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The mathematical description of groundwater flow through a deformable 

porous medium has been obtained by combining Darcy's law with the 

mass conservation equations of both the groundwater and the soil mass. 

The partial differential equation governing the transient fluid flow with 

its appropriate initial and boundary conditions is the result. The 

numerical implementation of these differential equations for a rigid 

porous medium under partially saturated conditions has been achieved 

by converting them into integral equations by applying Galerkin's 

"weighted residual formulation" and Green's theorem. The finite element 

programs have been implemented in the FORTRAN "90" numerical 

environment. The numerically simulated one-dimensional compressible 

groundwater flows under saturated conditions were validated by 

comparing their results with analytical solutions. Satisfactory 

agreements were found between their results and the corresponding 

analytical solutions. For the partially saturated condition steady state 

and transient groundwater flow severe limitations in the formulation 

were encountered, in particular for the higher suction range in coarse 

granular materials. 

KEYWORDS: Residual chlorine, Kinetic model, neural network. 

 

INTRODUCTION 

The integral equation for groundwater flow through multilayered porous media is 

obtained by multiplying the differential equation and boundary conditions by 

independent weight functions which are then integrated over their whole regions of 

definition. Both types of integrals are added together and demanding that their sum is 

zero [4]. Green's theorem is applied to minimize the highest derivatives of the weight 

functions. The numerical implementation is validated by comparing numerical 

simulations with basic analytical solutions. 
The governing differential equation for groundwater flow under partially 

saturated conditions is based on the conservation of mass of the groundwater, leading 

to [1, 3]:  
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in which f is the relative permeability, kij is the soil coefficient of permeability in m/s, 

γ
w
 is the water volumetric weight in N/m3, p is the pore-water pressure in N/m

2
,δij is 

the Kronecker delta, β
w
 is the water compressibility in m

2
/N, n is the soil porosity, S

w
 is 

the degree of saturation and  

dp

ds

ds

df
xCCC

w

w

sfk  . Where 
w

f

ds

df
C   is the slope of the tangent of the 

relationship between the relative permeability f and the degree of saturation S
W

, and 

dp

ds
C

w
s   is the specific soil moisture capacity see e.g. Figure (1) and Figure (2). 

The boundary conditions for groundwater flow are described by the following 

expressions. On the boundary 
press  the pressure p is prescribed: 


 PP                                                                                                                 (2) 

in which · indicates that the corresponding quantity is prescribed. On the boundary 
fluxw  the flux q of groundwater is prescribed by: 
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                                                                                 (3)       

in which ni is the components of the normal vector of the boundary. The condition of 

the conservation of mass at interfaces between layer does not lead to any additional 

term in the integral equation. The resulting integral equation for the finite element 

analysis of partially saturated groundwater flow through a rigid porous medium is 

given by the following expression [5]: 

  

















elements

jij

i

k

elements

m

j

m

w

ij

i

ku

k

ee

dfk
x

N
Pd

x

Nfk

x

N
f 2

ˆ 


 

  

















elements

m

i

k
iji

k

k

elements

s

j

s

w

ij

k

i

k
rk

ee

Pd
x

N
kCNdP

x

NkC

x

N
PN ˆˆˆ

2


 

   
 
















elements elements

m

i

k
iji

w

ks

j

s

w

ij

w

i

k
rk

e e

Pd
x

N
kfNdP

x

Nfk

x

N
PN ˆˆˆ

2



 

  













elements

m

m

s

k

elements

m

m

ww

k

ee
t

P
dNnCN

t

P
dNnsN

ˆˆ
  

   
 

 







elements
boundary

elements
boundary

km

j

m

w

ij

ik
press

e
fluxw

e

dqNPd
x

Nk
nN 0ˆ


                             (4) 



SIMULATION OF ONE-PHASE PARTIALLY …….. 
__________________________________________________________________________________________________________________________________________________________ 

41 

where 
u

kf  in equation (4) is the unbalance or residual vector, which has as many 

components k as there are weight functions Nk, one for each node; it must be zero for a 

solution. The nodal quantity 
mP̂  is the nodal pore pressure for node m, e  is the 

volume of an element and e  is the surface of a boundary element. Equation (4) can be 

condensed to the following expression: 

0
ˆ

ˆ  p

k
m

kmmkm

u

k R
dt

Pd
WPPf                                                                       (5) 

where Pkm is the global "Permeability matrix", Wkm is the global "Compressibility 

matrix" and 
p

kR is the global "Right-hand vector". The quadratic terms as given by 

third and fifth terms in equation (4) are not known. Their values will be estimated and 

updated through the iteration process. 

 

NUMERICAL IMPLEMENTATION 

The numerical implementation for the ten terms of groundwater flow as expressed by 

equation (4) was performed by using a finite element computer model known as 

"GRWUNSAT.F90". For partially saturated conditions the degree of saturation S
w
, the 

reduction factor (relative permeability) f, the slope of the specific soil moisture 

capacity C
s
 and the slope of the relationship between the reduction factor f and the 

effective permeability  , C
f
 are all functions of pore- water pressure head 

w

P


 . 

Since the degree of saturation S
w
, the relative permeability f, the specific soil 

moisture capacity C
s
, the slope of the relationship between the relative permeability   

and pore water suction , C
f
 and the two quadratic terms appearing on the right-hand 

side of equation (4) are all functions of the pore-water pressure head  ,their values 

can be calculated using an iterative procedure. 
 

