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ABSTRACT 

Mine haulage drifts are the only stope access in sub-level stoping mining system. Thus, they must 

remain stable during their service life. Haulage drift instability could lead to serious consequences 

such as: production delay, damage to equipment, loss of reserves and high operational cost. The 

goal of this paper is the performance stability evaluation of mine haulage drifts with respect to 

mining sequence adopting different stochastic methods of analysis. A two-dimensional, 

elastoplastic, finite difference code (FLAC 2D) is used for this study. Stochastic analysis; adopting 

Point-Estimate Methods (PEMs), Monte-Carlo Simulation (MCS) and Random Monte-Carlo 

Simulation (RMCS) are then employed with the numerical modelling to tackle the inherent 

uncertainty associated with rockmass properties. Then, the probability of instability at last mining 

step (e.g., after excavating stope 3) is estimated for haulage drift side walls and roof. The stability 

indicators are defined in terms of displacement, stress and the extent of yield zones, which are 

adopted as a basis for assessing the performance stability of haulage drift. The stochastic results are 

presented and compared in terms of probability of occurrence at last mining stage (e.g., after 

excavating stope 3) adopting displacement/convergence criterion. 

Keywords: Probabilistic Methods- Failure Evaluation Criteria- Probability of Instability. 

1. Introduction 

Haulage drifts are the only access where loaders and/or trucks travel through, they must 

remain stable during their service life. Mine haulage drift instability can result in 

production delays, loss of reserves, as well as damage to equipment, and injuries.  High 

stress levels can occur in hard rock masses as well as in soft or fractured rockmasses and 

can lead to unstable state of deformation around deep large excavations [1, 2, and 3].  

A recent study by [3] has revealed that as mining activity progresses, it causes continuous 

stress redistribution around the haulage drift; thus increasing the potential for ground failure. 

The severity of stress changes were shown to depend on a number of critical parameters such 

as the quality of the rock mass and the proximity of the mine drifts to the orebody where 

mining activity takes place. Other parameters that could play an equally important role are the 

size, dip and depth of the orebody. If failure occurs, the drift becomes dysfunctional and is 

closed for rehabilitation work. Thus, it can be said that as the extraction of ore progresses in a 
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planned sequence of stopes or mining blocks, the stability of nearby mine haulage drifts will 

continue to deteriorate. 

Uncertainty and variability govern the geomechanical data collected from the natural 

environment. Thus, a reliable design approach must be able to consider uncertainties, to 

evaluate the probability of occurrence for a system and to take measures to reduce the risk to 

an acceptable level. Reducing the risk can involve the narrowing of the uncertainty range 

(e.g., collection of additional data).  In order to assess the effect of uncertainty, one needs 

probabilistic tools that allow the propagation of the uncertainty from the input parameters 

(e.g., rockmass strength, Young's modulus) to the design criteria (e.g., deformations, stresses, 

extent of yield zones, strength-to-stress ratio).  

In this paper, a simple stepwise methodology, which integrates numerical modelling with 

probabilistic analysis to evaluate the stability of mine haulage drift with respect to mining 

activities, is presented.  The different probabilistic methods of analyses which are used in this 

study will be discussed in the next section. 

2. Stochastic methods  

To characterize the uncertainties in the geotechnical rock properties, the engineers need to 

combine actual data with knowledge about the quality of the data, and the geology. In order 

to develop a reliable design approach, one must use methods that incorporate the statistics of 

the input parameters (means, variances, and standard deviations) and the design criteria. The 

most commonly used methods are the following: Point-Estimate Methods (PEMs), Monte-

Carlo Simulation (MCS), and Random Monte-Carlo Simulation (RMCS). Each has its 

advantages and shortcomings [4-13].  

2.1. Point-estimate methods (PEMs) 

Point-estimate method has widely been used in geotechnical reliability analysis for 

approximating low-order moments of random variables. It is a special case of numerical 

quadrature based on orthogonal polynomials. The PEMs provide approximations for the 

low-order moments of the dependent variable Y starting from the low-order moments of 

the independent variable X. For the function Y= g(x), the random variable X could 

represent rock properties and Y could be a factor of safety or performance function among 

other outputs [14].  

The PEMs require the mean and variance to define the input variables.  In order to 

determine a probability of "failure", where the term "failure" has a very general meaning 

here as it may indicate collapse of a structure or in a general form define the loss of 

serviceability or unsatisfactory performance associated with the performance function 

G(X) [12].  The performance function G(X) can be defined as: 

G(X) = R(X) - S(X)                                                                                                        (1)   

Where R(X) is the "resistance", S(X) is the "action", and X is the collection of random input 

parameters. The failure is implied for G(X) < 0, while G(X) > 0 means stable behavior. The 

boundary is defined by G(X) = 0 separating the stable and unstable state is called the limit state 

boundary. The probability of failure Pf is defined as (see Figure 1 below):  

Pf = P [G(X)   0] =∫  ( )  
 ( )  

                                                                                (2) 
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Where:  f(X) is the probability density function of the vector formed by the variables (X). 

