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ABSTRACT – The main roles which are the concern of a clinical 
anaesthetist are those of drugs induced unconsciousness, muscle 
relaxation, and analgesia. The first two roles are concentrated in the 
operating theatre, while the third role is mainly concerned with post-
operative conditions. Unlike, measurement of unconsciousness and 
analgesia  the measurement of muscle relaxation process is considerable 
easier via monitoring of evoked electromyogram (EMG) signals. Among 
the features characterizing this process, time delay in initiation of muscle 
relaxation is perhaps the most challenging one. This time delay resulted 
from the drug circulation around the body and variation of the cardiac 
output. Another problem called nonlinearity mismatch that is resulted from 
the wide variability of identified models and their nonlinearity in the so-
called pharmacodynamics for relaxant drugs behavior. This nonlinearity is 
due to the large inter-individual and intra-individual variability of the 
patient's parameters. These challenges can be treated with quantitative or 
qualitative techniques. The former was proved ineffective in trying to 
overcome these challenges. This paper proposes predictive self-organizing 
Auto Regressive eXogenous (PSO-ARX) scheme to deal with such 
challenges with ease. This is due to two notable features of the proposed 
scheme one is its plastic structure and the other is its small computation 
required compared with Generalized Predictive Control (GPC) schemes. 
Simulation results reflect the superiority of the proposed PSO-ARX scheme 
with respect  to such schemes. 
 
KEY WORDS:   Neural networks, Medical systems, Self-organizing 
controllers 

 
1.  INTRODUCTION 

 

Anaesthesia is the science of removing sensation of, and reaction to, a surgical 
operation. Modern general anaesthesia comprises unconsciousness (or depth of 
anaesthesia), muscle relaxation (or paralysis), and analgesia (or pain relief). The first 
two operations are concentrated in the operating theatre, whereas the third operation is 
mainly concerned with post-operative condition [1].  Each of these operations has been 
considered  in  recent  years  as  possible   scenarios  for  automated  drug  infusion  via  
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feedback control strategy. The main problem in the drug–induced depth of anaesthesia 
and muscle relaxation is the measurement of the clinical signs, which can be used 
online to the controller [2]. Depth of anesthesia is hard to define and hence to measure 
accurately, while, the measurement of the muscle relaxation level is considerable 
easier. A common approach of the measurement of the muscle relaxation is the 
monitoring of evoked electromyogram (EMG) signals produced at the hand via 
stimulation above the wrist. This stimulation ensures that all the nerve fibers are 
recruited, while suitable processing of the resultant EMG provides an analogue signal 
inversely proportional to the level of relaxation [3].  
     

    Among the features characterizing biomedical systems, time delay is perhaps the 
most challenging one. Two sources of such delay, one is the drug concentration around 
the body and the other is the variation of the cardiac output. Designing controllers to 
overcome time delays has always presented a serious challenge for engineers. Also this 
challenge grows even bigger when the value of this time delay is unknown or is prove 
to variations. PID controllers, whose benefits are still generally utilized within 
industry, can prove ineffective in trying to overcome this problem [4]. Smith predictor 
[5] has been shown to be very advantageous; however its performance may deteriorate 
considerably in the presence of a large process mismatch. That has always been one of 
the major problems in this paper. Generalized Predictive Control (GPC) schemes have 
also proposed to deal with challenges [6], however their performance can prone also 
ineffective in trying to overcome these challenges. Self-organizing techniques are 
promising ones to deal with such circumstances. Accordingly, this paper proposes 
Predictive Self-Organizing Auto Regressive–eXogenous (PSO-ARX) scheme to 
overcome such challenges easily. 
 

    This paper can be organized as follows. Section 2 formulates our problem. It 
describes the mathematical model of the muscle relaxation process and the main 
characteristics of this process. Section 3 describes the proposed PSO-ARX scheme. 
Section 4 depicts simulation results using the proposed scheme. Section 5 concludes 
the topics discussed in this paper. 

