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Although the brain recognizable wave patterns are of limited vocabulary
representing finite number of states, the dynamics and moral conditions
made it unlimited and subject to severe variations. To enhance the
response to certain order, these variations should be augmented in such a
way that the brain responds to the nearest meaningful order. In this paper
the retention of mental state to the nearest meaningful order is simulated
by the retention of nearby periodic orbits out of a chaotic flow. A
distributed chaotic generator is used to imitate an intermittent behavior
with the laminar phase representing the definite mental tasks and the
bursts representing the noisy or undefined tasks. In the intermittent section
of the response the nearest periodic response is period three. An algorithm
based upon the hidden Markov chain has been developed to retain periodic
responses out of the chaotic flow.

1. INTRODUCTION

Brain-Computer Interfaces (BCI) are communication systems which enable users to
send commands to computers by using brain activity only, this activity being generally
measured by ElectroEncephaloGraphy (EEG) [1]. Most EEG-based BCI are designed
around a pattern recognition approach: in a first step features describing the relevant
information embedded in the EEG signals are extracted. They are then fed into a
classifier which identifies the class of the mental state from these features. Therefore,
the efficiency of a BCI, in terms of recognition rate, depends mostly on the choice of
appropriate features and classifiers[2]. A good feature extraction algorithm should
capture the relevant information related to each targeted brain activity pattern (or
mental state) while filtering away noise or any unrelated information[3]. The ability of
computers to enhance and augment mental and physical abilities and potential is of
great interest. It is becoming a reality after being a dream of science and fiction [4].
One of the important military applications of BCI (Brain Computer Interface) is the
instant broadcasting of a command from the commander's brain to the troops under his
command. A commander needs only to think of a command to instantly broadcast it to
other troops. Fighters also need fast reaction during air raids. This can be achieved
using a BCI. The BCI also holds the promise of bringing sight to the blind, hearing to
the deaf, and the return of normal functionality to the physically impaired. The brain
signal undergoes severe dynamics as it represents unlimited vocabulary. In this respect
it resembles a chaotic flow in the vicinity of periodic orbits. In chaotic conditions, the
system loses memory to itself (undefined mental task) in the periodic state the system
retains memory (a defined mental task). So, if a Markov algorithm can retain periodic
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flows out of chaotic ones, it can be used to define mental tasks out of unlimited
vocabulary.
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Figure 1. Distributed Chaotic Generator

The circuit shown in Fig.1 is the distributed chaotic generator. The state
equations of which is given by:
Vi (D)= v () - Z, f(vy)

v (t+T)=pvi(0) , (1
f(v))=-v1 + v

where, v'; and v’, are the reflected voltages at the transmission line ends, p is the
reflection coefficient at the load side, Z, and T are the characteristic impedance and the
delay time of the transmission line respectively, and R, is the load resistance, Assuming
the load is matched and the transmission line is lossless, advancing the state vector one
cycle the system in (1) reduces to:

v (t+2D)=R; v’ | (t+T) (1-v"; (t+T)) 2)

The above equation is similar to the logistic map [5].

2. CHAOTIC TIME SERIES GENERATION USING THE
DISTRIBUTED OSCILLATOR

Using equation (2) with the bifurcation parameter R, varying from 2.5 up to 4 the
dynamics of the system are shown in the bifurcation diagram of Fig.2. The period 3
window appears at the value of 3.827940 for the bifurcation parameter R,
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Figure 2. Period ( 3 ) at (R, = 3.827940)
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In time domain, with R; = 3.827940, 100,000 iterations produce the time series
shown in Fig.3 where laminar phases interrupted by bursts representing defined and
undefined mental tasks.
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Figure 3. The reflected voltage at the load side with R=3.827940

We can distinguish the periodic part from the chaotic part by observing period
( 3 ) which repeats the values {0.956 0.160 0.514}. These three successive values
may occur one time, in this case it is called period (1) and may be repeated {2,3,4,5
,6,7,8,9,10,11,12,13, 14, 15} times , each repeat will be named according to
the period[5]. Table 1 shows the period count. The distribution curve showing the
probability density of each period relative to the total number of iterates is shown in
Fig.4.

Table.1 The count of periods

Period | | 2 3 4 5 6 |7 |8 |9 [10|11 12|13 |14

15

Count | 1119 526|276 | 174 | 124 |78 | 72 | 76 | 50| 70 | 50 | 75 | 704 | 126
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Figure 4 Distribution of periods in the periodic part of the time series.
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After counting the probability of occurrence of the periodic iterates (laminar
phases), we can compute the probability of occurrence of the chaotic parts (bursts) by
subtracting the total count of periodic parts from the total number of iterates.

The count of the periodic parts = 54858 iterations. The count of the chaotic
parts = 45142 iterations.

3. MARCOV CHAIN MODELING

In this section, we model the intermittency chaos by using Marcov Chain. The
probability of existence of each period related to total iterations is shown in Table 2.

Table 2 The probability of existence of each period related to total
iterations .

Period 1 2 3 13 14 15

Ratio 0.01119 | 0.00526 | 0.00276 0.00104 | 0.00126 | 0.00445

To calculate the transition probability between the states, we should count the
existence of each period related to the other periods is shown in Table 3.

Table 3 The existence of each period related to the other periods .

Period | 1 2 3 14 15

Count | 0.10095 | 0.06738 | 0.05160 0.01713 | 0.01335

In order to design the Markov model we consider that every period in the
periodic part presents one of the states {S1, S2,....... , 315} and all the chaotic parts
present one state (SO). Each period has only two probability transitions, one to the next
state and the other to the state (SO) except (S15) which has only one transition to (S0)
such that:

= Q(Sn)=1 (3)
Where the summation is carried out over the whole length of the sequence. To

determine the ratio of the chaotic period we should count the iterations in each periodic
period as shown in Table 4.