 

  

 

 

 

 

 

 

 

Fig. 1. Limit state concept [15]  

2.2. Monte-Carlo simulation (MCS)  

The Monte-Carlo simulation (MCS) technique is considered as a very powerful tool for 

engineers with only a basic working knowledge of probability and statistics for evaluating 

the risk or reliability of complicated engineering systems [15]. A wide range of 

engineering and scientific disciplines use methods based on randomized input variables 

“Monte-Carlo Simulation”. The MCS method can be quite accurate if enough simulations 

are performed. In the MCS method, samples of probabilistic input variables are generated 

and their random combinations used to perform a number of deterministic computations 

[11]. The MCS consists of sampling a set of properties for the materials from their joint 

probability distribution function (PDF) and introducing them in the model. A set of results 

(displacements, strains and stresses) can then be obtained. This operation is repeated a 

large number of times and an empirical frequency-based probability distribution can be 

defined for each result.  Information on the distribution and moments of the response 

variable is then obtained from the resulting simulations [16].  

The MCS method can be used on existing deterministic programs without 

modifications. As a result they are popular for probabilistic analysis. Like PEMs, they 

allow for multiple response functions in a single model. The essential elements that are 

forming the Monte-Carlo Simulation (MCS) technique have been illustrated by [15] as 

follows:  

 Defining the problem in terms of all random variables;  

 Quantifying the probabilistic characteristics of all the random variables and the 

corresponding parameters;  

 Generating the values of these random variables (see Figure 2 below); 

 Evaluating the problem deterministically for each set of realizations of all the random variables; 

 Extracting probabilistic information from N such realizations; and  

 Determine the accuracy and efficiency of the simulation.  
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Fig. 2. Normal distribution for the generated values of random variable (for 

cohesion of rock mass) 

Note that the MCS technique can be used for both correlated and uncorrelated random 

variables. The accuracy of the MCS technique increases with the increase in the number of 

simulations N. However this can be disadvantageous as it becomes computationally 

expensive, and as such the simulator’s task is to increase the efficiency of the simulation 

by expediting the execution and minimizing the computer storage requirements [15]. On 

the other hand, advantages of the MCS include: 

 Flexibility in incorporating a wide variety of probability distributions without much 

approximation, and  

 Ability to readily model correlations among variables. 

The applications of the Monte-Carlo simulation (MCS) technique are many; such as 

studying the stability of mine haulage drift by varying the material properties of the 

footwall. Hence, the chosen stochastic input variables (e.g. cohesion) will assume a 

distribution from which the material properties of the footwall are assigned. As a result, the 

output of interest from the MCS runs will be recorded and fitted into a distribution that will 

provide the probability of failure. 

2.3. Random Monte-Carlo simulation (RMCS) 

The RMCS technique is used to define the unsatisfactory performance of mine 

developments such as haulage drift stability, and cross-cuts. Means and standard deviations 

are used to define the input parameter ranges, and then random values from a normal 

distribution are selected. This includes varying the material properties spatially within the 

same region; for example, varying the bulk and shear moduli and cohesion properties 

spatially within the footwall by randomly assigning values from a defined distribution to 

zones within the region. Therefore, the input values are different in each zone for a given 

simulation as shown in Figure 3.  

One of the primary goals of RMCS is to estimate means, variances and the probabilities 

associated with the response of the system to the input random seed. The essential 

elements of RMC technique can be summarized as follows: define mean and standard 

deviation of the stochastic variable, pick random values of the variable from a normal 

distribution, assign these values on the FLAC grid at random, generate new initial seed 
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values for each new run, fit the results from multiple simulations to a known probabilistic 

distribution. Calculating the probability of unsatisfactory performance    based on a 

specified condition, e.g. a failure criterion. RMCS deals with spatial uncertainty at the 

local level, whereas the MCS addresses uncertainty at the global level. RMCS has 

successfully been applied in seepage analysis, mine pillar stability and slope stability 

analysis. The required number of simulations with RMC is significantly less compared 

with Regular Monte-Carlo simulation (MCS) [1, 17]. 

 

 

 

 

 

 
 

 

Fig. 3. Spatial variations of bulk and shear moduli and cohesion of rockmass 

at different random seed (FLAC output) [1]. 