 
2.  THE  PROBLEM  FORMULATION 

 

To facilitate the design of advanced controllers, it is necessary to have a good 
mathematical model of the process. In order to identify the muscle relaxation process 
associated with drugs, pharmacological modelling is commonly used to describe the 
metabolism of such drugs. The pharmacological modelling comprises two main 
categories known as pharmacokinetics and pharmacodynamics. The former studies the 
relationship that exists between drug dose and drug concentration in the blood plasma. 
Interpretation of this relationship can give a mathematical meaning via the concept of 
compartmental models. While, the latter concerns with the drug concentration and the 
effect produced.  One of the common drugs used in this operation is the atracurium 
drug, which is a non-depolarising fact acting agent and has gained popularity over 
pancuronium and d-tubocurarine [3].  
 
 



A  SELF-ORGANIZING  SCHEME  FOR  CONTROLLING  THE…. 
________________________________________________________________________________________________________________________________ 

  

1593 

2-1. Pharmacokinetics  
Basically, the pharmacokinetics studies what the body does to the drug. In other words, 
after the drug injection, the plasma concentration of atracurium declines rapidly in two 
exponential phases corresponding to distribution and elimination [7]. Therefore, a 
conventional two-compartmental model is used by adding an elimination path from the 
peripheral compartmental as depicted in Fig.1.  Suppose xi is the drug concentration at 
time t, ix&  its rate of change, and u is the drug input, then: 
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Using Laplace transform, equation (1) can be rewritten as: 
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The mean values for the pharmacokinetics parameters are [3]: 
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Substituting in equation (3) leads to: 
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which describes the pharmacokinetics of the muscle relaxation system relating to the 
drug atracurium in a transfer function. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: A two compartmental model for atracurium drug. 
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2-2. Pharmacodynamics  
In this phase, to identify the drug effect, a third compartment known as the "effect 
compartment" has been introduced to the atracurium kinetics. It is connected to the 
central compartment by a first-order rate constant k1E , whereas the rate constant kE0  
characterises the drug dissipation from the effect compartment , as depicted in Fig. 2.     
In this latter compartment, the drug concentration change is governed by the following 
equation:    
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Using Laplace transforms yields: 
 

0

11 )(
)(

E

E
E

Ks

sXK
sX

+
=                           (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2: Modification of the atracurium kinetics. 

 
 
The Hill equation [7-9] may be used to relate the effect to a specific blood 
concentration of drug: 
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where max,EEeff  and EX (50) are the drug effect produced (paralysis), the maximum  
drug effect ( 100% paralysis), and the drug concentration of at 50% effect. The mean 
values of the pharmacodynamics are [3]: 
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Combining equations (6) and (4) and normalizing the open loop gain at 1.0 leads to:  
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where K =1.0, T1=4.81 min, T2=34.42, T3=3.08 min, T4= 10.64 min and min1=τ . 
Finally, the overall nonlinear model obtained by combining equation (8) together with 
Hill equation (7) as depicted in Fig. 3. 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Nonlinear model of the muscle relaxation process. 
 
 
    Figure 4 shows a series of Hill equations for different parameters of α and 

)50(EX . For nominal Hill equation values, a linearized gain for operating points 
ranges from 0.85 to 0.95 for paralysis can lead to difficulties due to the curved shapes 
around this region. Also, the patient-to-patient parameter variability can affect the 
nonlinearity shape (uncertainty) by making it steeper or more flat. All these 
considerations make the muscle relaxation process a very challenging one.  Time 
delay, nonlinearity mismatch, and uncertainties of such process are challenges problem 
have to be overcome.  
 

3.  THE  PROPOSED  PSO-ARX  CONTROL  SCHEME 
 

The schematic diagram of the proposed PSO-ARX control scheme is shown in Fig. 5. 
At instance k,  the ARX Local Model (ARX-LM) –based predictive controller predicts 
the controller parameters of the controller, then the controller update it self to generate 
the optimal control signal. The controller send this signal to the process and its output 
is compared with the ARX-LM network to estimate another set of parameters and then 
the controller repeat its function.  
 

