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Mechanical behavior of the heart muscle tissues is the central problem in 

finite element simulation of the heart mechanics. Nonlinear elastic and 

Viscoelastic behaviors and their constitutive relations are determined from 

experimental data in order to characterize the passive response of the left 

ventricular myocytes (muscle cells) taken from guinea pig heart. Uniaxial 

tension test was made to determine the constants of the nonlinear elastic 

model (hypoelastic) in which Eulerian or exponential stress-strain 

relationship was assumed to describe the passive response of the heart 

material. Nonlinear elastic behavior was also described by hyperelastic 

strain energy functions such as Ogden models and Mooney–Rivlin models 

and the corresponding energy functions coefficients were determined.  

Stress relaxation test was conducted to assess relaxation behavior as well 

as viscosity of the tissues.  Viscohyperelastic behavior was constructed 

by a multiplicative decomposition of a standard Mooney-Rivlin or Ogden 

strain energy function,W , for instantaneous deformation and a relaxation 

function,  tR , in a Prony series form.  Nonlinear least square fitting and 

constrained optimization was conducted under MATLAB and MARC in 

order to obtain the material constants. From the physics of heart motion 

we found that hypoelastic or hyperelastic behaviors could be safely used 

for heart mechanics simulation, because the characteristic relaxation time 

is very large compared with the actual time of heart beating cycle. To get 

more precise mechanical properties, needed for very accurate 

bio-simulation and development of new material for artificial heart, an 

optimization algorithm was proposed to correct and estimate material 

parameters from clinical intact heart measurements. 

 

KEYWORDS: heart muscle, hypoelastic, hyperelastic, strain energy 

functions, viscohyperelastic  

 

1. INTRODUCTION 

Finite element analysis is a powerful tool to construct a virtually living beating 

heart and studying heart mechanics [1]. For instance, from the FE-analysis we 
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can obtain huge data about cardiac motion, especially stress and strain of the 

heart that are two of the most important determinants of many cardiac 

physiological and pathophysiological functions. These functions include: the 

pumping performance of the ventricles; the oxygen demand of the myocardium; 

the distribution of coronary blood flow; the vulnerability of the regions to 

ischemia and infarction diseases; and the risk of arrhythmia [2].   

There are four fundamental requirements or steps to derive and formulate 

the equation of motion of the heart. These are (1) kinematics relations, (2) stress 

equilibrium equations, (3) constitutive relations and (4) boundary conditions [3]. 

Constitutive relations or the experimental relationship between stress and strain 

is the central prerequisite demand in modeling heart mechanics using 

FE-method.  

Biological tissues exhibit time dependence when subjected to relaxation 

test and hysteresis when subjected to cyclic loading. Previous studies have long 

controversy focused on which of the hypoelastic, hyperelastic, or viscoelastic 

are the dominant mechanical behaviors of the heart muscle, and which 

constitutive relation should be confidently used in heart FE-simulation. Strain 

energy functions like Mooney-Revilin and Ogden models are used for 

hyperelasticity [4, 5] while viscoelastic strain energy functions are used for 

viscoelasticity [6]. Nonlinear elastic (reversible) model in which Eulerian or 

exponential stress-strain relationship was assumed to describe the passive 

response of the tissue’s material by nonlinear elastic relations known as 

hypoelastic behavior [7, 8].  

There are several experimental techniques to assess the mechanical 

behaviors of the biological materials in vitro. Among these are indentation 

probes [9-11], tension [12] and compression [13] testers and rotary or cyclic 

shear tests [14]. Ultrasound electrograph [15] and magnetic resonance 

electrograph [16] become available techniques for in vivo tests, but in many 

cases the data obtained are not easily comparable. That is either because the 

tissue sample sizes employed or testing domain (strain and frequency range) are 

not comparable, or merely because of few tests conducted on the same tissues. 

In particular, magnetic resonance imaging MRI and tagging methods provide 

mostly global information about material properties and deformation of the 

heart. 