3. Performance evaluation criteria 

Although there may be many other aspects to consider when evaluating the 

performance of mine haulage drift such as: deformation/displacement, mining- induced 

stress and extent of yield zones.  In this investigation only a single condition; 

deformation/displacement; is considered and compared with different probabilistic 

methods. A wall convergence ratio (WCR) of 1.50% and roof sag ratio (RSR) of 0.50% are 

adopted as the minimum ratios required for “satisfactory performance” of the mine 

opening.  Thus the probability of unsatisfactory performance of the mine haulage drift is 

determined accordingly. Any deviation from the satisfactory performance criterion is thus 

classified to be a failure condition, i.e. when the WCR ratio >1.5% and RSR >0.50%.  The 

deterministic analyses show the numerical modelling results in terms of displacement, 

mining-induced stress and extent of yield zones. However, stochastic methods of analyses 

show and compare only displacement with respect to mining step. 

3.1. Wall convergence ratio (WCR) 

WCR is defined as the ratio of the total magnitude of the wall closure to the span of the 

initial drift as shown in Equation (3) [3]: 

     
     

  
        

    

  
                                            (3) 

Where: 

   is the original span of the drift and   : is the span of the drift after deformation. 

The performance of mine haulage drift will be considered unstable/unsatisfactory if: G(X) 

< 0 for all WCR >1.5% and stable/satisfactory if: G(X) ≥ 0 for all WCR ≤ 1.5%. 
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3.2. Roof sag ratio (RSR) 

RSR is defined as the ratio of the roof sag (∆S) to the span of the drift as given in 

Equation (4) [3]: 

     
  

  
                                                                                                             (4)  

Where: 

   is the original span of the drift and ∆S: is the roof sag. The performance of mine 

haulage drift will be considered unstable/unsatisfactory if: G(X) < 0 for all RSR >0.50% 

and stable/satisfactory if: G(X) ≥ 0 for all RSR ≤ 0.50%. 

4. Numerical modelling set up 

Numerical modeling is performed using Itasca's FLAC2D software [18]. The mean values 

for all rock mass parameters are used in the deterministic analysis (Table 1).  To examine the 

stability of mine haulage drift, a typical sectional model is built using FLAC2D software as 

shown in Figure 4. The studied zone is divided into three areas; hanging wall, orebody and 

footwall.  The orebody consists of massive sulphide rock (MASU). The hanging wall 

contains Metasediments (MTSD) and the footwall comprises of Greenstone rock (GS).  The 

haulage drift is driven in the footwall parallel to the orebody for the length of its strike 

(approximately 200 m long) with cross section dimensions of 5 m by 5 m with a slightly 

arched roof. The thickness of the orebody is 30 m and the haulage drift is situated at 1500 m 

below ground surface and at 25 m apart from the nearest orebody (e.g., stope 3). 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 4. Model set up and geometry 
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Rock mass properties and backfill mechanical properties are listed in Table 1. 

        Table 1.  

        Geotechnical properties of the modelled case study 

Rockmass property Domain Backfill 

Hanging wall Orebody Footwall 

Density (kg/m
3
) 

UCS (MPa) 

E (GPa) 

Poisson’s ratio,    

Cohesion, C (MPa) 

Tensile strength, σt,  (MPa) 

Friction angle, ϕ (deg) 

Dilation angle, Ψ (deg) 

  2782 

90 

25 

0.25 

4.8 

0.11 

38 

9 

4531 

90 

20 

0.26 

10.2 

0.31 

43 

11 

2916 

172 

40 

0.18 

14.13 

1.52 

42.5 

10.6 

2000 

3 

0.1 

0.3 

1 

0.01 

30 

0 

5. Stochastic results 

As stated beforehand, there is inherent uncertainty associated with rock mass properties. 

Hence, one should use a robust tool to tackle these variability and uncertainty in the model 

input parameters. In this study, only footwall rock mass input parameters are stochastically 

investigated (e.g., as the mine haulage drift is excavated into footwall rock mass). Three 

footwall rock mass input parameters are randomly varied based on the pre-specified 

coefficient of variation (e.g., COV = 20%). These parameters namely are: Young’s 

Modulus, cohesion and friction angle as listed in Table 2. Three main probabilistic 

methods are invoked with the numerical modelling as shown in Table 3.  

              Table 2. 

              Stochastic model input parameters of footwall rock mass 

Rock mass Property (Footwall) Mean S.D. COV. 

Elastic Modulus, E (GPa) 40 8 20 % 

Cohesion, C (MPa) 11.2 2.24 20 % 

Friction Angle, ϕ (deg.) 50 10 20 % 

    Table 3. 

