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This paper investigates the robust tracking and regulation control 

problems for discrete-time, switched piecewise linear hybrid systems 

affected by parameter variations. In particular, the main question 

addressed is related to the existence of a controller such that the closed-

loop system exhibits an attainable desired behavior under all possible 

parameter variation. Checking attainability and calculating the state 

space regions for which a robust control is assured despite the 

uncertainty is performed using a polyhedral approach. A model predictive 

control law derived from a quadratic cost function minimization is further 

examined as a simple and fast sub-optimal robust control. An application 

of the proposed technique to a two-tank benchmark is finally presented. 

 

KEYWORDS: Piecewise Linear Systems, Robust Model Predictive 

Control, Model Uncertainty, Attainability. 

 

I. INTRODUCTION 
Hybrid systems are now of common use in many control applications in industry, e.g. 

in control of mechanical systems, process control, automotive industry, power systems, 

aircraft and traffic control. Hybrid systems are heterogeneous dynamical systems, their 

behavior is determined by interacting continuous variable and discrete event dynamics. 

Various approaches have been proposed to model hybrid systems [1], such as 

Automata, Petri nets, Linear Complementary (LC), Piecewise Affine (PWA) [2], 

Mixed Logical Dynamical (MLD) models [3]. Different techniques are used to control 

hybrid systems, for example Model Predictive Control (MPC) [4], [5], [6], [7] and 

optimal control [3]. 

 

An attractive and challenging field of research is currently dealing with hybrid systems 

subject to uncertainties, either parameters uncertainties or disturbances influences, 

where problems like safety, reachability, attainability and robust control become 

interesting questions for researchers. In this direction, this paper examines a class of 

uncertain discrete-time switched piecewise linear hybrid systems affected by parameter 

variations. For this class of systems, some solutions to the above mentioned problems 

are already proposed in the literature. For example, in [8], an attainability checking that 

employs  the predecessor operator, and a controller technique using finite automata and  
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linear programming is presented. In [9] and [10], a control technique based on 

minimizing the worst-case cost function (min-max problem) is proposed to solve the 

control problem. 
 

The contribution of this paper is based on a simple polyhedral approach enabling the 

elaboration of the state space regions for which a robust control exists which drives the 

plant to a desired behavior despite the parameter variation. The safety, reachability and 

attainability questions are examined through this framework and a robust Model 

Predictive Control (MPC) with quadratic cost function is presented as a fast suboptimal 

robust control for the considered systems. 
 

The paper is organized as follows. A brief description of switched piecewise linear 

hybrid systems and the related class is given in Section 2. Section 3 develops the 

polyhedral approach which will elaborate the state space regions where reachability, 

safety and attainability questions can be assured. A fast and suboptimal robust control 

is then developed in Section 4 for the considered class. An application of the proposed 

technique to a two-tank benchmark is presented in Section 5. Finally the conclusions 

and some remarks are given in Section 6.  

 

II. UNCERTAIN SWITCHED PIECEWISE LINEAR HYBRID SYSTEMS 
Switched piecewise linear/affine systems are powerful tools for describing or 

approximating both nonlinear and hybrid systems, and represent the easiest extension 

from linear to hybrid systems. This paper focuses on the particular class of uncertain 

discrete-time switched piecewise linear hybrid systems subject to parameter variations, 

defined as: 
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 s

ii 1
  are the polyhedral validity domains in the state and input spaces, s being the 

total number of possible modes. Each i  is given by: 
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where ii

kkk
w WUuXx  ,,  are the system state, the input control and the 

uncertainty respectively at instant k  (for the i 
th
 model). It is assumed that UX ,  and 

i
W  (  sIi ,,2,1  , where I  is the collection of all modes) are assigned polytopes. 

 

Exact state measurement x  is supposed to be available. Note that the sets i  are 

assumed here to be not disjoint so that the desired model dynamics can be chosen by 

the bias of switching (logical) decision variables. 
 

Each sub-model i
  is defined by the 4-uple  iiii

qQBA ,,, , where 
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 mnpimninni i 
 QBA ,,  and i

q  is a suitable constant vector, where n , m  

are respectively the number of states and inputs, and ip  is the number of hyperplanes 

defining the i  polyhedral.  
 