In this paper, the author developed a very precise uniaxial and relaxation 

tests to determine the nonlinear elastic and viscous behaviors of the Guinea pig 

left ventricle myocardium (heart muscle).  Nonlinear curve fitting and 

optimization using MATLAB tool box and MARC were conducted to determine 

model’s constants that characterize the nonlinear elastic and viscous behavior of 

the heart tissues.  The generalized strain energy function versus time data 

being used for large strain viscoelasticty was generated by using our 

experimental data; and our data mixed with equi-biaxial tension and volumetric 

compression (existing in [2], [3] ) to determine constants of the myocardium 
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free energy function.  However, stress relaxation tests at multiple levels of 

strains were conducted to generate the relaxation function. The results are 

discussed from, the mechanical, biomechnical and physiological point of views.  

 

2. APPARATUS 

The experimental apparatus was built on an optical microscope provided with 

Charge-Coupled Device (CCD) video camera as shown schematically in 

Fig.1. Myocardium (heart muscle) sample length in relaxed state was put on the 

sample holder and its initial length was measured from the picture appearing on 

the scaled monitor.  The sample was attached at one end to a hook from a 

micrometer of the extensometer for controlling sample length and extension, 

and at the other end to a hook from a semiconductor strain gage sensor (F.S.) 

(Akers AE801; AME) for force measurement. The analogue force and 

displacement signals were amplified and recorded by the thermal array recorder 

before they were converted to digital signal, through a data acquisition system, 

and stored on a P.C. To minimize movement on the hook during extension, 

muscle sample was nodded by 000 nylon thread at the two ends. The sample 

measured length is the distance between the two nodes appeared on the scaled 

monitor. The electronic stimulator and digital oscilloscope are needed to 

provide the physiological, biophysical and electrical conditions similar to those 

of the intact heart. Figure 2 shows a photograph of the sample, sample 

holder, extensometer, and force sensor (F.S.).  
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Fig.1 Schematic diagram of the experimental apparatus for uniaxial tension test 

Sample holder 
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3. EXPERIMENTAL DETAILS 

Guinea pigs (2kg) were anesthetized with an intravenous injection of sodium 

pentobarbital, incubated and ventilated. The pericardium opened, the ascending 

aorta cross-clamped, and the heart arrested with 50-150 ml intracardiac 

injection of an oxygenated low-sodium high potassium solution. The heart was 

removed and placed in a beaker containing this solution. The right ventricular 

free wall and intraventricular septum were excised with scissors, and left 

ventricular free wall was isolated. A trabicula papillary muscle was taken out to 

make samples of measured length 8 mm and cross sectional area 4 mm
2
. During 

testing, the initial tension was set to zero, and strain was increased gradually till 

50% tensile strain. This protocol was repeated five times for each sample and 

then followed by a relaxation test.  Relaxation tests were made under10%, 

20%, 30%, 35%, 40%, 45% and 50% constant strains.  Although 12 specimens 

were tested, we reported only seven samples in which the sample size and fiber 

orientation was nearly the same on each test. All samples were tested at room 

temperature.  
 

4. MATERIAL MODELS OF THE HEART TISSUES 

4.1 HYPOELATICITY APPROACH 

Used to model heart tissues as a nonlinear solid considering that the elastic 

modulus is dependent only on strain i.e. the elastic tangent modulus is linear in 

relation with stress. One way to describe this material behavior is the 

exponential model given by the empirical Eq. (1-a) where k and ks are material 

constants determined from experiment.  

 
Fig. 2 Photograph of the setup for uniaxial tension test 
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4.2 HYPERELASTICITY APPROACH  

For materials like rubbers and biological tissues are described by strain energy 

functions in order to guarantee that the rigid body motions play no role in the 

constitutive law. Mathematically, this is achieved by postulating the existence 

of a strain energy density function, W, to be a scalar potential that depends on 

the component of the right Cauchy-Green deformation tensor or Green’s strain 

tensor.  Components of the second Piola-Kirchhoff stress tensor are given by 

the derivatives of W with respect to the components of the Green’s strain tensor.  

