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This paper investigates the robust tracking and regulation control
problems for discrete-time, switched piecewise linear hybrid systems
affected by parameter variations. In particular, the main question
addressed is related to the existence of a controller such that the closed-
loop system exhibits an attainable desired behavior under all possible
parameter variation. Checking attainability and calculating the state
space regions for which a robust control is assured despite the
uncertainty is performed using a polyhedral approach. A model predictive
control law derived from a quadratic cost function minimization is further
examined as a simple and fast sub-optimal robust control. An application
of the proposed technique to a two-tank benchmark is finally presented.

KEYWORDS: Piecewise Linear Systems, Robust Model Predictive
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I. INTRODUCTION

Hybrid systems are now of common use in many control applications in industry, e.g.
in control of mechanical systems, process control, automotive industry, power systems,
aircraft and traffic control. Hybrid systems are heterogeneous dynamical systems, their
behavior is determined by interacting continuous variable and discrete event dynamics.
Various approaches have been proposed to model hybrid systems [1], such as
Automata, Petri nets, Linear Complementary (LC), Piecewise Affine (PWA) [2],
Mixed Logical Dynamical (MLD) models [3]. Different techniques are used to control
hybrid systems, for example Model Predictive Control (MPC) [4], [5], [6], [7] and
optimal control [3].

An attractive and challenging field of research is currently dealing with hybrid systems
subject to uncertainties, either parameters uncertainties or disturbances influences,
where problems like safety, reachability, attainability and robust control become
interesting questions for researchers. In this direction, this paper examines a class of
uncertain discrete-time switched piecewise linear hybrid systems affected by parameter
variations. For this class of systems, some solutions to the above mentioned problems
are already proposed in the literature. For example, in [8], an attainability checking that
employs the predecessor operator, and a controller technique using finite automata and
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linear programming is presented. In [9] and [10], a control technique based on
minimizing the worst-case cost function (min-max problem) is proposed to solve the
control problem.

The contribution of this paper is based on a simple polyhedral approach enabling the
elaboration of the state space regions for which a robust control exists which drives the
plant to a desired behavior despite the parameter variation. The safety, reachability and
attainability questions are examined through this framework and a robust Model
Predictive Control (MPC) with quadratic cost function is presented as a fast suboptimal
robust control for the considered systems.

The paper is organized as follows. A brief description of switched piecewise linear
hybrid systems and the related class is given in Section 2. Section 3 develops the
polyhedral approach which will elaborate the state space regions where reachability,
safety and attainability questions can be assured. A fast and suboptimal robust control
is then developed in Section 4 for the considered class. An application of the proposed
technique to a two-tank benchmark is presented in Section 5. Finally the conclusions
and some remarks are given in Section 6.

[I. UNCERTAIN SWITCHED PIECEWISE LINEAR HYBRID SYSTEMS

Switched piecewise linear/affine systems are powerful tools for describing or
approximating both nonlinear and hybrid systems, and represent the easiest extension
from linear to hybrid systems. This paper focuses on the particular class of uncertain
discrete-time switched piecewise linear hybrid systems subject to parameter variations,
defined as:

3! :{xk+l = Ai(wli<)xk + Bi(wli()uk}
E™ 1)

for | € Xi
L“kJ

{zi};_, are the polyhedral validity domains in the state and input spaces, s being the
total number of possible modes. Each y; is given by:
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where x, e X,u, eU,w, e W' are the system state, the input control and the
uncertainty respectively at instant k (for the i ™ model). It is assumed that x,u and

w' (ietl=(2,-,s), where 1 isthe collection of all modes) are assigned polytopes.
Exact state measurement x is supposed to be available. Note that the sets ,; are
assumed here to be not disjoint so that the desired model dynamics can be chosen by
the bias of switching (logical) decision variables.

Each sub-model =' is defined by the 4-uple (A'.B'.Q'.q'), where
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Aler™ Bl ew™ o' e ™™ and ¢ is a suitable constant vector, where n, m
are respectively the number of states and inputs, and p; is the number of hyperplanes
defining the »; polyhedral.

