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This paper presents fuzzy controller design using aolony
optimization algorithm (ACO-FC). The objective o€@-FC is to
improve the control performance and design easkizfy controller.
In ACO-FC, the antecedent part (IF part) of a fusygtem is flexibly
partitioned in grid type, and the consequent patiEN part) of each
rule is selected by the ants where the route ofminis regarded as
combination of consequent actions selected fromyewée. Searching
for the best one among all consequence combinatsohased mainly
on the pheromone matrix among all candidate actidres verify the
control performance of ACO-FC, simulations on gositcontrol of a
DC motor are performed. Comparison with PID likeZy controller
demonstrates the advantages of ACO-FC.

KEYWORDS: Ant colony optimization (ACO), fuzzy controller
design, position control.

1. INTRODUCTION

It is well known that fuzzy systems have been widabpplied in many
applications such as pattern recognition, imagecgssing, cluster analysis,
decision analysis and automatic control. However dperation of fuzzy rule
derivation is often difficult, consuming time andquires expert knowledge
although the human experts find it difficult to exae all the input - output data
from a complex system to obtain a set of suitablesr for the fuzzy system
hence the performance of the fuzzy controller néleéd improvement.

In order to solve this problem, several neural yuggstems have been
proposed to automate the design of fuzzy systein&],lmany researchers have
proposed optimization methods using meta-heuratgiorithms such as genetic
algorithms (GA) [3]-[7], particle swarm optimizatiPSO) [7] [8], and ant
colony optimization (ACO) [9 ]-[20] . The ACO algtim is a novel heuristic
algorithm, may be considered to be part of swarelligence that is inspired by
the observation of the behavior of real ants irureasearching for food. The
ACO is a multiagent approach where the artificiatl @lonies cooperate to find
optimum solutions for difficult discrete optimizati problems [9]-[11] and
continuous optimization problems [12]. ACO algonith have been successfully
applied to a number of different combinatorial optiation problems, such as
data mining and network routing [14] [15]. The wbdf meta-heuristic is wide
and developed .several characteristics make AC@Qigue approach such as a
constructive, population based meta-heuristic wieigploits an indirect form of
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memory of previous performance to avoid the eriothe following stages from
the problem.

A fuzzy system consists of a set of fuzzy IF-THENes that describe
the input-output mapping relationship of the systanthe fuzzy controller (FC)
design includes designs of antecedent part (IF pad consequent part (THEN
part) as the antecedent part can be partitionedvance so the bottleneck in the
fuzzy system design is the consequent part hentasrpaper the ACO will be
applied to design the consequent part.

Applying the ACO algorithm to an FC design is cdll&CO-FC which
optimizes the consequent parts. The ACO-FC hasrgpamble performance to
other meta-heuristic algorithms [13] so this pap#irfocus on using ACO-FC.

Position control of the DC motor has attracted aersble research and
several methods have proposed. This paper willyappsition control for a DC
motor using ACO-FC based PID controller.

This paper is organized as follows. Section 2 dessrthe fuzzy logic
controller to be designed using ACO. The basic eptecof ACO are introduced
in Section 3. Section 4 presents the fuzzy comralesign by ACO. Section 5
describes the system model. Simulation results aaldressed in section 6.
Finally, conclusions are presented in section 7.

2. FUZZY LOGIC CONTROLLER

Fuzzy control techniques have attracted signifigar@rest and have become an
important part of modern control engineering. Fuzagtrol is a method of rule-
based decision making used for expert systems @wégs control that emulates
the rule-of-thumb thought process used by humamgsei

A fuzzy system is characterized by a set of linguistatements according to
expert knowledge that is usually represented inftinen of “IF-THEN” rules
expressed as:

IF (a set of conditions are satisfied).

THEN (a set of consequences can be inferred).