For isotropic hyperelastic material, the strain energy is constant for all 

orientations of the coordinate axes. Thus the strain energy is an invariant of 

Green’ strain tensor, E, and can be expressed as a function of the three principal 

invariants of E as shown in Eq. (2) which is known as Mooney-Rivilin model.  
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In Eq. (2), 1C  and 2C are material constants which must be determined 

experimentally. For complete incompressibility of the material, 13 I .  

However, Spencer [17] noted that it is not sufficient to set 13 I  in Eq. (2) 

since certain derivatives of W , tend to infinity in the limiting case of 

incompressibility. This problem is overcome by introducing the arbitrary 

constants C3 and C4.  Also, in Eq. (2) it can be noted that the use of  31 I  

and  32 I  ensures that the strain energy is zero when the strains are zeros. 

This can be easily explained, because for zero strains the principal stretch ratios 

1321   in which case Eq. (3) reduces to 321  II  and 13 I . 
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4.3 VISCOHYPERELASTICITY APPROACH 

For large strain viscoleastic material the strain energy function becomes 
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where ijE are the components of the Green’s strain tensor, ijQ internal 

variables and W the elastic strain energy density for instantaneous 

deformations. The components of the second Piola-Kirchhoff stress are given as 
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Equation (4) can also be written in terms of the long term moduli resulting in a 

different set of internal variables 
n

ijT  as shown in Eq. (6). 

    ij

N

n

n
ijij

n
ijij ETETE 



 
1

,            (6) 

where 
 is the elastic strain energy for long term deformations. Using this 

energy function definition, the stresses are obtained from Eq. (7) as; 
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The viscoelastic energy function, Eq. (6) can also be expressed as Prony series 

expansion with similar form of each term as; 
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Where n time dependent scalar multipliers and n  associated 

relaxation times. At time zero (or for time process: n
t    ), the elastic 

energy of Eq. (8) reduces to: 
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Then the time dependent energy function is given by substitution of Eq. (9) into 

Eq. (8) as: 
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If we restrict ourselves for the simplicity of the discussion to the case N=2 we 

have:  W211    

        2211 exp1exp11  ttWt              (11) 

The energy function,  t  versus time data being used for viscohyperelasticity 

can be generated by fitting the experimental data provided by the following two 

tests: (i) Standard quasi-static tests (tensile, equi-biaxial tension and volumetric 

compreesion) to determine the material constants ( i.e. C1 , C2 , C3 and C4 in Eq. 

(2) of the free energy function W ,  (ii) Standard relaxation tests to obtain 

scalar multipliers, 1 , 2  and relaxation time constants, 1 , 2 .  

 

5. HEART MECHANICAL CYCLE 

The blood pressure versus blood volume in the left ventricle cavity in the heart 

cycle is shown schematically in Fig. 3. The diagram has many advantages, but 

in FE-simulation the four phases of the cardiac pressure cycle become very 

useful if they are illustrated as a function of time as shown schematically in Fig. 

4. In these two figures the mitral valve closes at A and the left ventricle 

undergoes isovolumic contraction; muscle generate rapid contractile force while 

blood volume is constant therefore blood pressure is rapidly rising until B. 

when the left ventricular pressure exceeds the aortic pressure and the aortic 

valve opens, blood is ejected to the aorta and left ventricle volume begins to 

decrease. The aortic valve closes at the end of systole C because the muscle 

starts to relax and intraventricular pressure falls below the aortic pressure. The 

left ventricular muscles then undergo isovolumic relaxation from C to D.  The 

mitral valve reopens at D when the pressure of left ventricular is lower than that 

of left atrium.  Blood pressure in right ventricle changes in a similar manner 

over the heart contraction cycle, but its magnitude is about three times smaller 

than that of the left ventricle [19]. The total time of this cycle is 800 ms and that 

is why the heart beats is 75 /min. The work done by the left ventricle in one 

cycle is the area enclosed in the loop ABCD.    
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Fig. 3 Schematic ventricular    Fig. 4 Ventricular pressure 

         pressure-volume loop                      changes over time 

  