Taking into account uncertainty as it appears in Eq. 1, the following considers
polytopic uncertainty in A'(w') and B'(w') for every mode i< 1. As a polyhedral set
R can be represented either by a set of linear inequalities R = {x|Fx <g}, or by its dual

representation in terms of its vertex set {xj}, this polytopic uncertainty will be
structured as follows:

Ai(w):iwiinj, Bi(w)zzi:wijB” 3
j j

where w’ >0 and zvjzlw“ -1, (A i gl ) is the j-th vertex represented by a state space

pair of matrices (1< j<v), v number of vertices. The pair (Ai(wi),Bi(Wi)) represents
the model subject to uncertainty, described by the polytopic set
ConvexHull {(A”,B” ) j=1, ,v} for each mode i < 1 . The coefficients w” are unknown
and possibly time varying. v is assumed to be the same for the each partition. If the

polytopes w' have different number of vertices, v will be chosen for uniformity
purposes as v = max v;. In the following, the notation W will thus be adopted to

i=l--s

replace the local polytopes w'.

[ll. REACHABILITY AND ATTAINABILITY; APOLYHEDRAL
APPROACH
Let consider the region R,k >1, as a target region in the global state space x . This

section examines the robust one-step control region R, , as the region in the state

space for which there exist at least one feasible mode i and an admissible control
signal able to drive the states from rR,_, into rR, in one-step despite all possible

parameter variations, i.e.:

|ka_16X|EIi/\uk_1eU s.t. ]|
| [ Xy_q | |
EXi A
Ris J| v |L @
|Ai(w|i<7l)xk71 + Bi(wli(fl)ukf1 €Ry. |
{ VWL_l e W J

In the following, the computation of this region R, _, is achieved through a polyhedral
approach.

Consider the global state space defined by the following constraints:
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x::{FSXSgS,Fsemp*“,gsemp} (%)
The control input is supposed to be bounded:

U::{musn,meiRpuxm,ne‘Rp“Xl} (6)
Let the target region r, be defined by the following constrains:

Ry={Fx, <g | (7
Considering the system in the mode i where ie(12,--,s) and the j-th vertex state
matrix for 1< j <v, and using the system evaluation equation (1), (7) can be rewritten
as follows:

{F(A”xk71+B”ukfl)sg } ®)

= {FA iJ.xkfl +FB ”ukfl <g }

Looking for the state space domain R, _,, under the i mode and the j -th vertex of the
uncertain polytopic model, for which there is an feasible input control signal u, , that
can drive the states from rR,_; to R, in one step, these inputs can be calculated as
follows:

klij =mn,  FB :j U

9)

subject to mu,_, <n

where FB| are the rows of FB " . Let k" be a vector of k' for all rows of F8 ¥ ; then
it comes from (8) and (9):

REfl = {x|FA Y%, _, <99 },vvhere gg =g - K" (10)

For polytopic uncertain switched piecewise linear hybrid systems, the state space
region R, _; under the i-th mode can be determined by [8]:

<

i i
Ry1=1 1Rk—l
j

(11)

The region in the state space under all subsystems (modes) for which there exist a
feasible mode (1) and an admissible control signal able to drive the states from it into
the region R, in one-step despite all possible parameter variations is finally given by

the following relation:

s
R,;=U le—l (12)

i=1
The procedure presented above can be repeated in a recursive way to find the domain
for any limited N horizon steps. Using a dynamic programming approach, after
defining the target region Rr,,, , the state space domain R, can be recursively

calculated, that includes all the states having a feasible control policy that can in N
steps derive the statesto R, despite the parameter variations.
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Remark 1: For piecewise linear hybrid systems with many sub-models s and for long
horizon steps N, this may implies the exploration of a large number of regions
(exponential complexity) (Figure 1-a). Considering “no switch” between sub-models
over the N steps horizon (Figure 1-b) leads to the lowest complexity mechanism. For
many applications, as will be seen in the application section, this suboptimal approach
(Considering no switch) provides good performances.

Rin

. / \ (@)
Rowgy~ ORk+N—1 ORLNA
o elo X o eloNeele

2 1 s 2
Riinz Rinz2 Rignoa Riinz Rienz Riin2 Ryynz Rignez Riene

Fig. 1. Regions exploration, (a) complete exploration, (b) exploration with no switch
over the N steps.

Safety, a well-known geometric condition for a set to be safe (control invariant) is the
following [11]:

the set R, issafeifandonly if R, ,; < Ry
Attainability, given a finite number of regions (R, ,Ry,;,-,Ry.n)elxy, the
attainability for this sequence of regions is equivalent to the following two different
properties:
first the direct reachability from region R, ; 0 Ry, ;,; foro<j<n-1,

secondly the safety (or control invariance) for region R, .