Taking into account uncertainty as it appears in Eq. 1, the following considers 

polytopic uncertainty in )(
ii

wA  and )(
ii

wB  for every mode Ii  . As a polyhedral set 

R  can be represented either by a set of linear inequalities  gFxxR  , or by its dual 

representation in terms of its vertex set  j
x , this polytopic uncertainty will be 

structured as follows: 
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where 0
ij

w  and 1
1

 

v

j

ij
w .  ijij

BA ,  is the j-th vertex represented by a state space 

pair of matrices ( vj 1 ), v  number of vertices. The pair  )(),(
iiii

ww BA  represents 

the model subject to uncertainty, described by the polytopic set 

 vjConvexHull
ijij

,,1),,( BA  for each mode Ii  . The coefficients ij
w  are unknown 

and possibly time varying.   is assumed to be the same for the each partition. If the 

polytopes i
W  have different number of vertices,   will be chosen for uniformity 

purposes as i
si


1

max


 . In the following, the notation W will thus be adopted to 

replace the local polytopes i
W . 

 
III. REACHABILITY AND ATTAINABILITY; A POLYHEDRAL 

APPROACH 
Let consider the region 1, kkR , as a target region in the global state space X . This 

section examines the robust one-step control region 1kR  as the region in the state 

space for which there exist at least one feasible mode i  and an admissible control 

signal able to drive the states from 1kR  into kR  in one-step despite all possible 

parameter variations, i.e.: 
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In the following, the computation of this region 1kR  is achieved through a polyhedral 

approach. 
 

Consider the global state space defined by the following constraints: 
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The control input is supposed to be bounded: 
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Let the target region kR  be defined by the following constrains: 
 

  gFxR  kk :  (7) 
 

Considering the system in the mode i  where  si ,,2,1   and the j-th vertex state 

matrix for vj 1 , and using the system evaluation equation (1), (7) can be rewritten 

as follows: 
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Looking for the state space domain 1kR , under the i  mode and the j -th vertex of the 

uncertain polytopic model, for which there is an feasible input control signal 
1k

u  that 

can drive the states from 1kR  to 
k

R  in one step, these inputs can be calculated as 

follows: 
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where ij

l
FB  are the rows of ij

FB . Let ij
K  be a vector of ij

l
k  for all rows of ij

FB ; then 

it comes from (8) and (9): 
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For polytopic uncertain switched piecewise linear hybrid systems, the state space 

region 1kR  under the i-th mode can be determined by [8]: 
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The region in the state space under all subsystems (modes) for which there exist a 

feasible mode (1) and an admissible control signal able to drive the states from it into 

the region kR  in one-step despite all possible parameter variations is finally given by 

the following relation: 
 

 i
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The procedure presented above can be repeated in a recursive way to find the domain 

for any limited N  horizon steps. Using a dynamic programming approach, after 

defining the target region Nk R , the state space domain kR  can be recursively 

calculated, that includes all the states having a feasible control policy that can in N  

steps derive the states to Nk R  despite the parameter variations. 
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Remark 1: For piecewise linear hybrid systems with many sub-models s  and for long 

horizon steps N , this may implies the exploration of a large number of regions 

(exponential complexity) (Figure 1-a). Considering “no switch” between sub-models 

over the N  steps horizon (Figure 1-b) leads to the lowest complexity mechanism. For 

many applications, as will be seen in the application section, this suboptimal approach 

(Considering no switch) provides good performances. 
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Fig. 1. Regions exploration, (a) complete exploration, (b) exploration with no switch 

over the N  steps. 

 

Safety, a well-known geometric condition for a set to be safe (control invariant) is the 

following [11]: 

the set 1kR  is safe if and only if kk RR 1  

Attainability, given a finite number of regions χRRR  INkkk ),,,( 1  , the 

attainability for this sequence of regions is equivalent to the following two different 

properties: 

first the direct reachability from region jk R  to 1 jkR  for 10  Nj , 

secondly the safety (or control invariance) for region Nk R . 

 

IV. ROBUST MODEL PREDICTIVE CONTROL 
The min-max control technique is proposed in the literature as a robust control for such 

problems, which minimizes the maximum cost, to try to counteract the worst 

disturbance. This paper focuses on the model predictive control for switched piecewise 

linear hybrid systems with quadratic cost function as a fast suboptimal robust solution. 
 