6. RESULTS AND DISCUSSION 

6.1 HYPOELASTIC MATERIAL CONSTANTS (KS AND K) 

Figure 5, shows the true stress versus true strain obtained from uniaxial test for 

seven samples taken from left ventricle guinea pig heart. The experimental data 

are fitted to the hypoelastic model using Eq. (1) and the corresponding material 

constants Ks and K are obtained and listed in Table 1. The heart tissues show a 

very steep rise in stress as the strain is approaching the limiting strain for elastic 

response (normally it is taken 60% strain). Equation (1-a) is very useful in 

hypoelasticity because polynomial functions are not appropriate as they do not 

model this singular behavior.  Figure 6 shows the engineering stress versus 

stretching ratio,  , for the same seven samples.  To prevent irreversible 

damage (plastic strain), the samples were not stretched beyond stretch ratio 

 1.72 (0.54 strain). To implement these results in finite element code, we 

need only to update elasticity matrix (matrix relating stress with strain).  Since 

the components of the elasticity matrix are functions of Poission ratio and 

elastic modulus, therefore the tangent modulus, tE , at the end of each strain 

increment must be updated using Eq. (1-b). This technique was implemented in 

the author FE C-code as well as in Marc and the simulation results have been 

published in [2004] 

6.2 RELAXATION TIME CONSTANT ( R ) 

Figure 7 shows the experimental stress relaxation versus time at different strain 

levels ranging from 0.1 to 0.5 for seven samples during 90 seconds testing time.  

Based on Maxwell element model, the stress at any time, t  required to maintain 

the strain constant is given by Rt
o e

   which was used for curve fitting.  

The experimental data were fitted to the previous equation to determine the 

relaxation time R  which is equal to G , where   is the viscosity 
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coefficient and G is the elastic shear modulus. Tables 2,3 and 4 list the values 

of , G  and R  for the all data (from 0-90s), long term data (from 7-90s ) 

and short term data ( 0-7s ),  respectively.  For short term data, the obtained 

relaxation time  sRave 2521.666  is very large compared with the heart cycle 

time (800ms) which means that the heart muscle contracts very fast before any 

significant relaxation takes place. Therefore stress relaxation in heart muscle is 

very small and could be ignored confidently in simulation of the heart 

mechanics.  For the long term data (from 7- 90s) the seven samples 

demonstrate non-significant decrease in stress versus time and a significant 

decrease in the rate of stress relaxation with increasing strain were observed. 

The average relation time for long term data was 56.2774s while it was 

445.2925s for all data fitting. In the short term data region, the samples show 

slightly increase in the stress relaxation rate with increasing strain level. The 

average value of the muscle viscosity 17 s.N/mm
2
 indicates a small damping 

ratio and the muscle tends to behave like solid rubber material. 

 

Table 1 Summery of Ks and K values, Eq.(1) 

Test No. 
Ks – Value 

mN/mm2 

K – Value 

(constant) 

1 6.8953 2.6145 

2 6.6760 1.7961 

3 9.3707 9.4015 

4 9.3832 10.0050 

5 9.2901 7.3226 

6 10.7959 19.4881 

7 10.8280 24.5970 

 

6.3 HYPERELASTIC MODELS (ENERGY FUNCTIONS)   

6.3.1 FIRST ORDER MOONEY-RIVLIN ENERGY FUNCTION 

Since the constants C3 and C4 in Eq. (2) are dependent it can be easily 

determined if we know the constants C1 and C2.  Because, heart tissues are 

nearly incompressible, the principal stretches in uniaxial test are then given by  

t 1  , 
t

 1
32   and the logarithmic stress in axial direction is given 
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and the corresponding engineering stress is given by 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Experimental true stress versus     Fig. 6 Experimental Engineering stress 

       true strain                          versus stretching 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Results of the relaxation test under various strain levels 
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Table 2 Viscosity and relaxation time for all data fitting (0-90s)  

Sample 

No. 

Elastic 

modulus  

E (N/mm2) 

Viscosity 

(N/mm2.S) 

Shear modulus 

G (N/mm2) 

Relaxation 

time, R (s) 

1 0.1700 22.8159 0.0570 400.2789 

2 0.1080 16.4096 0.0362 453.3038 

3 0.0913 16.5826 0.0306 541.9150 

4 0.1585 16.6015 0.0532 312.0582 

5 0.1577 16.2005 0.0529 306.2476 

6 0.0743 16.1494 0.0249 648.5702 

7 0.1049 16.0538 0.0352 456.0738 

 

Table 3 Viscosity and relaxation time for long –term data fitting (7-90s)  

Sample 

No. 