The antecedent and the consequence of these IF-THIEN are
associated with fuzzy concepts, so they are oftalted fuzzy conditional
statements. In fact, the antecedent is a conditiats application domain and the
conseqguence is a control action for the systemruratgrol. The conditions and
actions are linguistic terms represent the valdesmpmut and output variables.
The Basic configuration of a fuzzy logic controliershown in Fig.1.

Knowledge Base

Y

Crisp Output

Crisp Input
—> —

Fuzzification Inference .| Defuzzification
interface System interface

A

Fig.1: Basic configuration of a fuzzy logic conteol
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Fuzzy logic controllers are rule based systemsisboktwo main components:
« The Knowledge Base (KB) that represents the knogdedbout the
system in the form of fuzzy linguistic IF-THEN rgleThe KB consists
of the Rule Base (RB) where the RB is a collectibringuistic rules
also, and of the Data Base (DB) which contain te¢és sand the
membership functions .the fuzzy linguistic ruleusture considered in
linguistic fuzzy rule base systems is the following

R, : If x,isA, and..............andx  is A, THEN Y is B, (1)
Let i be an index for a fuzzy rule numbgr, ,...... , X, and Y are the
input and output variables respectively ,amd ,........ A, and B; being

linguistic labels , each one of them having asged a fuzzy set defines its
meaning [16] .
* The inference engine includes three components:

1. A fuzzification interface: Converting crisp inptdéta into fuzzy sets
described by linguistic expressions.

2. An inference system: uses the output of the fuzaiion interface
stage together with the KB to calculate fuzzy outpe. evaluate
activation strength of every rule and combine thetron sides.

3. A defuzzification interface: calculates actual puiti.e. converts
fuzzy output into a precise numerical value to Ipplied to the
process.

In the fuzzy controller of mamdani type which wikk used with ACO in
this paper the th rule denoted af is represented in the following form:

R:If X;(k)is A, and ...andX (k) is A, THENu(k) is a (2)

Where k is time stepX; (K) ,...... , X, (k) are the input variablesi (k) is
the output action variable A, is a fuzzy set anda, is a crisp value .fuzzy
setsA, uses triangle membership functions .In the infeeeangine the fuzzy
AND operation is implemented by algebraic minimunfuzzy theory . So given

an input data setX = (X,..X,) the firing strength @(X) of rulei is
calculated by

¢i(x):,~rﬂinn Ha (X)) )

Wherep, is the membership degree for the fuzzy Aetf there arer
rules in a fuzzy system, the output of the systemailculated by the weighted-
average-defuzzification method as

EDNRICIL
> a8 (X)

Whereg is the rule consequent value in equation (2).

(4)
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3. ANT COLONY OPTIMIZATION (ACO)

The ant colony optimization was developed in ed890s by Dorigo et al [9].
The ACO technique is one of the meta-heuristicrop@tion methods and is
inspired by observation of real ant colonies. Radt are capable of finding the
shortest route from a food source to their nesitploiting a chemical substance
called pheromone which records the information madce. In real world ants
move randomly without using other information iaily and lay some
pheromone on the paths. After that each individudlmakes a decision of the
moving direction based on the strength of the phmerte trails on the ground.
The path which have higher amount of the pherontaiks on the ground is the
better. While more and more ants walking to ther@adiood, the shortest path
accumulates the more pheromone this in turn inesedse number of ants
choosing the shorter path. Finally the ants wilidfithe shortest path. This
phenomenon has inspired the artificial ant coldggrthm in which a colony of
ants cooperate to the solution of a problem by amghng information via
pheromone deposited on the paths where the phemwane represents the
memory of the artificial ants .ACO algorithms cam d&pplied to problems that
can be described by a graph consisting of node®dgeés connecting the nodes.
The edges between the nodes on the graph carrystwies of information
which service the ants to choose the correct patie two sources are the
pheromone valug and heuristic valugg where heuristic value represents a

priori information about the problem instance defam. The solutions to the
optimization problem can be expressed in feasibtbgpon the graph. The ACO
can be used to choose a path among the feasiltie which has minimum cost.

