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 ABSTRACT 

This paper considers a design method for PID controllers to achieve the robustness to the uncertainty 

of the time delay for the first-order plus time delay system (FOPTD). Initially, the stabilizing regions 

of the PID controller gains are determined by a graphical stability method. Then, we specify two 

simultaneous design specifications: gain margin and phase crossover frequency. These specifications 

give a set of stabilizing PID controllers. To get a unique PID controller, we introduce an additional 

constraint which is finding the smallest absolute value of the slope of the open-loop system 

magnitude at the specified phase crossover frequency. The obtained PID controller is located in the 

stability region, and also robust to system time delay variation due to the proposed constraint. 

 Keywords: First-Order Plus Time Delay (FOPTD) systems, Gain margin, Proportional-Integral-

Derivative (PID) controllers, Robustness, Stabilizing region.  

1. Introduction     

Over 90% of the process control and industrial applications are controlled by the 

proportional-integral-derivative (PID) controllers [1, 2]. The PID controller has a simple 

structure and gives a good performance in the closed-loop response.  

Practically, there are several methods for tuning of PID gains such as Ziegler-Nichols 

methods [3]. These methods may give a satisfactory closed-loop response, but they cannot 

give any information on the stabilizing region of these gains.  

The primary aim of the controller design is to maintain the stability of the control system. 

There are several methods for computing the stabilizing PID controllers for delay-free linear 

time invariant systems [4-8]. However, many of industrial systems have time delay, so the 

stable plant that has an S-shaped step response is modeled as first- or second-order plus time 

delay models [1]. 

Several methods for computing the stabilizing PID controllers for the first-order plus 

time delay (FOPTD) systems are proposed by the authors of [4, 6, 9-11]. In [4, 6, and 10], 

an extension of the Hermite-Biehler Theorem based on Pontryagin results [12] was 

investigated to determine all the stabilizing PID controllers. An alternative way is proposed 
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in [4, 6] using the generalized Nyquist stability criterion. In [9], the stabilizing regions of 

the PID gains are obtained by the graphical stability criterion for the FOPTD systems. 

As the stability is an important goal for designing the PID controllers, but it is not enough 

requirement to get a satisfactory response behavior (robustness and performance). Robust 

control is an area of intensive research. It can be achieved using gain and phase margin 

specifications [9, 13-15] or closed-loop sensitivity constraint. The sensitivity constraint is 

similar with the gain and phase margin specifications as they have a direct relation [1, 16]. In 

[13], simple tuning rules for designing PID controller are obtained to satisfy optimal gain and 

phase margins. In [14], the robustness is achieved by gain and phase margins while the 

closed-loop performance is achieved by bandwidth and maximum amplitude ratio. The 

limitation of this work is the nonlinear optimization problem which needs numerical 

solution. In [9, 15], the robust design is proposed by achieving the pre-specifications of phase 

margin and gain crossover frequency in addition to the flat phase tuning constraint. The 

obtained controller has two properties: first, its gains are located in the stabilizing region. 

Second, it is robust to a bounded variation in the system gains, which include the uncertainty 

of the plant steady-state gain and the overall variations of the controller gains.  

Uncertainty in dc gain of the model is important but in dealing with time delay plants, 

uncertainty in time delay is more important and critical. In this paper, we consider the 

problem of time delay uncertainty by proposing a method to design PID controllers to 

achieve the pre-specifications of gain margin, phase crossover frequency, and a minimum 

absolute value of the derivative of the open-loop system magnitude with respect to the 

frequency at the specified phase crossover frequency based on the FOPTD systems. This 

minimum derivative ensures the robustness to a bounded variation in the system time delay 

and makes the closed-loop system more robust than the method proposed by the authors of 

[13]. For a specified gain margin, choosing a value for the phase crossover frequency 

affects on the location of PID gains in the stabilizing region, so the closed-loop robustness 

and performance can be adjusted. 