IV. ROBUST MODEL PREDICTIVE CONTROL
The min-max control technique is proposed in the literature as a robust control for such
problems, which minimizes the maximum cost, to try to counteract the worst
disturbance. This paper focuses on the model predictive control for switched piecewise
linear hybrid systems with quadratic cost function as a fast suboptimal robust solution.

1. General Consideration

Model predictive control (MPC) has proved to efficiently control a wide range of
applications in industry. It is capable to control a great variety of processes, including
systems with long delay times, non-minimum phase systems, unstable systems,
multivariable systems, and constrained systems [12].
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The main idea of predictive control is to use a model of the plant to predict future
outputs of the system. Based on this prediction, at each sampling period, a sequence of
future control values is elaborated through an on-line optimization process, which
maximizes the tracking performance while satisfying constraints. Only the first value
of this optimal sequence is applied to the plant, the whole procedure is repeated again
at the next sampling period according to the ‘receding’ horizon strategy [13].

The cost function to be minimized is generally a weighted sum of square predicted
errors and square future control values, e.g. in Generalized Predictive Control (GPC)
[14].

2. Robust MPC For Switched Uncertain Piecewise Linear Hybrid
Systems

The control object is for the closed-loop system to exhibit certain desired behavior
despite the uncertainties. Specifically, given finite number of regions {R,,R;,--,Ry }
in the state space, the goal is for the closed-loop system trajectories, starting from the
given initial region rR,, to go through the sequence of finite number of regions
R;,R,,-,Ry inthe desired order and finally reach the final region R .

The model predictive control proposed here requires solving at each sampling time the
following problem:

N -
keN-1 2
m'ﬂlj(u ! k)—ZHXk+1 e Z “uk+1
|(Xk+1_A (Wk)x +B' (Wk)U
o)
| |_uk+jJ
|uk+jl€U

{xkﬂ- €Ry,j, for j=12,--,N
where x, is the states reference, A, r are weighting diagonal matrices.

In order to solve this equation, the model applied at each instant has to be determined.
As the future sequence of subsystems over the prediction horizon is unknown, all
potential sequences of subsystems 1 = {I,,1,,;.--.1,,n_1} have to be examined, where

I, ; Is one mode among the s modes at prediction time j, for j=o041,--,N -1. As for

each model the value of the logical variable is fixed, the MPC problem is solved by a
QP for each potential sequence, providing the optimal control while fulfilling the input
and state constraints and the regions sequence R, ;, for j =01, N aswell.

Remark 2: At each sampling time, the decision process can drive the system to any
particular feasible mode due to receding horizon implementation of the optimal open-
loop sequence. To sum up, the conservatism is only related to the feasible set coverage
and not directly to the chosen performance index.
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Remark 3: If the initial state x, is included in the union of regions RL_N of different

modes (i ), the MPC technique can select a suboptimal solution among all feasible
modes. The feasibility at instant k implies feasibility at any instant k +1 to k + N . The
longest the prediction, the largest the feasible domain will be.

V. APPLICATION
Consider the two-tank benchmark of Figure 2. The system consists of two tanks, filled
by a pump acting on tank 1, continuously manipulated from O up to a maximum flow
Q, - One switching valve v,, controls the flow between the tanks, this valve is assumed

to be either completely opened or closed (v,, =10r 0 respectively). The v, manual
valve controls the nominal outflow of the second tank. It is assumed in further

simulations that the manual valves, v, is always closed and v, is open. The liquid
levels to be controlled are denoted h,, and h, for each tank respectively.

)

Qu2v12

VNt X Qw1 Va2 XN QN2

Fig. 2. Two-tank benchmark.

The conservation of mass in the tanks provides the following differential equations:

hy = —(Q; ~Qppv12)

(14)
) =

2 (Quavi2 ~Qn2)

> >

where the Qs denote the flows and A is the cross-sectional area of each of the tanks.
The Toricelli law defines the flows in the valves by following expressions:

Qiavi1p =Vip@Sypsion (hy —hy) ‘ZQ(hl - hz)‘ (15)

as 2gh

Qn2 =VYN2B N2 3
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where s; represent the area of valves v; and a is a constant depending on the liquid.
From this, a simplified linear model can be obtained under the form:

Quaviz = Ky Vip (N = hy)

Qna kYo M

) 29
where .k12 :a512 h_ (16)

kN2 =3SN2y

The Euler discretisation technique is used to have the following discrete form :

;
hl(k +1) = hl(k) + —S(Ql(k) — k12v12 (hl(k) — h2 (k))
A 17)

T
h, (k +1) = h, (k) + f(klelz (hy(k) =hy (k) =k oV y2h, (k)

where T is the sampling time, equal to 10 sec.