The self-orgnizing ARX-LM network plays an important role in this scheme to deal 
with the challenges mentioned in section 2.  The following subsection describes briefly 
the structure and the learning phases of the employed network [10]. 
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Fig. 4: Graph showing the shape of the various nonlinearity curves used  
in the process model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  5: The proposed PSO-ARX control  scheme. 
 
 
3-1. The Structure of the Self-Organized ARX-LM Network  
    

This network consists of a set of TSK fuzzy rules [11] fertilized by wavelet functions 
[12]. Each wavelet determines the contribution of the corresponding TSK fuzzy model. 
These sub-models are merged to generate the final output of the proposed network.  It 
consists of five layers as depicted in Fig. 6 that can be described as follows: 
Layer - 1: A node at this layer just transmits the input values to the next layer. 
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Fig. 6: The structure of the self-organized ARX-LM network. 
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Layer -3 : The firing strength can be obtained using Larsen’s product [13] as follows: 
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where, its normalized value is: 
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Layer -4 : A node at this layer is a sub-model that merges the normalized firing 
strength of a TSK fuzzy rule with a wavelet. That is: 
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Layer -5 : Based on the approximate Center Of Area (COA) defuzzification method, 
the crisp output ym can be deduced. That is: 
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The network described above performs the following rule: 
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)(...)1()(...)1()( 11 skywkywrkuwkuwXf i
ys

i
y

i
ur

i
ui −∗++−∗+−∗++−∗=          (17) 

                

Substituting (17) in (14), results: 
 

)(...)1()(...)1()( 11 skyakyarkubkubky srm −∗++−∗+−∗++−∗=       (18)  
 

where, 
 

j
q

j
j

j
uii Xwb ϖ)(

1
∑

=

Φ∗= ,  i=1,2,…r,  j
q

j
j

j
yhh Xwa ϖ)(

1
∑

=

Φ∗=                    (19) 

 

h=1,2,…,s and q is the number of rules generated, and r and s are the orders of the 
plant input and output  respectively. Equation (18) represents the ARX-LM with the 
input and output vectors defined below: 
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X = [u (k-1) u (k-2) . . . u (k-r) y (k-1) y (k-2) . . .,  .y (k- s)] T  and Y=[y (k)]  T          
 

    Learning of the ARX-LM network consists of two phases, structure learning and 
parameter learning. The former structure is the corner stone to develop an optimal 
ARX-LM network. It should determine the optimal number of the fuzzy clusters of 
each fuzzy variable, the wavelet nodes, and the fuzzy rules. The fuzzy ART algorithm 
[14] was employed to determine the above three parameters. The RLS method was 
employed in the latter learning phase of this network. Employing the ART and the RLS 
algorithms to develop ARX-LM network, resulted a simple self-organizing network for 
modeling and control dynamic systems.  
 
3-2.  The  Proposed  PSO-ARX  Control  Scheme  
 

The basic idea behind the proposed algorithm is that its model structure can 
instantaneously be self-organized to deal with the challenges mentioned in section 2. 
To clarify this idea, consider a single-input and single-output discrete time system 
whose model prediction over the costing horizon time n2 is given by: 
 

yp( t + 1) = a1y( t ) +. . .+as y( t+1-s ) +   b1 u( t ) + .  . .   +br u( t-r+1 ) +e( t ) 
                       . 
                       . 
                       . 
yp( t + i) = a1y( t+i-1 ) +. . .+ as y( t+i-s ) +  b1 u( t+i )  + .  . .  +br u( t+i-r ) + e(t)     (20)      
                       . 
                       .                                                       
                       . 
yp(t + n2) = a1y( t + n2-1 ) +. . .+ as y( t+n2-s )+  b1  u(t+n2-1) +.  . .  + br u(t-r+n2 )+ e(t)    
 

where e(t) represents the modeling error, and yp(t + i) is the i th predicted output.  It has 
been assumed that the modeling error is constant over the entire prediction horizon and 
the values of u( t+ m-1) is equal zero over the control horizon m. Accordingly, the 
above equations can be reformed as follows:  
 

Y(t)=P X(t)+Q U( t )+R e(t)                    (21) 
 

where, Y(t)=[yp(t+1) . . . yp(t+n2)]
T, denotes a vector of the model predicted outputs 

over the prediction horizon, X(t)=[y(t)  y(t-1) . . . y(t+1-s) u( t -1)  . . .  u( t+1 -r)] T is a 
vector of the past plant and controller outputs, and U( t )=[ u( t ) . . . u( t +m-1)]T, is  a 
vector of the future outputs of  the controller. The matrices P, Q, and R are given 
below. 
 

