As a starting point, all stabilizing PID controllers are determined using a graphical 

stability method which is a simple algorithm. Then, we obtain the three dimension relative 

stability regions that satisfy the designed gain margin. It is necessary to determine these 

stabilizing regions because the first aim of the proposed method is to get a set of stabilizing 

PID controllers that guarantee two simultaneous design specifications: gain margin and 

phase crossover frequency. From this set, we search for the smallest rate of change of the 

open-loop magnitude at the specified phase crossover frequency point cw to get a unique PID 

controller which is the second aim. 

The contributions of this paper can be summarized as follows: 

(1) It considers a design method that makes the closed-loop system more robust than 

the method proposed in [13] due to the smallest slope constraint at the specified 

phase crossover frequency.  

(2)  It treats the problem of time delay uncertainty which was not considered in [9, 15]. 

(3) It proposes a simple approach that provides a satisfactory response behavior 

(performance and robustness) that it does not require numerical solution for the 

nonlinear optimization as in [14].  
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This paper is organized as follows: In the next section, stabilizing and robust PID 

controller design is presented. Then, an illustrative example is given. Conclusion is 

provided in the last section.  

2. Stabilizing and robust PID controller design for FOPTD systems 

2.1. FOPTD systems and PID controller 

The design method proposed in this paper is based on the FOPTD systems which is 

mathematically described by the transfer function, 
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Consider the feedback control system as shown in Fig. 1 with a gain-phase margin 

tester [17], where G(s) is the FOPTD plant and )(sGc  is the designed PID controller with 

the transfer function,  
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where, dK  is the derivative gain, pK  is the proportional gain, and iK  is the integral gain.    

The gain-phase margin tester is represented by the frequency independent transfer 

function mj
m eA

 . It provides information for plotting the boundaries of all stabilizing PID 

controller gains that achieve specified gain and phase margins [18].                                                                                                             

                            

Fig. 1. Feedback control system with gain-phase tester. 

For design specification on the gain margin mA , we set 0m , and for design 

specification on the phase margin m , we set 1mA . 

2.2. Stabilizing region of the PID gains 

From Fig. 1, the closed-loop transfer function is:  
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So, the characteristic polynomial will be as follows:  
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By substituting equations (1) and (2) into equation (4), we obtain 

)()1()( 2
ipd

Lsj
m KsKsKeeKATsss m        

)( 22
ipd

Lsj
m KsKsKeeKAsTs m   

0                           (5)                          

Determining all the stabilizing PID controllers for the FOPTD plant is a primary aim in 

controller design. The closed-loop system is stable if all the roots locations of the 

polynomial in equation (5) with 1mA  and o
m 0 are in the left-half of the s-plane. The 

location of these roots depends on the PID gains which are Kd, Kp, and Ki. The boundaries 

of these gains can be determined by the infinity root boundary (IRB), real root boundary 

(RRB) and complex root boundary (CRB) [18-20]. 

(i) IRB: 0)( s , so we get a boundary on Kd  as: 

K

T
Kd 

 

This boundary can be obtained as follow: 

Put 0)( s , so the coefficient of 𝑠2 will be equal to zero, 

0 
d

Lsj
m KeeKAT m ,  

Put ( 1mA  and o
m 0 ), we obtain: 

0 Ls
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𝑒−𝐿𝑠 can be approximated by a first-order or second-order Pade approximation. 

For first-order Pade approximation: 
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For second-order Pade approximation: 
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so we get a boundary on Kd  as: 

K

T
Kd 

 
The same result can be obtained using third-order and fourth-order Pade 

approximations. This means that Kd will have positive and negative values. 

(ii) RRB: 0)0( s , so we get a boundary on Ki  as: 

Ki = 0 
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(iii) CRB: )( jws  , the resulting polynomial will be as follows: 
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The real part R (w) and the imaginary part I(w) are as  follows: 
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It is clear that from equations (7) and (8) both the real as well as the imaginary parts of 

)( jw  
depend on dK , pK , and iK ,  which causes difficulties when trying to find the 

range of these gains that make the system stable. To overcome this problem, we will now 

multiply the characteristic polynomial of equation (6) by 
)( mwLj

e


 for which only the 

imaginary part of the resulting polynomial depends on pK
 
only. 