Table4 Probabilities of periodic and chaotic parts .

Period | ! 2 3 14 15 All All
periodic | chaotic
Ratio | 0.03357 | 0.03156 | 0.02484 0.05292 | 0.20025 | 0.54858 | 0.45142
Q(Sn)=P(Sn/Sn-1) Q(Sn-1) (0<n<L) 4)

From equation (3) we can compute the probability of transitions between
states, where (n) is number of periodic states, N is number of total states, Q is the
existence of each period related to the other periods and P is the probability of
transitions between states.
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P(Sn+1/Sn) +P(SO/Sn) =1

(0<n<N).

®)

Equation (5) shows that the probability of transition from the state (n) to the
next state (n+1) plus the probability of transition from state (n) when it turns back to
chaotic part which presented here in state ( SO ) equal one. It means that all states have
only two transitions, one from itself to the next and the other one when it turns back to
state( SO ) except (S15 )has only one probability that it turns back to the state( SO ), All
the transition probabilities was calculated from equations (4 and 5) and results shown

in Table 5.

TableS Transition probabilities between different states.

Probability of transition from

state (n) to (n+1)

Probability of transition from

state(n) to(0)

PO,1 = 0.22363 P0,0 = 0.77637
P1,2 = 0.66746 P1,0 = 0.33254
P2,3 = 0.76581 P2,0 = 0.23419
P3,4 = 0.83953 P3,0 = 0.16047
P4,5 = 0.87950 P4,0 = 0.12050
P5,6 = 0.90236 P5,0 = 0.09764
P6,7 = 0.93194 P6,0 = 0.06806
P7,8 = 0.93258 P7,0 = 0.06742
P8,9 = 0.92369 P8,0 = 0.07631

P9,10 = 0.94565 P9,0 = 0.05438

P10,11 = 0.91954 P10,0 = 0.08046

P11,12 = 0.9375 P11,0 = 0.0625

P12,13 = 0.9 P12,0 = 0.1

P13,14 = 0.84593

P13,0 = 0.15407

P14,15 = 0.77933

P14,0 = 0.22067

P150=1

N-1

Q(SO):Z P(SO/Sn) Q(Sn) +Q(SN)

n=0

(6)

Getting all of the state transition probabilities is shown in Table 6, we can now
design the model that describes the time series generated by the distributed chaotic

generator.
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Table 6 : State transition matrix of state probabilities

50 51 §2 53 S0 55 55 57 38 50 S0 511 52 513 54 8IS
50 ﬁ?ﬁ? e A \\
81 [ 033254 0 06 0 § ¢ @ ¢ 9§ 4 & ¢ §¢ ¢ §& 3§
2 | 023419 0 g OWsEL 0 4 § 9§ 9 & ¢ 94 ¢ 4 § 4§
83| 016M7 0 0 9§ 0e8¥®H\I ¢ ¢ 94 ¢ ¢ 4 9 4 4 3
51 | 012050 0 @ 0 Qos®s ¢ § ¢ ¢ § @& ¢ ¢ @ @
55 | 009754 0 @ @ @ gQosmsEc § ¢ @ § 9§ 9§ §
%5 | 008305 i ¢ ¢ § 9§ gom®mao ¢ ¢ ¢§ § 4 ¢ 4
57 | oo8mz 1 @ 9 § @ 9§ gomz0 ¢ § § ¢ 4 @
8 | 0o7El 1 @ ¢ ¢ 9 ¢ § QoIm®EJI § § 4 4 g
2 | 005438 0 ¢ ¢ § 9 ¢ § § ¢ 48450 g ¢ § @
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515{ : 2 & & 2 2 L & £ 2 & & & E/

Equation 6 is the Markov model. The elements of which can be obtained by
substituting in the state transition matrix shown in Table 6.

To check the validity of the model we use the model equation to generate again
a time series of 100,000 points. The result is shown in Fig.5. The distribution of

periods from the regenerated data using the Markov model is also shown in Table 7
and Fig 6.

Table7: Count of the three successive values generated from model

Period 1 2 3 4 S5 |16 7|89 |10)11|12] 13 | 14 | 15

Count | 1090 | 496 | 298 | 188 | 137 | 80 | 66 | 88 | 49 | 78 | 44 | 76 | 106 | 122 | 433
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Figure5 The regenerated time series from the Markov model.
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Figure 6 Distribution of periodic part generated from the model.

The model can further be used in reducing or removing the noise or bursting
phase and increasing the weight of the laminar phase corresponding to definite mental
tasks. This can be easily achieved by tuning the state transition matrix. Tuning may be
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by increasing the transition probability of one or more periodic state to the next
periodic state. Figures 7, and 8 show the results of tuning the state transition matrix.

Now we able to over come the existence a large amount of undesired -chaotic-
by determine one or more parameter can control in the existence ratio of chaotic states.
We succeed in decreasing the chaotic ratio to more than 65% .
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Figure 7 the regenerated time series before tuning ( P01=0.22363)
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Figure 8 The regenerated time series after tuning the state transition matrix (PO1=1)
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4. CONCLUSIONS

Due to the difficulty in obtaining real data corresponding to definite mental tasks, a
distributed chaotic generator is used to generate a chaotic time series including laminar
and burst phases (intermittency) that resemble defined and undefined mental tasks. A
Markov model based upon the period count is designed. The model adequacy is tested
by regenerating the chaotic time series. The model also shows efficiency in reducing
the chaos irregularity.
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