=

−+

−+

)1(1

)1(111

22 rs

rs

nn pp

pp

P

L

MM

L

,   

































=

m

mmmm

nnn qqq

qqq

qq

q

Q

22221

21

2221

11

0

00

L

L

M

L

L

,    T
nrrR ][
21L=                   



Nabila  M.  El-Rabaie  ;  Hamdi  A.  Awad     and    Tarek  A.  Mahmoud 
________________________________________________________________________________________________________________________________ 
1600 

    The general aim of the predictive control scheme is that the future outputs on the 
considered horizon should follow a pre-determined reference trajectory and, at the 
same time, the necessary control effort should be minimized. A typical cost function 
includes increments of the control signal, the control signal itself or neither of them. 
Accordingly, it can be defined as follows [15]:     
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where )(tyd  is the reference trajectory used over the prediction horizon. The optimal 

controller output is found by minimizing the above cost function such that.               
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Differentiating the cost function defined in equation (22), leads to the following 
optimal solution: 
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4.  SIMULATION  RESULTS 

   
This simulation utilized the continuous muscle relaxation model depicted in Fig. 3.  
The initial condition was 0% relaxation and the set-point command signal was 0.80 
(20% EMG) for the first 100 minuets, 0.95 (5% EMG) for the next 100 minuets, 0.90 
(10% EMG) for a further 50 minuets and finally 0.95(5% EMG) to the end of the 
simulation. The simulations were divided into the following three tasks.  
 

• Simulation Task-I: The Nominal Case 
The first task concerns with the controller performance when the plant has the nominal 
parameters (K =1.0, min, T1 = 4.81 min, T2 = 34.42, T3 = 3.08 min, T4 = 10.64 min., 

min1=τ ,α =2.98 and  XE(50) = 0.404).  
 

• Simulation Task-II: Nonlinearity mismatches  
The second task concerns with the controller performance when a nonlinear mismatch 
between the actual system's nonlinearity and those of the model occurs.  Hence the 
model assumed a nonlinear Hill equation described by α =2.98 and XE(50)=0.404, 
whereas the system had a nonlinear Hill equation described by α =4.0 and 
XE(50)=0.505. 
 

• Simulation Task-III: Uncertainties   
Uncertainty can be seen as an existing nonlinearities in time variant processes whose 
dynamics are not fixed; unknown time delay and nonlinearities mismatch. The third 
task concerns the controller performance when the system was exhibiting large or 
unknown dead time and taking into account the nonlinearity mismatch. Hence, the time 
delay in equation (8) was increases to 4 min and the nonlinearity mismatch described 
in the second task was considered.  
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    Figure 7 depicts the controller response when the first task was considered. The 
control scheme governs the muscle relaxation process although the set-point command 
is near the saturation region of the system. Figure 8 depicts the performance of the 
proposed control scheme with existing the nonlinearity mismatch described in the 
second task.  Finally, the performance of the control scheme with existing uncertainties 
described in the third task is depicted in Fig. 9. Simulation results show that the 
controller has efficient performances in spite of large delay time, nonlinearity 
mismatch and model uncertainties.  
    In order to clarify the vision, the performance of the proposed PSO-ARX scheme is 
compared with GPC algorithms described in [3] in the sense of ISE (integral of square 
error) and ITAE (integral time of the absolute error) defined in equations (26) and (27), 
respectively.  
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where e(t) are the error between the system output and the desired set-point .   
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: The response of the muscle relaxation process using the proposed PSO-ARX 

(Simulation task-I). 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 : The response of the muscle relaxation process using the proposed PSO-ARX 

(Simulation task-II). 
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Fig. 9:  The response of the muscle relaxation process using the proposed PSO-ARX 
(Simulation task-III). 