    Stochastic methods used in this study 

Probabilistic methods Number of 

simulations 

1. PEMs  Rosenblueth’s PEM (2n) 2
3
 = 8 runs 

 Zhou & Nowak’s PEM (2n
2
+1 )  

[19] 
2   32 

+1 = 19 runs 

 Li’s PEM (n3) 3
3 
=27 runs

 

2. Monte-Carlo Simulation (MCS) 100 runs 

3. Random Monte-Carlo Simulation (RMCS) 100 runs 

The stochastic results, for the different probabilistic methods, will be introduced and 

compared only in terms of displacement/convergence (e.g., section: 5.1). 
 

It can be shown from Figure 5 that, each probabilistic method gives different 

distribution and therefore, different output for the mean value of the random input 

variables. Consequently, different probabilities of instability of haulage drift.  
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Figure 6 gives the average values for the stochastic input parameters after certain 

number of simulations. 

The calculations of probability of failure (using Z-Table) are given in Table 4 based on 

equation 5. Probability of instability performance of mine haulage drift at threshold of 

1.5% is shown in Figure 7. 

Z* = 
    

 
                                                                                                                         (5) 

Where: 

Z*: standard normal variate (represents the area under the PDF curve),  

X: cut-off value (it is taken here as WCR = 1.5%), 

 : Average value of the output random variable (obtained from PDF distribution) and 

 : Standard deviation (obtained from PDF distribution). 

5.1.Wall convergence ratio (WCR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Probability density function (PDF) for wall convergence ratio (WCR) 

for each stochastic method at mining step 6 (e.g., after excavating stope 3) 
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Fig. 6. Average values of WCR % at various stochastic methods at mining 

step 6 (e.g., after excavating stope 3) 

   Table 4. 

   Calculations of the standard normal variate and probability of failure for each     

   probabilistic method 
Probabilistic methods WCR % Z* = 

    

 
 Area under 

PDF curve 

(A) 

Pf ,% 

= (1-A)          

 

PEMs 

Rosenblueth’s 

PEM (2
n
) 

0.85 0.17          

    
 =3.82 0.9999 (1-0.9999)  100 

 = 0.01 % 

Zhou & 

Nowak’s PEM 

(2n
2
+1 ) 

1.09 0.26          

    
 1.58 0.9429 (1-0.9429)  100 

 = 5.7 % 

Li’s PEM (n
3
) 1.12 0.19          

    
 2 0.9772 (1-0.9772)  100  

= 2.28 % 

Monte-Carlo 

Simulation (MCS) 

1.20 0.08          

    
  3.75 0.9999 (1-0.9999)  100 

 = 0.01 % 

Random Monte-Carlo 

Simulation (RMCS) 

1.36 0.06          

    
 2.33 0.9901 (1-0.9901)  100 

 = 0.99 % 

 

 

 

 

 

 

 

 

 

Fig. 7. Probability of instability of WCR % at various stochastic methods at 

mining step 6 (e.g., after excavating stope 3) 
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 Table 5, [1], gives the suggested ratings and likelihood of failure. It is obvious that all 

probabilities of instability of WCR % with different probabilistic methods are rare (e.g., 

Pf<5%) except for Zhou & Nowak’s PEM is unlikely (e.g., Pf> 5%). 

      Table 5. 

      Suggested ratings and likelihood of failure [1]: 

Rating Likelihood 

Ranking 

Probability of Occurrence 

1 Rare < 5% May occur in exceptional circumstances 

2 Unlikely 5% - 20% Could occur at some time 

3 Possible 20% - 60% Might occur at some time 

4 Likely 60% - 90% Will probably occur in most circumstances 

5 Certain 90% - 100% Expected to occur in most circumstances 

5.2.Roof sag ratio (RSR) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Probability density function (PDF) for roof sag ratio (RSR) for each 

stochastic method at mining step 6 (e.g., after excavating stope 3) 

Figure 8 depicts that, each probabilistic method produces different distribution and 

accordingly, different output for the average values for the random input variables. 

Consequently, different probabilities of instability of haulage drift.  The average values for 

the random input variables are shown in Figure 9. 
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Fig. 9. Average values of RSR % at various stochastic methods at mining step 6 

(e.g., after excavating stope 3) 
 

Probability of instability is estimated, Table 6, as explained in the previous section 

using RSR threshold of 0.50 %. 

  Table 6. 