1. General Consideration  
Model predictive control (MPC) has proved to efficiently control a wide range of 

applications in industry. It is capable to control a great variety of processes, including 

systems with long delay times, non-minimum phase systems, unstable systems, 

multivariable systems, and constrained systems [12]. 
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The main idea of predictive control is to use a model of the plant to predict future 

outputs of the system. Based on this prediction, at each sampling period, a sequence of 

future control values is elaborated through an on-line optimization process, which 

maximizes the tracking performance while satisfying constraints. Only the first value 

of this optimal sequence is applied to the plant, the whole procedure is repeated again 

at the next sampling period according to the ‘receding’ horizon strategy [13]. 
 

The cost function to be minimized is generally a weighted sum of square predicted 

errors and square future control values, e.g. in Generalized Predictive Control (GPC) 

[14]. 

 

2. Robust MPC For Switched Uncertain Piecewise Linear Hybrid 
Systems 
The control object is for the closed-loop system to exhibit certain desired behavior 

despite the uncertainties. Specifically, given finite number of regions  NRRR ,,, 10   

in the state space, the goal is for the closed-loop system trajectories, starting from the  

given initial region 0R , to go through the sequence of finite number of regions 

NRRR ,,, 21   in the desired order and finally reach the final region NR . 

The model predictive control proposed here requires solving at each sampling time the 

following problem: 
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where ex  is the states reference, ΓΛ ,  are weighting diagonal matrices. 
 

In order to solve this equation, the model applied at each instant has to be determined. 

As the future sequence of subsystems over the prediction horizon is unknown, all 

potential sequences of subsystems  11 ,,,  Nkkk IIII   have to be examined, where 

jkI   is one mode among the s modes at prediction time j , for 1,,1,0  Nj  . As for 

each model the value of the logical variable is fixed, the MPC problem is solved by a 

QP for each potential sequence, providing the optimal control while fulfilling the input 

and state constraints and the regions sequence ,jk R  Nj ,,1,0for   as well.  
 

Remark 2: At each sampling time, the decision process can drive the system to any 

particular feasible mode due to receding horizon implementation of the optimal open-

loop sequence. To sum up, the conservatism is only related to the feasible set coverage 

and not directly to the chosen performance index. 
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Remark 3: If the initial state kx  is included in the union of regions i

Nk 
R  of different 

modes ( i ), the MPC technique can select a suboptimal solution among all feasible 

modes. The feasibility at instant k  implies feasibility at any instant 1k  to Nk  . The 

longest the prediction, the largest the feasible domain will be. 

 

V. APPLICATION 
Consider the two-tank benchmark of Figure 2. The system consists of two tanks, filled 

by a pump acting on tank 1, continuously manipulated from 0 up to a maximum flow 

1Q . One switching valve 12V  controls the flow between the tanks, this valve is assumed 

to be either completely opened or closed ( 0 or 112 V  respectively). The 2NV  manual 

valve controls the nominal outflow of the second tank. It is assumed in further 

 

 simulations that the manual valves, 1NV  is always closed and 2NV  is open. The liquid 

levels to be controlled are denoted 1h , and 2h  for each tank respectively. 

 
 

1h  

2h  

vh  

12V  

1NV  2NV  
1NQ  

1212 vQ  
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1 2 

 
 

Fig. 2. Two-tank benchmark. 

 
The conservation of mass in the tanks provides the following differential equations: 
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where the Qs denote the flows and A  is the cross-sectional area of each of the tanks. 

The Toricelli law defines the flows in the valves by following expressions: 
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where iS  represent the area of valves iV  and a is a constant depending on the liquid. 

From this, a simplified linear model can be obtained under the form: 
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The Euler discretisation technique is used to have the following discrete form : 
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where sT  is the sampling time, equal to 10 sec. 
 