Elastic 

modulus  

E (N/mm2) 

Viscosity 

(N/mm2.S) 

Shear modulus 

G (N/mm2) 

Relaxation 

time, R (s) 

1 2.0492 28.3322 0.6876 41.2044 

2 1.6392 26.5065 0.5501 48.1848 

3 3.7575 56.1087 1.2609 44.4989 

4 1.8991 36.4060 0.6373 57.1253 

5 2.0665 42.5920 0.6935 61.4160 

6 0.7304 15.7698 0.2451 64.3402 

7 0.5489 14.8534 0.1842 80.6373 

  







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t
t

t
t CCSS





 1

1412 21
1

1  

where, t is the stretch ratio in uniaxial test. 

We substitute the experimental values into Eq. (11) and solve by means of 

nonlinear least square method using Lvenberg-Marquradt nonlinear curve 

fitting algorithm under MTALB optimization tool box. The problem was solved 
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by means of Marc optimization toolbox in Mentat. The obtained results values 

are shown in Table 5.  The constants often turned negative and therefore 

physically are not meaningful. This phenomenon is a numerical hardship i.e. 

negative constants are just values obtained from good fitting and not the 

fundamental material behavior. In another words, these numerical values are 

just constants of the energy function to be used in finite element simulations 

regardless of their negative singe. 

Table 4 Viscosity and relaxation time for short-term data fitting (0-7s) 

Sample  

No. 

Elastic 

modulus  

E (N/mm2) 

Viscosity 

(N/mm2.S) 

Shear 

modulus  

G (N/mm2) 

Relaxation time, 

R (s) 

1 0.1023 32.0208 0.0343 933.5510 

2 0.0465 13.8432 0.0156 887.3846 

3 0.0496 14.3671 0.0166 865.4879 

4 0.1152 16.2898 0.0386 422.0155 

5 0.1637 22.2671 0.0549 405.5938 

6 0.0362 17.8446 0.0121 1474.7603 

7 0.0842 15.2950 0.0283 540.4593 

 

Table 5 Material constants obtained by tension tests with Mooney Model Eq. (11) 

Sample Material constants 

C1 C2 C C

1 45.5837 -49.9435 -2.1799 25.8675 

2 47.3025 -50.7251 -1.7113 37.5834 

3 38.588 -41.5288 -1.4704 29.2092 

4 60.8695 -67.4353 -3.2829 27.2877 

5 63.8834 -70.3662 -3.2414 32.6178 

6 97.7597 -110.7 -6.4702 20.4716 

7 80.444 -91.4945 -5.5252 12.9236 
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6.3.2 SECOND ORDER MOONEY –RIVLIN ENERGY FUNCTION  

In order to obtain a good fitting with the experimental data, other 

Mooney-Rivlin model called the second order invariant energy function is used. 

In this model the energy function has four independent material constants as 

shown in equation  

        21202111201110 33333  ICIICICICW      (14) 

The constants C10, C01, C11 and C20 for the seven samples are listed in 

Table 6. 

 

Table 6 Material constants of the Mooney second order model, Eq.(14) 

Sample Material constants 

C10 C01 C C

1 901.73 -989.845 -1247.72 704.307 

2 115.333 -118.983 -506.401 374.867 

3 -35.7247 40.7749 -228.505 217.773 

4 -92.0673 99.946 -34.3133 84.9795 

5 -88.3484 95.4644 -0.711579 58.3431 

6 -3.96832 2.86042 -57.8437 75.7684 

7 136.724 -145.628 -438.653 318.694 

 

6.3.3 SLIGHTLY COMPRESSIBLE ENERGY FUNCTION 

In this model, the heart tissues are taken to be virtually incompressible and 

slightly compressible. Such energy function is given by the following formula 

called Ogden model.  
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where, n and n  are material constants, K  is the initial bulk modulus, and 

J is the volumetric ratio defined by 221 J  where 21,  and 3  are the 
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principal stretch ratios.  The order of magnitude of the volumetric changes per 

unit volume should be 0.01[17]. Usually, the number of terms taken into 

account in the Ogden models is 2N  or 3N . Heart Material constants 

obtained from fitting experimental tension tests with Ogden Model (Eq. 15) are 

listed in Table.7.  