  Calculations of the probability of instability of RSR at each probabilistic method 

 

Probabilistic methods 

WCR % Z* = 
    

 
 Area under 

PDF curve 

(A) 

Pf ,%  

= (1-A)          

 

PEMs 

Rosenblueth’s PEM (2n) 0.18 1.26 0.25 0.5987 40.13 

Zhou & Nowak’s PEM (2n2+1 )   0.53 0.19 -0.16 0.5636 43.64 

Li’s PEM (n3) 0.55 0.16 -0.31 0.3783 62.17 

Monte-Carlo Simulation (MCS) 0.53 0.06 -0.5 0.3085 69.15 

Random Monte-Carlo Simulation 

(RMCS) 

0.54 0.02 -2 0.0228 97.72 

As listed in Table 6, the probabilities of instability due to roof sag adopting 

Rosenblueth’s and Zhou & Nowak PEMs [19] are possible (e.g., Pf < 60%).  Li’s PEM and 

MCS show the probabilities of instability of the drift roof are likely (e.g., Pf < 90%).  

However, the probability of drift roof instability is certain with RMCS (e.g., Pf > 90%). 

The probabilities of instability at each probabilistic method are shown in Figure 10. 

 

 

  

 

 

 

 

 

Fig. 10. Probability of instability of RSR % at various stochastic methods at 

mining step 6 (e.g., after excavating stope 3) 
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6. Conclusion 

The stability of mine haulage drifts is of utmost importance during the planned period of 

production or the life of a mine plan. Mine drift instability can cause production delay, loss 

of reserves, as well as damage to equipment and injury to miners. This paper presents a 

stepwise methodology to assess the stability of mine haulage drifts with respect to mining 

activity. Two-dimensional elasto plastic, finite difference model (FLAC2D) is constructed to 

simulate the performance of haulage drift situated 1.5 km below ground surface. Three 

different probabilistic methods are adopted in conjunction with finite difference FLAC to 

tackle the inherent uncertainty associated with footwall rock mass input parameters. 

Displacement/convergence evaluation criterion is adopted. The probabilities of instability of 

WCR show insignificant difference with adopted stochastic methods. This may be due to 

high threshold value (e.g., 1.5%). Thus, Zhou & Nowak’s PEM is more conservative (e.g., 

Pf= 5.7%) comparing to other methods. However, a significant discrepancy in the 

probabilities of failure of RSR appears and this may attribute to small threshold value (e.g., 

0.5%). Random Monte-Carlo method looks more conservative (e.g., Pf= 97.72%). The 

choice among these probabilistic methods depends on many factors such as: purpose and 

results accuracy of the analysis, size of the model (e.g., number of elements and zones), 

number of random input variables, capability of computer (e.g., speed run and storage size 

for the output files) and knowledge of the modeler (e.g., subroutine, fish codes, etc.). 

7. Recommendation 

Three-dimensional modelling (3-D) is necessary to simulate the real geometry of the 

case study. In-situ stress measurements should be used to calibrate the numerical model.  

Model results must be validated based on underground measurements such as deformations 

(Multi-Point Borehole Extensometer or MPBX) and rockbolt loads.  
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 التطبيق العملى للطرق الإحصائية فى الهندسة الجيوتقنية

 الملخص العربى:

ذعرثش يًشاخ نمم انخاو هً انًنفز انشئيسً وانىحيذ فً انًناجى شذيذج انعًك. نزا يجة أٌ ذظم هزه انًًشاخ 

يسرمشج خلال فرشج عًش انًنجى )فرشج الإنراج أو فرشج اسرخذايها(. ولذ يؤدي عذو اسرمشاس هزه انًًشاخ إنً 

نخاو. وذهذف هزه انذساسح إنً: ذمييى اسرمشاس يشكلاخ خطيشج ينها: ذذييش انًعذاخ، ذأخش الإنراج وكزنك فمذ ا

أداء هزه انًًشاخ تاننسثح نًعذل الإنراج تاسرخذاو طشق انرحهيم الإحصائيح انًخرهفح. وذى عًم نًىرج ثنائً 

كاسنى، -الأتعاد نهزا انغشض وذى اسرخذاو طشق إحصائيح يخرهفح يثم: طشق نمطح انرمذيش، طشيمح يىند

ىائيح يع طشق انرحهيم واننًزجح انعذديح وانرً ذعنً تًعانجح عذو انذلح فً ليى كاسنى انعش-وطشيمح يىند

خىاص انصخىس. تعذ رنك ذى حساب احرًانيح عذو اسرمشاس أداء هزه انًًشاخ عنذ انجذساٌ وانسمف تاننسثح 

                                        لآخش خطىج انراج.                                                                        

 احرًانيح عذو الاسرمشاس. -وسائم ذمييى الانهياس –انطشق الإحصائيح  الكلمات الرئيسية:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