This benchmark can be considered as a piecewise system of form (1), with two
subsystems (two modes) described as follows:

For mode one, the valve v,, is open (v, =1) and two vertices for the uncertainty
description are considered:
., l09188 00812 | ,, [7215007 ]
= , B =
{0.0812 0.8377 J L 0 J
5 09336 00664 | 1 [590.3188 ]
A = , B =
L0.0664 0.8672 J L 0 J

For mode two, the valve vV, is closed (v, =0) and two vertices for the uncertainty
description are also considered:

AL _ M1 0 52 _ [721.5007 |
Lo 0.9188 J L 0 J
A2 RE 0 B2 _ [590.3188 |
Lo 0.9336 J L 0
Limitations on the global state space are given through the following relation
|r 1 0 1| |ro.621
0 1 0.62
X =] k<l 7 18
1o o | (18)
L0 -1 [ 0 ]
SR R



ROBUST MODEL PREDICTIVE CONTROL FOR SWITCHED.... 1723

as well as limitations on the control signal:

[1]] [0.0001 ]
U::L—lJ[Ql]SL O_J (19)

The target region, to which system states will be derived to, is defined by the following
constraints:

[1 0] [ 055 ]
| | |
0o 1 0.25
R | ly < | 20
o I—l 0 IX I—0.45{ (0)
|0 -1] [-0.5]
S R S
F g

The approach presented above is first applied to elaborate the region r, in the state
space which includes the states that can be derived in finite N stepsto rR,,, despite

the parameter variation. However, a suboptimal approach is used here (see Remark 1)
as a compromise with the computational load.

With this assumption, Figure 3 presents the regions for mode one with N =10, and
Figure 4 for mode two with N =10, as well, where the vertical axis corresponds to the
sampling time (from o to N ). For both modes, the region are presented in Figure 5
with N =5. The Multi-Parametric (MPT) toolbox [15] was used to deal with the
polyhedral operations; to find the intersection, deleting the redundant constraints and
also plotting the polyhedral regions.

The robust model predictive control presented above (13) is applied where the model

of state evaluation is chosen to be the epicenter of the state matrix %(Ail +A"2) for

<::::::’—(v~«’_ e Rk} =Rf = F"x <= g

TR k+G)

=

BTy
KA

SO0 o~ B oW & ot B o @

07

Fig. 3. Regions for mode one with N =10
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each mode. The robust model predictive control is applied so many times, each with
different initial states inside the region R, , and in each simulation a random

uncertainty w, is applied to the system. The weighting diagonal terms in the cost
function are chosen such that A =10001, and r =1, and the states reference is

(0.5,0.2) .

10 i § )
. < - RRgk ) =R g . ‘4/>

a7

0 g o1 3

Fig. 4. Regions for mode two with N =10 .

0.7

06

X=Fs"x <=7s

03

04

03

02 RAk+6) = Ri

R1(K)
01

Rk}
R (42)

Rk g
G A1k
i

1
o o1 0z 03 04 o7

2
1

Fig. 5. Regions for both modes with N =5

Figure 6 shows some results of robust MPC with N =3 for extreme initial states inside
R, Wwith random uncertainty w, and as it can be seen on this figure, all the states in

R, are derived in three steps (N = 3) to the desired region R, despite the parameter
variations.
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Fig. 6. Robust MPC for different initial states, with N =3

VI. CONCLUSION
This paper has examined a class of uncertain discrete-time piecewise linear hybrid
systems with parameter variation, for which a simple polyhedral technique has been
proposed to find the regions in the state space where a feasible mode and a robust
control is assured to derive the system states to the desired region despite the possible
parameter variation. Model predictive control technique has been proposed as a fast
and suboptimal robust control for the considered problem.

Future work will consider applying the same techniques on uncertain discrete-time piecewise
linear/affine hybrid systems affect by both parameter variation and exterior disturbance.
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