Multiply equation (6) by 
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where Re(w) is the real part and Im(w) is the imaginary part as  follows: 

 wLwwLwTw m sin()cos()Re( 2   0) 2  imdmm KKAKwAK     (10)          
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Equating the real part and the imaginary part to zero, we obtain: 
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For each fixed value of Kd, we can determine the values of Kp and Ki as w changes from 

zero to infinity using equations (12), (13) and plot the curve of Ki versus Kp that describes 

these values. This curve divides the two-dimension space (Kp – Ki) into stable and unstable 

regions by RRB and CRB. The stabilizing region can be determined by choosing an 

arbitrary point in each region. Mathematically, equation (12) can give positive and 

negative values of Kp that stabilize the FOPTD system depending on the values of w. 

By sweeping over all values of ]/,/[ KTKTKd  , we can determine all the three-

dimension stabilizing regions for the PID controller gains. 
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2.3. Stabilizing PID controllers that guarantee two frequency domain specifications   

The first aim of the design method is to determine the relative stability point on the   

(Kp – Ki) curve with a fixed value of Kd that guarantees two frequency domain 

specifications which are gain margin )0( mmA   and phase crossover frequency cw .  

This point can be obtained as follows:  

 (i) Setting 52  mA  [13], 0m  in equations (12), (13) and finding the (Kp – Ki)  

curve with each fixed value of ]/,/[ KTKTKd   as w changes from zero to w0, 

where w0 is the maximum frequency satisfying the specified gain margin with fixed 

Kd. Of course this curve is always inside the stabilizing region obtained in section 2.2 

at the same Kd. Since valuespesifiedAm   and 0m , all ],0( 0ww  that satisfy 

equation (6) will be considered as phase crossover frequencies for the feedback 

control system in Fig. 1 where, 

               
1)()( jwGjwGA cm                                                      

(14) 

          This means that w0 is the maximum feasible cw  with each fixed Kd  and mA . 

(ii) For a specified phase crossover frequency cw , and a fixed value of     

]/,/[ KTKTKd  , we can determine a unique point on the (Kp – Ki) curve.  

Repeating (i) and (ii) with all values of ]/,/[ KTKTKd  , a line in three-dimension 

gain space can be determined. Each point on this relative stability line guarantees the two 

specifications mA  and cw .  

We can also draw a curve that represents the (w0 - Kd) relation and then the upper 

boundary w0max will be known. So, with a fixed gain margin, the gains of the PID controller 

can be constructed depending on a chosen value of the phase crossover frequency cw  

inside the interval ],0( max0w . 

2.4. Determining the unique robust PID controller with a magnitude slope constraint 

In this section, an additional specification is introduced to get unique PID controller 

gains, by making a condition on the absolute value of the slope of the open-loop system 

magnitude at the phase crossover frequency point cw .  

The second aim of the design method is to make the feedback control system in Fig. 1 

robust to a bounded variation in the system time delay. This can be achieved by finding the 

smallest rate of change of the open-loop magnitude at the specified phase crossover 

frequency point cw . This means that the change in the gain margin is small for any 

variation in the system time delay L in a limited range. By observing the phase curve of the 

open-loop transfer function:  

∅(𝑤) = −𝑤𝐿 − 𝑡𝑎𝑛−1𝑤𝑇 − 90 + 𝑡𝑎𝑛−1(𝑤𝐾𝑝 (𝐾𝑖 − 𝑤2𝐾𝑑))⁄ , we can conclude that: Any 

bounded variation in the time delay affects directly on the open-loop phase curve by 

moving it up or down, since the phase equation is function of L and as a result, the value of 
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the gain margin will be changed. This change is due to the variation in the phase crossover 

frequency value. If the absolute value of the slope of the magnitude curve at the specified 

phase crossover frequency cw  is small, so the variation in the gain margin value is small 

and the closed-loop step response is still have a good performance, and the robustness 

property is achieved. 