The Ogden model is different from the Mooney-Rivlin model in several 

respects. The Mooney material model is defined with respect to the invariants 

of the right or left Cauchy-Green strain tensor and implicitly assumes that the 

material is incompressible. The Ogden formulation is defined with respect to 

the eigenvalues of the right or left Cauchy-Green strain, and the presence of the 

bulk modulus implies some compressibility. Using a two-term series ( 2N ) 

results are in identical behavior as the Mooney mode if: 101 2C , 21  , 

012 2C  and 22  .  

Table 7 Material constants of Eq.(15) obtained by experimental tension test.  

Sample Material constants Exponents Bulk 

modulus, K 1 2  

1 0.165099 0.120588 6.07525 17.5329 7793.21 

2 0.802652 0.168456 1.81091 17.2524 10899.5 

3 9.0895e-6 0.122669 8.23129 18.7237 5742.07 

4 0.155817 2.5933e-6 17.4716 1.93636 6805.97 

5 3.1452e-6 0.184943 14.9739 17.0188 7868.91 

6 0.430376 1.1435e-6 14.1682 11.3681 15244.2 

7 1.1691e-7 0.195871 19.5630 16.5728 8115.31 

 

6.4 PARAMETERS  AND   OF THE RELAXATION FUNCTION 

In section (4.3), viscohyperelastic energy function is given by Eq. (10) or (11) 

which are based on a multiplicative decomposition of a standard 

Mooney-Rivilin or Ogden form strain energy function,W , for instantaneous 

deformation and a relaxation function  tR , in a Prony series form Eq. (16). 
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From equation (16) the relaxation function (for N=2) is stated as; 

        2211 exp1exp11  tttR        (16-a) 

 

Fitting the relaxation experimental data with the relaxation function,  tR , the 

four parameters 1 , 2  1  and 2 are obtained and listed in Table 8. 

According to experiments, the relaxation function  tR  was assigned two 

relation terms; one ( 1 , 1 ) for fast relaxation and the other ( 2 , 2 ) for slow 

relaxation where n is a nondimensional multiplier and n is the associated 

time constant.  

 

7. EFFECT OF AMOUNT OF INFORMATION ON THE 

CONSTANTS OF THE ENERGY FUNCTIONS 

We conducted a series of fits for Mooney Rivlin model (Eq. (2)) that used 

progressively more information as the basis for the curve fitting. Mixed biaxial 

and volumetric compression data taken from literature [1,4] is used together 

with our uniaxial experimental data to assess the constants of Eq. (2). Table 9 

summarizes the constants calculated in each case. The conclusion is that adding 

biaxial data to the uniaxial data had a strong influence on the quality of the fit 

and changed the constants greatly. However, adding further volumetric 

compression data has no effect on the calculated constants. Also we conducted 

a series of Ogden 2-term fits that used uniaxial data, uniaxial plus biaxial data, 

and uniaxial plus biaxial plus volumetric compression data as the basis for the 

curve fitting. Table 10 summarizes the coefficients calculated in each case. It is 

seen that the coefficients are markedly different, because Ogden model is 

slightly compressible and therefore it is sensitive to volumetric compression 

data.  