The performance measure is based on a qualityiﬁmt([)]. The first member

of the ACO algorithm called ant system AS [9]. T&® was successfully applied
to the traveling salesman problem (TSP). The TS/sph central role in ant
colony optimization because it was the first prableo be attacked by ACO
algorithm [18]. The TSP objective is to find a nmal route length for a
salesman to take in visitiny cities with each city being visited once. This
problem can be represented by a graph Wittodes represents cities aatheing

a set of edges fully connecting the nodes. diebe the length of the edge
(i,j)DE that is the distance between citiesand j withi, jl0 N. The
probability of choosing a certain city is calculated using the mount of
pheromone on edge between citieendj, and the distance between these two
cities. As in [13] [20] the probability with whichn antk chooses to go from city

i to cityj is

Folby
Pr(t) = > o In, ¥ f jON,

ION K

©))
0 Otherwise

where T; (t) is the amount of pheromone trails on edgej)(at iterationt

M = ]/dij is the heuristic value of moving from cityo cityj, N* is the set of
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neighbors of city for theK" ant, and parametes controls the relative weight of

pheromone trial and heuristic value. As in [20kafill ants have completed their
tours, the pheromone level is updated by

7, (t+1) = (1= p).7, (1) + A7, (1) (6)

where 0< p <1 is the pheromone trail evaporation rag@, must be set to a

value < 1 to avoid unlimited accumulation of pheoom [9]. The update value
Ar, is related to a quality valié which is used to measure the performance of

each ant path. There are several updating rulesfohave been studied in [17].

The quality value is calculated based on the aptitin for example the quality
function for a control system represents the irvarsthe sum of the absolute
error.

1

F = .
> e (k) (1)
wheree(k)is the error signal ardlis the number of iteration.

4. FUZZY CONTROLLER (FC) DESIGN BY ACO (ACO-FC)

The FC antecedent part can be partitioned in advanthout much difficulty.
The problem of the design of consequent part caeesented by a graph with
N nodes which represent the candidate control actodsthe edges connecting
the nodes. Let the candidate control actions baehid= {u,, W, . . ., W} where
the number of candidate consequent valuesgof equation (2) iN for each
rule. For each rule, one of tiecandidate actions is chosen. If there rarales
then the complexity of finding the best conseqummhbination isN'. The ACO
algorithm is used to find the solution. The toureath an ant is regarded as one
combination of consequent values selected fromyevie.

* The Algorithm of ACO-FC

To see the tours of ants through rules as shoviigr?, for example there are
three rules denoted b, R, and R; in a fuzzy system and three candidate
consequent valuas, U, andus for each rule. The starting from the nest, the ant
moves throughr, andR, and stop aRs. The bold line in Fig.2 indicates the tour
of this ant. For each rule the node visited byaheis selected as the consequent
value of the rule. Each ant in the colony will hduezy system. For the whole
fuzzy system constructed by the ant, the consequadnés inR;, R, andR; are

Uz, Uy andu, respectively. Selection of the consequent valtes fule to other is
based on the pheromone trails between the rulespifibromone matrix in Fig.2
includes the first row which represents the initiénsity of pheromone trails. It
is set to a small positive constant [9], [13] ttesethe first fuzzy rule consequent
action. The transition probability for selectinghsequent valug; in fuzzy rulei

in ACO is calculated by:
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7y (1) (8)

rim (t)

Pij (t) =

M-

=1

3

Wherei =1,...,r andj =1,...,N, in this study it is assumed that no a

priori information about the problem is a known the@ ACO works without
heuristic information for ease implementation egqura(8). The pheromone trails
Tj on the ant path are updated by a quality fundéiam equation (7). The higher
F value indicates better performance for the colgrol

R Ry Rs
Ry
Us Rs
() == = | w

V]

To1 To2 To3

Ty T Ti3 Pheromone matrix

™ T T3

a1 T3 Ts3

Fig.2: FC constructed by ant tour and the cornedppy pheromone matrix.