Equate equations (7) and (8) and put 0m , we obtain 

)15(
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Then the gain margin equation will be as follows: 
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From equation (17), we can get, 

         
22 )(

))sin(2)cos(1()()(
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
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where, 

    

ipd KTLwLTwKTLwLTwKLwLTwwE )1)2(())(()(1 223342  ,               

ipd KTLwLTwKTLwLTwKLwLTwwE )1)2(())(()(2 223342              

As discussed in section 2.3, all PID gains points on the relative stability line that 

guarantee the two specifications mA  and cw  will be substituted in equation (18) and the 

values of this equation are computed at these gains. Then we search among these values 

for the smallest one. The resulting PID controller makes the closed-loop system in Fig. 1 

robust to bounded system time delay variation. In some cases, the designed PID controller 

may give phase margin greater than 70 degree (very slow closed-loop step response) or 

less than 30 degree (oscillatory closed-loop step response), so we need to search for the 

smallest magnitude slope with a condition on the phase margin range to be o
m

o 7030  . 

Although in this case, the slope is not the minimum value which means the degree of 

robustness is reduced, but the robustness is still preserved with a good performance. 
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3. An illustrative example 

Consider a FOPTD system described by the transfer function 
)1(

)(
3.0






s

e
sG

s

   

We will apply the proposed method to get the robust PID controller as follows: 

1. Determine all the three-dimension stabilizing regions for the PID controller gains 

using equations (12) and (13) ( 1mA  and 
o

m 0 ) by sweeping over all values 

of ]1,1[dK . By choosing Kd  = 0.1, we can plot the stabilizing curve of Ki 

versus Kp  as shown in Fig. 2. The all stabilizing regions are shown in Fig. 3.  

2. Setting 3mA  and o
m 0  in equations (12), (13) and finding the relative 

stability curve Ki versus Kp with each fixed value of ]33.0,33.0[dK  as w 

changes from zero to w0, where w0 is the maximum frequency satisfying the 

specified gain margin with each value of Kd as shown in Fig. 4. For Kd  = 0.1, the 

relative stability curve is shown in Fig. 2, where  w0 = 6.721 rad/sec. Of course this 

curve is inside the stabilizing region ( 1mA ). The curve that represents the       

(Kd - w0) relation is shown in Fig. 5. From this curve, the upper boundary w0max 

will be known, which is 10.201 rad/sec. 

 

Fig. 2. The stabilizing regions with Kd  = 0.1 
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Fig. 3. All the stabilizing regions of ),,( dip KKK  values. 

 

Fig. 4. The relative stability regions ),,( dip KKK  values with 3mA . 
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   Fig.  5. The curve that represents (Kd - w0) relation. 

3. Since there are several PID controllers for each fixed value of Kd  and Am  as shown 

in Fig. 2., we chose any value of ]33.0,33.0[dK , e.g. Kd  = 0.1, and 3mA . 

Given a value for the phase crossover frequency e.g. 4cw  rad/sec, where

],0( max0wwc  , we can determine a unique point (Kp = 1.117, Ki  = 4.7687)  

marked by a big dot symbol on the (Kp – Ki) relative stability curve (that is drawn 

before in Fig. 2.) as shown in Fig. 6. 

s

ss
sGc

7687.4117.11.0
)(

2

0


  

      Gc0(s) is a one of many PID controllers that guarantee the two specifications 

3mA  and 4cw  rad/sec, but it does not guarantee the robustness. We will use 

Gc0(s) to compare its performance with the performance of robust PID controller 

(step 4) as it presented on the page after the next one.  

            By sweeping over all values of ]33.0,33.0[dK , a line in three-dimension 

gain space can be determined as shown in Fig. 7. Each point on this relative 

stability line guarantees the two specifications 3mA  and 4cw  rad/sec.  

4. Finding the robust PID controller (proposed PID) by substituting all PID gains 

points on the relative stability line that guarantee 3mA  and 4cw  rad/sec in 

equation (18), and then we search for the smallest value. This point (Kd  = − 0.11, 

Kp = 1.117,  Ki  = 1.4238) is marked by a big dot symbol as shown in Fig. 7. The 

resulting controller is: 
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s

ss
sG proposedc

4238.1117.111.0
)(

2 
  

The bode plots of the open-loop transfer functions with Gc0(s) and the robust PID 

controller Gc-proposed(s) are shown in Fig. 8. It is clear that,  the absolute value of the slope of 

the magnitude curve using Gc-proposed(s) at the specified phase crossover frequency 4cw  

rad/sec is smaller than that using Gc0(s). It is also clear that, the desired gain margin value is 

achieved using both PID controllers (20log 3 = 9.54 dB) at 4cw  rad/sec.    

