
and assuming that there exist a continuous pogitiveded functiono(.) such that
|ott, x,u)| < o(t,u)

indicates the Euclidean norm.

where

Define the sliding surface as
0=9 (6)

where S is anmx p matrix to be designed so that the system exhithésirable

dynamical behavior when its trajectories are cadino this sliding surface. The
system is in sliding mode when the state lies @ndliding surface after some finite
time, i.e.

o=9=0 t=xt, (7)

with t_ is the time when the sliding mode is reached. dlftéing mode control can be
accomplished in the following two phases:
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First phase: hyperplane design, that is, given the system (4) @wosing a set of
Nn—m eigenvalues, find the matri® such that then—m eigenvalues of system (4) in
the sliding mode are precisely those of the chassin It should be noted that the
reduction of order of (4) tm—m dimensional equivalent system is becauserthe
dimensional state dynamics of (4) must satisfyrthalgebraic equatia =0. Such
constraints reduce the equivalent system fritn order system to ah—m)th order

system [9].
Second phase: Determine a switched control of the form
u’ when g, (y) >0
U (y) = _(y) ()
u; (y) wheng; (y) <0

such that the system’s trajectory is globally s#ablthe sliding surface from any point
in the output space [2]. The purpose of the contras to drive the state into the
sliding subspace, and thereafter to maintain itethe

(8)

3. SWITCHING SURFACE DESIGN PROCEDURE

Consider the dynamic model of the system inestpace form (4) and use a
coordinate transformation

z=Rx (9)
where the nonsingular transformation matiixis chosen so that
RB = 0 (10)
= B,
where B, JO™™ is nonsingular. Using (9), system (4) becomes
z=RAR™z+ RB(U + ) (11a)
y=CR'z (11b)

Or, equivalently,

.Z1 1A Az 0
LJ{AH AJLZ}{BJ(UJ"» (12)

where z O0O"™,z,00", and A, A, A, and A,, are block matrices with
appropriate dimensions. Then form (12), we get

2= Az + Ayz, (13)
2, = Aoz, + Az, + B,(U+0) (14)
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Subsystem of (13) may be regarded as describindytii@mics of an open-loop control
system with state vector, and control signalz, . Noticing that (A, A,) is

controllable pair of matrices since the pé#, B) is assumed to be controllable.
The switching surface in the new coordinate is

o=9=Lx=CR'z (15)
Letting
RM=9Cc, G,
=D=[D, D, (16)

where C,00P™  C,00", D,=SC,00™"™ and D,=SC,00™"
nonsingular matrix. Therefore, on sliding, (15)ueés to

D,z +D,z, =0 (17)
and then

4 = _D2_1D121 (18)

The dynamic behavior of sliding motion is deterndiriey (13) and (18) that is by
viewing z, as the control input to the system (13). The moblof designing an

appropriate sliding surface can be regarded aslaceel-order state feedback design
problem. So, substituting from (18) into (13), vl

2.1 = (Ail - A.I.ZN)Z:L (19)
where
N =D,'D, 0f2

The matrix A, —A,N is known as the reduced-order equivalent system.tl&
design of a stable sliding mode such that. 0 ast — o requires the determination
of the gain matrix N such thatA,-A,N has n—m left-hand half plane
eigenvalues. With taking into consideration tha&s#in —m eigenvalues must contain
the invariant zeros ofA,B,C) and it is necessary that these zeros are in cgfen |
hand plane [8].

Obviously, the closed loop system dynamics (19jnduslide is independent on the
control U and depends only on the choice & , which determines the matiik.
The convergence of the state vector to the orgienisured by a suitable choice of the
matrixN . So, the determination of the mati\, or alternatively, the determination
of the matrixS, may be achieved without prior knowledge of thetoa vectoru.
Also, the eigenvalues of the matri&y, —A,N can be placed arbitrarily in the
complex plane since the paiA,,A,) is controllable by a suitable choice of the
matrixN . Using (16) and (20), we get

SE=0 1)
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whereE =C,N —-C, known matrix becaus® , C, and C, are known. Using the
generalized matrix inverse [13], the general sohutf (21) forS is

s=F(,-EE") (22)

where E” is the generalized inverse & and F is anmx p arbitrary matrix which

must be chosen, if possible, such tRdias full rank matrix. Noticing that, to get a full
raw rank matriXS, the rank of the matrbE must be less than or equalgate m.

4. CONTROLLER DESIGN

Now a switched control that drives the systetragectory to the switching manifold
is designed. An approach in variable structureesystVSS) control design is to use

the equivalent controlueq which is the control such thar =0 for the nominal
system, as part of the control vector [4]. Thereféine control law takes the form

U=Ug tu, 123

whereu, is the robust control, which is switching in naudeveloped to guarantee
the reaching condition that defined as [2]

o' o<0 24}

in the presence oD (t, x,u) . The equivalent control,, , will be obtained as follows

P L
g=Sy=Cx=SCRz (25)
= SCAR™z+ SCBU,, =0
Consequently,
Uy, =—(SCB)™"SCARz = -(SCB)™ SCAX (26)

Obviously, to implement output feedback, it is reed that (26) depends on the
outputy . This can be hold true if there exists a mat@<{1[1™" such that