 

 

  



M. A. Hassan 436 

Table 8 Material parameters of the relaxation function  tR , Eq.(16-a) 

Sample Material constants & characteristic time 

1
  s s

1 0.119711 0.107819 1.30735 31.4354 

2 0.0646184 0.148176 0.839879 11.9404 

3 0.0870321 0.157065 0.730225 12.8898 

4 0.113847 0.443071 2.06061 7568071 

5 0.0789365 0.229058 1.7787 43.3071 

6 0.191661 0.404167 2.388 894404 

7 0.0410269 0.0921218 0.308696 10.0431 

 

Table 9 Effect of amount of experimental data on energy function coefficients, 

Eq.(2) 

 Uniaxial 

data 

Uniaxial + biaxial 

data 

Uniaxial+ biaxial + Volumetric 

compression data 


C1 80.444 1.14558 1.14558 

C2 -91.4945 -0.56398 -0.56398 

C3 12.9236 7.3890 7.3890 

C4 -5.5252 0.2908 0.2908 

 

Table 10 effect of amount of experimental information on the coefficients of 

Eq.(15) 

 Uniaxial 

data 

Uniaxial + biaxial 

data 

Uniaxial+ biaxial + Volumetric 

compression data 


 1.1691e-7 0.081591 0.00109773 

 0.195871 128.809 0.00343129 

 19.563 4.63289 6.8558e-7 

 16.5728 0.0001516 3.2820e-8 
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8. CORRECTION OF MATERIAL CONSTANTS 

Strain energy functions used in the above sections for the passive material 

properties of cardiac muscle, are based partly on observations of tissue 

microstructure and partly on the results of uniaxial and/or biaxial and 

volumetric testing of tissue sheets. There is always some doubt, however, that 

in vitro tests can completely define the in vivo material properties. For these 

tests on passive tissue in particular, it is impossible during samples preparation 

to avoid some disruption of perimysial collagen (very thin tissue covering the 

heart muscles). A judicious combination of in vitro and in vivo tests is therefore 

needed to determine the material parameters. Finite element model of large 

deformation heart mechanics can be used for this purpose with clinical 

Magnetic Resonance Imaging (MRI) tissue tagging measurements. Another 

important reason for correction and deriving material parameters from clinical 

intact heart measurements is to assist with the diagnosis of heart disease-many 

disease states can be characterized by the underlying tissue properties. 

The correction process is based on the nonlinear FE Analysis and proceeds as 

follows: 

1. Select an initial set of material parameter estimates (Tables 5-7). This 

choice is based on the parameters estimated from the uniaxial tension 

tests. 

2. Substitute the current material parameter estimates and predetermined 

strain field into the stress-strain relations and use the FE ventricular 

mechanics model to compute the internal stress field and external loads 

(nodal forces) required to maintain equilibrium. 

3. Compute a set of error residuals, based on the differences between the 

experimentally measured external loads and the nodal forces computed 

using the model. 

4. Minimize these error residuals with respect to the unknown material 

parameters using a suitable nonlinear optimization technique, such as 

Levenberg-Marquardt or sequential quadratic programming.  

This algorithm is shown schematically in Fig. 9 and could be applied for 

each deformed state arising from the FE model resulting in several sets of 
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estimated material parameters with associated sets of error residuals. Overall 

parameter estimates could be based on simple averages of the individual 

parameter estimates across the different states of deformation. A better 

approach may be to combine the sets of error residuals from the various 

deformed states and minimize this global set of residuals with respect to the 

unknown material parameters. 

Fit undeformed

and deformed heart

geometry model to

MRI

Estimate

Material

parameters

Use energy

function to

evaluate

stress tensor

Use FE equations

together with

measured ventricular

blood pressures to

evaluate residuals

Error

Optimization algorithm

Fig. 9 Estimation algorithms for material parameters 

 

9. CONCLUSIONS 

A very precise test rig has been established for making uniaxial and relaxation 

tests in order to determine mechanical properties of biological tissues.  Many 

tensile and relaxation tests are conducted for heart muscle samples taken from 

left ventricle of a guinea pig.  Muscle material behavior was modeled by a 

hypo-elastic, hyper-elastic or viscohyperelastic models. Material parameters/ or 

the constants of the constitutive relation are determined by fitting the 

experimental data with these models using MATLAB and MRAC optimization 

tool boxes.  Because, the period of the heart cycle is 800 ms and measured 

relaxation time is very large, the stress relaxation in heart tissues is very small 