 

Fig. 6. The ),( ip KK point with Kd  = 0.1 that satisfies 3mA  and 4cw  rad/sec.

 

Fig. 7. The smallest magnitude slope point on the relative stability line with 3mA  

and 4cw  rad/sec. 
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Fig. 8. The bode plots of the open-loop transfer functions. 

The unit step response of the closed-loop system using the proposed PID controller                

Gc-proposed(s) with different time delay variations is shown in Fig. 9. It is clear that the 

effect of the variation in the system time delay by %20  on the step response is small. 

This means that the robustness is achieved.   

The unit step response of the closed-loop system using another PID controller Gc0(s) 

with different system time delay variations is shown in Fig. 10. It is shown that the effect 

of the variation in the time delay by %20  on the step response is large and the robustness 

is not achieved.  

A comparison is made with two different methods. We computed the PID controllers 

using the Ziegler-Nichols frequency response method [1, 3] and the PID controller using 

the tuning rules for setpoint (ISE-GPM-setpoint) [13].  

Ziegler-Nichols method is based on a simple characterization of the process dynamics. 

The design is based on knowledge of the point on the Nyquist curve of the process transfer 

function G(s) where the Nyquist curve intersects the negative real axis. This point is 

characterized by the parameters Ku and Tu which are called the ultimate gain and the 

ultimate period. Ziegler-Nichols gives simple formulas for the gains of the PID controller 

in terms of the ultimate gain and the ultimate period. 

The parameters of Ziegler-Nichols frequency response method will be as follows: 

      uk = 5.8902, uw = 5.8047 rad/sec,  

      and 1.0824 /2  uu wT  sec 

The PID controller gains are: 
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                3.53416.0  up kK ,  

                 
6.5299 /  ipi TKK , where 0.5412 5.0  ui TT ,   

                 
0.4782 dpd TKK , where 0.1353 125.0  ud TT   

The unit step response of the closed-loop system using the ZN-PID controller with 

different time delay variations is shown in Fig. 11. 

It can be seen clearly that, the system using proposed PID (Fig. 9) has better 

performance (smaller overshoot) and it is much more robust to the time delay variations 

than that using the ZN-PID controller. 

Tuning rules of ISE-GPM-setpoint combines the advantages of designing both the gain 

and phase margin (GPM) and the time optimum design by minimizing the integral squared 

error (ISE) of the step setpoint response to give a set of optimal gain and phase margin 

tuning rules. The method performs four equations of gain margin, phase margin, unity 

magnitude at the gain cross-over frequency, and phase value of -180
o
 at the phase cross-

over frequency. These four equations have five unknowns (PID gains and cross-over 

frequencies). The extra degree of freedom is used to achieve the minimum ISE. Curve 

fitting with the least-squares is used to estimate the tuning rules. 

The PID controller gains for ISE-GPM-setpoint method are:   

 
     

1397.2)/(
8578.1 9471.00821.09087.0   TLA
K

K mmp  , 

     
3.1206 /  ipi TKK , where     

)/(347.08079.00625.01

)/(1914.254572.63289.01(0211.0

TLA

TLAT
T

mm

mm
i









,   

        
0.2773 dpd TKK , where 0264.11457.00845.0 )/(4899.0 TLATT mmd    

where 3mA  and 180/*8.56  o
m   are obtained from the proposed controller 

specification shown in Fig. 8. 

 The unit step response of the closed-loop system using the ISE-GPM-setpoint 

controller with different time delay variations is shown in Fig. 12. 

It can be seen clearly that, the system using our proposed PID (Fig. 9) has better 

performance (smaller overshoot and settling time) and it is more robust to the time delay 

variations than that using the ISE-GPM-setpoint controller.  