SCA=QC (27)
and then one can write
u, = -(SCB)™Qy (28)

and the equivalent control in this case is an ekphutput feedback control. Now, the
problem of existing the matri&Q) is handled. Using the generalized matrix invels3,[

the general solution of (27) fdp is
Q=Hc* +M(, -cc’) (29)

and the consistency condition is
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H(I,-c*c)=0 (30)

whereH =SCA , C" is the generalized inverse of and M is anmx p arbitrary

matrix. Obviously, becaus€ has full row rank, the second term on the rightcha
side of (29) will be zero. The condition under whi80) is satisfied can be obtained
by letting

W =CA(l,-C"C) (31)
Then, (30) reduces to
SW=0 (32)

Since S has full rank, therefore (32) is satisfiedrdnk(W) < (p—-m), and also if
W =0. Consequently, th€ matrix exists ifank(W) <dimKer (S) orW =0 .
An alternative method to get Q is by assuming thagristnC has the following form

c=[o T] (33)

whereT is an px pnonsingular matrix. Noticing that the above assuiomgt of B
and C are not restrictions [5,8]. Substituting into (2yiglds

s[o T]{A“ Al?]:Q[o 1] (34)

A Ax

where Au, I_A\12 : A21 and Azz are compatible partitioning of matrid . Equation (34)
may be rewritten as

[SI' As ST Azz} =[o QT] (35)
So, if

ST A =0 (36)
Then,

Q=ST AnT™ 37)

Now, the robust control may have the following form
u, = -(SCB)™[Bo +V sgnE)] (38)
where >0,V = diag[v1 V, vm] and sgng) is a vector with

componentssgn(;) =1 if g, >0 andsgn(;) =-1if g, <0. The components of
V is chosen as

Vi = Z|(SCB)ik||5k| (39)

k=1
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where

indicate the absolute value of Therefore, the control vector becomes

u=~(SCB) "Gy - (SCB) [ B +V sgne)] (40)

Lemma:
The control vector represented by (40) sasdfie reachability condition (24).

Proof:
Using (4), (24) and (40), yields

o o=0" {(scA)x-Gy - Bo +(SCB)3 -V sgr(o)}
=0'{-po+(scB)o-Vsgrlo)}
=-fo’o+0" (CB)I-0'Vsgro)

= _/Bnaﬂz + iZ::Ji Zm:(SCB)ik O _iZ:,Vi |Ji|

k=1

<~Alof + 2 Jo3 [(sce), o -2 wlo
=~Alol’
<0
This completes the proof. O

5. ILLUSTRATIVE EXAMPLES

The following examples illustrate the reliatyiland the practicality of the suggested
design procedure.

Example 1:
Consider a system with the following matrices
-1 0 1 0
0O 0 1
A= 0 -7 5|;B=|0};C=
0 -11
0 -3 1 1

Clearly, CB has full column rank and the triple @&,C) has transmission zero-af.
So, one arbitrary eigenvalue is chosen at —10.dJgie pole placement method, the
matrix N and E are

N=[0 o0, E:{O 0'6}

0 16

Choosing F=[9 2, then s=[7.2329 -27129,
H =[0.0 —-325479 18.0SZj and W =[0,,,], then condition (32) is satisfied.
Using (29), yields

Q=[-144658 325479
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It should be noted that condition (36) is alsosatil and the sam€ matrix can be
obtained by using (37). The time response of ostgytand y, to an initial condition

[0.9 -08 —0.5], £ =30 and 6 = 0.3+ 0.1sin(L&) , is shown inFig. 1. Also,
the corresponding switching function and the cdrdignal are shown irFig. 2.

Time [sec]

Fig. 1: Output response.

sigma

contral "u"

Time [sec]

Fig. 2: Switching function and control signal.
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Example 2:
Consider a system with the following matrices
-18 -20 -10 10 0.0
00 00 10 10
00 -20 08 01 0.0
A= ,B= ,C=/00 00 -10 10
00 10 -20 00O 0.0
00 10 00 00
00 10 08 -01 10

Obviously, rank(CB)=1 and (A,B,C) has one transioisszero equals -1.8. So,
choosing two arbitrary eigenvalues at -3 and -4 asidg pole placement method, we
get
00 300 270
N=[00 300 280];E=|00 300 290

00 -10 00

Choosing F=[90 20 30| .we get S=[21708 -20211 44919
H =[0.0 - 4641 -4.6709 0.4344 andW =[03<4], and then condition (32) is
satisfied. Using (29), yields

Q=[-21184 25526 - 4641
Also, it should be noted that condition (36) issfa&d and the sam® matrix can be
obtained by using (37). Letting the initial condliti be[0.9 -04 05 0.3],
0 =01+ 05sinLx) and choosingB =15, the time response of the outputs,
Y, Y, and y, is shown irFig. 3. Also, the switching function and the control sigis
shown inFig. 4.

____________________

¥3
]

o 0.5 1 15 2 2.5 3
Time [sec]

Fig. 3: Output response.
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0.5 ) ) ) ) )

gigma

contral "u"

o 0.5 1 1.5 2 25 3
Tirne [sec]

Fig. 4: Switching function and control signal.

6. CONCLUSIONS

In this paper a sliding mode controller whielguires only output information for a
class of uncertain linear system is designed. ®iwitc surface matrix is determined
such that the system exhibits desired performanceslaling by using system
transformation and pole placemen method. The stegesontroller comprises both
equivalent and robust components. These comporaetsobtained such that the
system stability is guaranteed. Existence conditifum switching surface design and
output feedback implementation are given. lllusteatnumerical examples were
included to show that the suggested method is thd#ective and straightforward.
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