and can be ignored confidently.  Therefore viscoelastic model is not 

appropriate for simulation of the heart mechanics because of large 

computational time and maybe instability problems would occur. We conclude 

that Hypoelastic and hyperelastic models simulate the proper mechanical 

behaviors of the heart muscle and their constitutive relations could be used to 

regenerate the experimental data. Although uniaxial tension test gives a good 

initial material properties, but more experimental information is needed to 
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model the response of heart material under any loading conditions. To 

overcome this problem and avoid exhaustive experiments and to ensure more 

precise mechanical properties, an optimization algorithm was proposed to 

correct and estimate real material parameters from simple uinaxial test and 

clinical intact heart measurements (MRI or sonography). 
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قياس الخواص المرنة والمرنة اللزجة الغير خطية لعضلة البطين اأيسر لقلب 

 خنزير غيني
تعتبر الخواص الميكانيكية أنسجة عضات  اللباه  ال المةاكبة الجو رياة لاة عمبياة الملاكااة الليوياة 

بخاواص المرناة ل ااا البلاب بدراساة عمبياة وتلبيبياة  لميكانيكا اللبه باستخدام العناصر الملدوده. يلاوم
والخواص المرنة البزجة الغير خطية لعضابة لباه الخنزيار الااب يةابر ك ياراو لاة خواصار ولدا ار للباه 
اإنسان. استخدم  النتا ج العمبية اختبارا  الةد الدليق لة اتجاه والد لتعيين  واب  النمط او المروناة 

. كمااا لن ااا اسااتخدم  لااة تعيااين  واباا  الاانمط الغياار خطااة او (Hypoelastic)الضاا يبة الغياار خطااة 
 hyperelastic)( والاب يم ل بدالاة طالاة اناعالياة اا  مروناة زا ادة Hyperelsaticالمرونة الزا دة )

strain energy function)  .بالنسبة لبخاواص البزجاة للاد تام تعيين اا مان اختباارا  اارتخاا .  لماا و
خواص المرنة البزجة تم تلبيبي ا باساتخدام دالاة طالاة توصاس السابوف ااناعاالل الباز  والتال بالنسبة لب

للاصال   Multiplicative Decomposition Theory  ل متعادد الطبلااصاتعتماد عباة نيرياة الا
 Prony)لة صورة متسبسبة   ضره دالة طالة اناعالية اا  مرونة زا دة مع دالة ارتخا  ويكون الناتج

series). 
للساه ال واب  لكل نوع من لنواع السبوف  (non-linear fitting and optimization)لستخدم للـ  

جد من ختل الدراسة ااكبينيكية لبلبه لن الخواص الغيرخطير اواتاً المرونة الض يبة لد و ال اب .  و
جة عضبة اللبه ألمال  ل اأم ل لتوصيس استجابة لنس (Hypoelastic & hyperelastic)والزا دة 

 Relaxation time)الضغط والةد. لما بالنسبة لبسبوف البز  ليمكن إ مالر أن  اب  ول  التراجع 

constant)   ًالملســوه من منلة اارتخـا  كان كبير جداً جـدا(700s)  بالنســبة لزمن دورة لركة
كل نلصل عبة لك ر دلة لبخواص . ولخيرا ل(ms 800)الاب كان  (heart beating cycle) اللبه

الاب يعتمد عبة تلبيل الخطأ بين لركة اللبه باستخدام  Optimizationالميكانيكية عن طريق الـ 
العناصر الملدودة ولركتر اللليلية المأخواة من لةعة الرنين المغناطيسل والف بتعديل الليم العمبية. 

الميكانيكية اللليلية لعضبة اللبه عن طريق بعض تلديد الخواص الملترلة يمكن بواستط ا   اه الطريلة
  اللياس  العمبية كليمة مبد ية واستخدام العناصر الملدودة ولةعة الرنين المغناطيسل.
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ليب يمكننا من تلديد  اللبه  اا البلب او لا دة كبيرة لة مجال ال ندسة الطبية وبخاصة ميكانيكا
ساعد بدور ا لة تطوير مادة تستخدم لة صناعة اللبه ت لعضبة اللبه والتل الخواص الميكانيكية اللليلية

            ااصطناعل.    
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