After the construction of a fuzzy controllers witimber of antNys
select the one with the highdsfrom the initial until now as in the ACS [11], if
a new global best ant is found in this iteratioantihe pheromone trails on the
tour traveled by the global best ant are updatbdratise no pheromone update
is performed in this iteration. The new pheromaad t;(t) is updated by:

r;(t+1) = @- p)r, (t) + A7, (t)if (i,]) O global best tour 9)
AT, () =C,[F,, (10)

where the global best ant is denotedawith quality value k., andC; is the
parameter for controlling the amount of update. fitn@ chart of ACO-FC
algorithm is shown in Fig.3.
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End

Fig.3: Flow chart of ACO for fuzzy controller desig

5. SYSTEM MODEL

We consider a DC shunt motor where the transfectfon between the output
angular displacement of this motor shgfs) and its input control action

u(s) after simplification is given by [21]:
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¥(s) — Ko (11)
us) JL,S*+(RJI+BL,)S?+(K2+R,BS

Where R, is the armature resistance in ohrh, is the armature
inductance in HenryK,is the back emf constant in volt/(rad/sek)js the

moment of inertia of motor and load in Kg-m2/rashdaB is the frictional
constant of motor and load in N-m/(rad/sec).by gdime following parameters

R,=2.45 ohm, L,=0.035 H, K, =1.2 volt/(rad/sec), J =0.022 Kg.nirad

,B=0.5*10" N.m/(rad/sec) as given in [21].The overall trangémction of the
system is given below,

u(s) 0.00077s® +0.0539s” + 1441s

6. SIMULATION RESULTS

In this section, the ACO-FC and PID like fuzzy cofler are utilized for
position control of DC motor. In ACO-FC, the numlérants isN =50, and

parameterp and c, are set to 0.9 and 1.9, respectively. The injila@romone
trails T(O) S'are all set to one. The objective is to controlabgput y(k) to track
the desiredy, (k) which is a unit step in task 1 and a sine wavealig task 2.
The controller input variables are errefk) and change of errdve(k), where
&k) =y, (k) - y(k) andAgk) = gk) — ek —1). For each input variable seven
fuzzy sets used five triangles and two trapezoifialincrease control accuracy,
the candidate action numbéX is selected to be larger or equal to the rules
number . By this way, no fuzzy rules are forced to shdme same consequent
action [13]. There are 49 fuzzy rules, for eachzjumile the Control action is
selected from 49 candidates, where the setU=0.7*{-1,-0.958,-
0.916,....,0,...,0.916, 0.958,IFhe quality functionF is defined as in equation
(7) wheren represents the number of iteration equals 100 avitotal number
of 15 runs.

In the simulation a comparison between the ACO-R@ the PID like

fuzzy controller is carried. The IF-THEN rule bafw the PID like fuzzy
controller is presented in [22].

Task 1. The desired trajectory is:
A unit stepy, (k) =1
Casel: the system without disturbance

Figure 4 shows the simulation results of ACO-FGsusrFC under step response.
Tablel shows that The output of DC motor using ARDA4s better than FC
where the maximum overshoot is smaller, the sygierormance is faster where
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settling time and rise time is smaller in case ABO-and the error function for
performance evaluation is defined to be the ro@msxuare error (RMSE)

S (yy (k) —y(k))?
RMSE = \/k-l (13)

n

The RMSE for ACO-FC is better than FC. Although &xecution time
for ACO-FC program is greater than FC program haetperformance of ACO-
FC is better than FC, in addition to automatingdkesign of fuzzy systems and
avoiding the difficult of derivation of rules in Zmy systems. Here the execution
time on a PC with Intel core 2 duo, 2.1 G- HZ.