This benchmark can be considered as a piecewise system of form (1), with two 

subsystems (two modes) described as follows: 
 

For mode one, the valve 12V  is open ( 112 V ) and two vertices for the uncertainty 

description are considered: 
 

 











































0

590.3188
,

0.86720.0664

0.06640.9336

0

721.5007
,

0.83770.0812

0.08120.9188

1212

1111

BA

BA

 

 

For mode two, the valve 12V  is closed ( 012 V ) and two vertices for the uncertainty 

description are also considered: 
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Limitations on the global state space are given through the following relation 
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as well as limitations on the control signal: 
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The target region, to which system states will be derived to, is defined by the following 

constraints: 
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The approach presented above is first applied to elaborate the region kR  in the state 

space which includes the states that can be derived in finite N  steps to Nk R  despite 

the parameter variation. However, a suboptimal approach is used here (see Remark 1) 

as a compromise with the computational load. 
 

With this assumption, Figure 3 presents the regions for mode one with 10N , and 

Figure 4 for mode two with 10N , as well, where the vertical axis corresponds to the 

sampling time (from 0  to N ). For both modes, the region are presented in Figure 5 

with 5N . The Multi-Parametric (MPT) toolbox [15] was used to deal with the 

polyhedral operations; to find the intersection, deleting the redundant constraints and 

also plotting the polyhedral regions. 

The robust model predictive control presented above (13) is applied where the model 

of state  evaluation is chosen to be the  epicenter  of  the  state  matrix   21

2

1 ii
AA   for  

 

 
 

Fig. 3. Regions for mode one with 10N  
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each mode. The robust model predictive control is applied so many times, each with 

different initial states inside the region kR , and in each simulation a random 

uncertainty w , is applied to the system. The weighting diagonal terms in the cost 

function are chosen such that 21000 IΛ   and 1Γ , and the states reference is 

)2.0,5.0( . 
 

 
 

Fig. 4. Regions for mode two with 10N . 
 

 
 

Fig. 5. Regions for both modes with 5N  

 

 

Figure 6 shows some results of robust MPC with 3N  for extreme initial states inside 

kR  with random uncertainty w , and as it can be seen on this figure, all the states in 

kR  are derived in three steps ( 3N ) to the desired region 3kR  despite the parameter 

variations. 
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Fig. 6. Robust MPC for different initial states, with 3N  

 

 

VI. CONCLUSION 
This paper has examined a class of uncertain discrete-time piecewise linear hybrid 

systems with parameter variation, for which a simple polyhedral technique has been 

proposed to find the regions in the state space where a feasible mode and a robust 

control is assured to derive the system states to the desired region despite the possible 

parameter variation. Model predictive control technique has been proposed as a fast 

and suboptimal robust control for the considered problem. 
 

Future work will consider applying the same techniques on uncertain discrete-time piecewise 

linear/affine hybrid systems affect by both parameter variation and exterior disturbance. 
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 التحكم ألتنبؤي الذي يمكن الاعتماد علية في التحكم في نظام تحولي خطى مختلط

 تحكمه معادلات مختلفة طبقا لنقطة العمل
 

في هذا البحث، نبحث في مشكلة نظم التحكم التي يمكن الاعتمــاد عليها في نظــــم التتبــــع 
( تحكمه معادلات مختلفة طبقا لنقطة Hybridخطى مختلط ) (Switchedو الضبط لنظام متحول )
( والذي نفترض تأثره بتغير قيم معاملاته. على Piecewise Systemsالعمل والمعروف باسم )

ه الخصوص، السؤال الأساسي المطروح يتعلق بوجود نظام تحكم يجعل النظام يتبع سلوك وأداء وج
محدد مرغوب فيه ومتاح للنظام بغض النظر عن أي تغير محتمل في قيم معاملات النظام. اختبار ما 

أي ماكن والحالات التي مؤكد وجود نظام تحكم اعتمادي لها )لأيمكن أن يصل إليه النظام وحساب ا
نظام تحكم يمكن الاعتماد عليه في مواجهة تغير قيم المعاملات( بغض النظر عن عدم دقة معادلات 

. نظام التحكم (Polyhedralالنظام، يتم باستخدام نظام خاص بحساب المجسمات في الفراغ )
ألتنبؤي المستنتج من معادلة تكلفة مربعه استخدم كنموذج لنظام تحكم اعتمادي بسيط وسريع وشبة 

 خزان مياه. 2مثالي. وفى الختام، نقدم تطبيق لهذه التقنية على نموذج اختبار معملي مكون من عدد 

http://www.nd.edu/~isis/tech.html
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