  
  

Table 1 lists the ISE and ITAE values using the three algorithms with the first and the 
third simulation tasks.  As shown in the table all ISE and ITAE values obtained with the 
proposed PSO-ARX are lower than those obtained using the GPC and NGPC 
algorithms respectively. For instant, the ITAE criteria, which tend to penalize responses 
for poor set-point tracking, are much lower with the new proposed controller than with 
the GPC and NGPC algorithms. 

 
 

Table 1:  A comparison between the proposed PSO-ARX controller scheme  
and the GPC schemes [3]. 

 

 
 

4. CONCLUSIONS 
 

This paper proposed the PSO-ARX control scheme to deal with the following 
challenges: variation of time delay, nonlinearity mismatch, and uncertainty. These 
challenges were resulted from the large inter-individual and intra-individual variability 
of the patient's parameters. The basic idea behind the proposed algorithm is that its 
model structure can promptly be self-organized based on the challenges phased. 
Simulation results show that the proposed PSO-ARX control scheme is superior to the 
GPC and NGPC. They proved that the proposed scheme is a promising scheme for 
controlling  more complex and multivariables medical systems.  
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  ذا�����م ���� ������ ا����ء ا���� ��ا����ت  
، ا#"=81>/. ;4+ان  ا#-1:/9 678 ا#45 3&(  ھ1#0/&. ا#-,+*(  ا)' '&%ا#"ظ ��  إن 

M ?&-N F+اK LF(;%  ?ا)و#&-&58-/( ا#"ظ&J-&? . اHIما'-(F ء اCD5#ت و8>@&? 
. 5M  OM %U-,V+ ا7O5#&% ا#T(اS&% اHIمS&? أن ا#"ظ&J% ا#Q# Q% وھP 8>@&?  ;1ا7O5#& ت 

%&7O= ز ال  *5-/( 3& س Z[ ام+,-' M تCD5#ار8, ء اEMG LZ'4& س  أM %]4 رV )&Q@M
 ا# UF ?O:1cVd�b ھaه ا7O5#&% *5-/( ا#-_F&( . اHIمو8>@&?  ا#"=1در]% ;4+ان 

1�+/O#6 ھ"  ا#a# bU,O#ا#45 ر ا LO5#ي+f-#ا )/g(ا . اaھ h-c* i&S)&F_-#دورة  ا ?=
h-c8  وا#-p7@m1 أF(ى PO<8 =+م ا#-"ا;V _mc8 n. ا#45 ر S"ل ا#k<T و:l ا#V k? ا74#.

#45 ر ار8, ء   0FC#% ;1 pharmacodynamics&اP:)O7# و ا#O-5+دةV? ا#Oc ذج 
%7D5#ه . اaھ s[)8C#0&% اFP#إ  P;و P:)O#ا ?&M ات)&t-O#8/ *? ا ?= h8 c#ا )&t-#ا

p<J] +Sا#"ا u*)O#ا  .@O*%&Og ت =+د*% أو &c48 ام+,-' M ت *+f-#ه اaھ sV LV 5-#ا ? .
PSO-ARX   sV LV 5-7#ا#-@"*?  ذاO] P7=18"ذج  O-5V+اً  x/c8ي*4-(ح ھaا ا#/v] if م 

%#"Z<M ت *+f-#ه اaا .  ھaھ s[)*?&-&N ,#  ن)O#ا pc*"@8  O4-(ح ھO#م ا vc7# ?&8رز M
 kTS )tNت ا#و M <f %M"70O#ا#ا kvcM %]4 رV %*x/c-#ا k@f-%V 5#ا . h� -c#ا z@58

  .ا#4O-(ح c# M>/% #-67 ا#kvc ا#g fO&% أ;7D&% ا#vc م