Table 1.Comparison of results

Methods ACO-FC FC
Settling time 0.48 0.78
Rise time 0.08 0.12
Maximum over shoot 0.07 0.08
Peak time 0.18 0.36
RMSE 0.0449 0.0471
Execution time 7.4 sec 2 sec

T T T 12
i | | i i — ACO-FC error
———— FC error

Al |
|

0.8 5

0.6

error signal
. a
N
H—————
I

r Desired output
0 i i i i i i FC output
o 05 1 15 2 25 3 35 4 45 5 245
Time (sec)

05 1 15 2 25 3 35 4 45 5
Time (sec)

() (b)

ACO-FC control signal
2 Rttt FC control signal

control signal

Fig.4: Simulation results for position control o€Dnotor without disturbance
a) output response, b) error signal, ¢) contraiaig

Case2: the system with disturbance

Figure 5 shows the simulation results of ACO-FGsuerFC under step response
with step output disturbance of magnitude 10% atdec. From the simulation
results, Table 2 shows that the ACO-FC still makessystem faster, maximum
overshoot is smaller, and the system became capablevercoming the
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disturbance better than FC where RMSE for the systeing ACO-FC is better
than FC. Although the execution time for ACO-FC gyamm is greater than FC
program but the performance of ACO-FC is bettemtliC, in addition to
automating the design of fuzzy systems and avoittiaglifficult of derivation of

rules in fuzzy systems. Here the execution timea &C with Intel core 2 duo, 2.1
G- HZ.

Mohammad El-Bardini; M. Fkirin and Sameh Abd-Elhaleem

Table2. Comparison of results

M ethods ACO-FC FC
Settling time 2.56 2.86
Rise time 0.08 0.12
Maximum over shoot 0.07 0.08
Peak time 0.18 0.36
RMSE 0.0484 0.0587
Execution time 7.4 sec 2 sec
1.2 T 2 —— ACO-FC error
] ':,\—_?__ L) | =m== FC emror

error signal

— ACO-FC output
Desired output
FC output

3.5 4 4.5 5

I
25 3 35 4 45 5

Time (sec)

(@) (b)

ACO-FC control signal

control signal

25 3
Time (sec)

(c)
Fig.5: Simulation results for position control o€Dnotor with disturbance
a) output response, b) error signal c) contraiaig

Task 2. The desired trajectory is:

. 7K
A sine wav k) =sin(—), k=1,..., 1000
&y, (K) (zoc)

Figure 6 shows the simulation results of ACO-FCsusrFC with disturbance of
magnitude 20% at t=2 sec. From the simulation tesilable 3 shows that the
RMSE and the standard deviation (STD) of the surabsblute error for ACO-
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FC are better than FC. Although the execution tioreACO-FC program is
greater than FC program but the performance of ATQOis better than FC, in
addition to automating the design of fuzzy systemd avoiding the difficult of
derivation of rules in fuzzy systems. Here the exieo time on a PC with Intel
core 2 duo, 2.1 G- HZ.

Table3. Comparison of results

Methods ACO-FC FC
RMSE 0.0375 0.0752
STD 0.0370 0.0729
Execution time 7.9 sec 2.18 sec
_ ACO-FCoutput
_— Desired output
PSR b IFl!) nu"cput .

— ACO-FC error
[ - L O S O SR S N i FC error

output
|
T
e

/
r—
T 7 e e
\\
error signal

0 2 4 6 8 10 12 14 16 18 20 01, 2 4 6 8 10 12 14 16 18 20
Time (sec) Time (sec)

(@) (b)

— ACO-FC control signal
----- FC control signal

control signal

Time (sec)

(c)
Fig.6: Simulation results for position control o€Dnotor with disturbance
a) output response, b) error signal c) conigpia

7. CONCLUSIONS

Applying the ACO algorithm to a FC design, calle@®-FC, is presented in this
paper which optimizes FC consequent parts. The I&tion results for the
position control of the DC motor indicate that tA€O-FC provides better
control performance than classical FC especiallgndudisturbance. Using the
ACO makes the design of FC easy and effective. ddminuous ant colony
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optimization may improve optimization performanaedawill be studied in the
future.
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