We measured the degree of robustness by computing the difference between the integral 

squared error (ISE) with 100% time delay case and the ISE with the other two cases (80% 

and 120% time delay). The parameters of PID controllers designed using the three tuning 

methods are presented in Table 1. and the simulation results are presented in Table 2. 
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     Table 1.  
     Parameters of PID controllers designed using the three tuning methods. 

Method Kp Ki Kd 

Proposed method 

ZN 

ISE-GPM-setpoint 

1.117 

3.5341 

2.1397 

1.4238 

6.5299 

3.1206 

-0.11 

0.4782 

0.2773 

Table 2.  
Performance and robustness summary using the three tuning methods 

Method 

Simulation results 

Overshoot (%) 

with L = 0.3 sec 

Settling time 

with L = 0.3 sec 

(ISE with 100% 

L - ISE with 

80% L) 

(ISE with 120% 

L - ISE with 

100% L) 

Proposed  

ZN 

ISE-GPM-SP 

5.18 % 

52.0896 % 

18.3958 % 

2.7102 sec 

2.3200 sec 

2.7503 sec 

0.5403 

1.2024 

0.5932 

0.6151 

2.0218 

0.8399 

 

Fig. 9. Unit step responses with the proposed PID controller Gc-proposed(s). 
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Fig. 10. Unit step responses with PID controller Gc0(s)

 

Fig. 11. Unit step responses with ZN-PID controller. 
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Fig. 12. Unit step responses with ISE-GPM-setpoint controller. 

4. Conclusion 

This paper considers the design method for PID controllers to achieve the robustness to 

the uncertainty of the time delay for the first-order plus time delay system (FOPTD). We 

first determine the stabilizing regions of the PID controller gains by a graphical stability 

method. Then, we specify two simultaneous design specifications: gain margin and phase 

crossover frequency. To get a unique PID controller, an additional constraint on the 

magnitude slope is introduced, by searching for the smallest absolute value of the 

derivative of the open-loop system magnitude with respect to the frequency at the specified 

phase crossover frequency. The obtained PID controller is located in the stability region, 

and also robust to system time delay variation due to that constraint.  

The design steps of the proposed method are summarized in an example. It is shown in 

the illustrative example that the proposed method gives better performance (smaller 

overshoot) for the unit step response than that in the ZN method and GPM-ISE method. 

Also, the proposed PID controller is more robust to a bounded variation in the system time 

delay than that using ZN and GPM-ISE controllers.  
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 تصميم المحكمات التناسبية التكاملية التفاضلية المتينة للنظم من 

 الدرجة الأولى ذات التأخير الزمنى بناء على خصائص فى مجال التردد

 الملخص العربى:

هذا البحث يتناول طريقة تصميم للمحكمات التناسبية التكاملية التفاضلية لتحقيق المتانة فى حالة التغير الطفيف 

. بداية تم ايجاد معاملات المحكمات التناسبية ذو التأخير الزمنى الزمنى للنظام من الدرجة الأولى فى التأخير

التكاملية التفاضلية التى تضمن اتزان نظام التحكم باستخدام طريقة الاتزان الرسومية. بعد ذلك تم تحديد 

وقد نتج عن ذلك مجموعة من  درجة ١٨٠خاصيتين للتصميم هما كسب الحد والتردد الذى يحقق زاوية وجه 

المحكمات التناسبية التكاملية التفاضلية التى تحقق قيم هاتين الخاصيتين. لايجاد محكم تناسبى تكاملى تفاضلى 

المقدار فى مجال التردد لنظام منحنى تم اضافة قيد على القيمة المطلقة لميل  ٬وحيد من تلك المجموعة السابقة

وذلك من خلال ايجاد أصغر قيمة مطلقة لهذا  ٬درجة ١٨٠دد الذى يحقق زاوية وجه الدائرة المفتوحة عند التر

الميل. هذا المحكم التناسبى التكاملى التفاضلى الذى تم ايجاده يحقق الاتزان وفى نفس الوقت يحقق المتانة 

 لنظام التحكم فى حالة التغير الطفيف فى التأخير الزمنى.

 