The Iterative Procedure for Reduction of Unbalance 

The actual form of the unbalance vector 
u

kf  as given by equation (4) can be expressed 

symbolically in the following form of equation (5) for groundwater flow [2]. It should 

be noted, that for the calculation of the unbalance vector 
u

kf the matrices need only to 

be calculated at element level at most. From equations (5) it is clear, that the required 

solution is obtained when the unbalance would be equal to zero. This occurs if the 

assumed pore-water pressures coincide with the required solution. However in general 

non-zero unbalance 
u

kf  will occur, which will depend on the previous estimates of the 

pore-water pressure field. The unbalance vector consists of as many components as 

degrees of "free" freedoms of the element mesh. 

Defining 
kP̂  as the nodal pore-water pressure of node k leads to the same 

number of components of the unbalance vector as u

kf the number of unknown free 
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nodal pressures
kP̂ . Consequently the required solution must be obtained by means of 

an iterative procedure in which the nodal pore-water pressure has to be corrected in 

such a way to make the unbalance approach zero. The Newton-Raphson iteration 

procedure has been implemented in program "GRWUNSAT.F90" to calculate the 

initial and transient states of groundwater flow under saturated and partially saturated 

conditions 

 

DESCRIPTION OF THE PROBLEM ANALYSED 

The groundwater flow program is validated by simulating the compressible 

groundwater flow through a saturated sandy soil column with a height of 2 m and a 

width of 0.02 m as illustrated in Figure (3) and by comparing the results with known 

analytical solutions. The loading system in this analysis is the pore-water pressure 

distributions p from the base of the mesh, and distributed with time in the vertical 

direction. The vertical groundwater flow velocity, v = 10
-5

 m/sec. or specific discharge 

q = 3.5 X 10
-6

 m/sec. for soil porosity n = 0.35. In the Finite Element program, 

Equation (4) for full saturation can be written in the following ordinary differential 

form: 

   pR
dt

pd
WPP 










ˆˆ                                                                                     (6) 

where P is the global "Permeability matrix", W is the global "Compressibility matrix" 

and R
p
  is the contribution from the boundary sections considered in the calculation. In 

order to integrate this ordinary differential equation in the time domain the "Crank-

Nicolson" method involving time step Δt is applied [3]. 

 

NUMERICAL SIMULATIONS 

The groundwater flow under partially saturated conditions is simulated for continuous 

desaturation. Desaturation of soil's voids has a complex effect upon its ability to 

transport moisture. The process of desaturation evacuates the larger interstices first 

which reduces the pore volume available for transmission. Moreover, the remaining 

flow pathways must track around the periphery of the pore chambers thereby 

increasing their tortuosity. The combined effect is to significantly reduce the 

permeability of the soil as desaturation proceeds. This desaturation effect can be 

incorporated by the application of a coefficient f of relative permeability to the 

saturated permeability, k
s
. 

Under the conditions of the partially saturated flow, the resulting flux is 

strictly a two phase phenomenon involving flow of pore-water and water vapour 

through the air phase. However, if the pore air is assumed to be everywhere 

atmospheric and the contribution by vapor flow can be assumed to be relatively small 

then the problem can be reduced to one of single flow namely flow of pore fluid. 

Nevertheless, the presence of air voids complicates the description of flow in the 
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liquid phase since both soil suction and permeability are related to the degree of pore-

water saturation. In this paper, the problem of groundwater flow has been treated as a 

single phase flow. 

To simulate the one-dimensional partially saturated groundwater flow, the 

case of gradual desaturation of the soil column from the bottom is discussed. The 

boundary conditions involve zero prescribed pore-water flux at the top of mesh and 

ramp type prescribed pore-water pressure from p = 19620 N/m
2
 to p = -19620 N/m

2
 at 

the bottom for Ramp time = 10
6
 sec. and time step DTIM = 10

3
 sec. The numerically 

calculated pore water pressure distributions as a result of this analysis are illustrated in 

Figure (5) for times, namely t = 0, t = 2.5 X 10
5
, t = 5 X 10

5
, t = 7.5 X 10

5
 and t = 8 X 

10
5
 sec. 

The calculated degree of saturations as a function of depth for the same time 

intervals are illustrated in Figure (5). This figure indicates that the soil is fully 

saturated throughout the soil column at time t = 0 sec. (initial state conditions). Figure 

(5) shows that at zero time the pore-water pressure distribution is linear and 

corresponding to the initial hydrostatic case, in which the hydraulic head is equal to 2 

m of water at the bottom and equal to zero m at the top. At the subsequent time, 

namely t = 2.5 X 10
5
 sec. The pore water pressure distribution is still practically linear 

and hydrostatic with a pore pressure of -9810 N/m2 at the bottom (see figure (4) but 

partial saturation starts to occur near the top (see figure (5). The top 0.3 m of the soil 

column starts to become partially saturated with a minimum value of degree of 

saturation S
w
 = 0.951. 

A non-linear negative pore-water pressure distribution occurs at half of ramp time, 

namely t = 5 X 10
5 

sec. The pressure at the bottom of the mesh is equal to the 

prescribed value which is equal to zero while at the top it is equal to -16297 N/m
2
. In 

case of a linear distribution it would have been equal to -19620 N/m
2
. This delayed 

response of the pore pressure is due to the severely reduced permeability which resists 

the extraction of the pore water from the upper partially saturated part at the applied 

rate of pressure change at the bottom. The soil is only fully saturated up to 0.8 m 

above the bottom. At higher levels the saturation decreases drastically to a value of S
w
 

= 0.312 at the top. 

At time, t = 7.5 X 10
5
 sec. the prescribed pore pressure at the bottom boundary 

is -9810 N/m
2
. At the top the pressure decreases only to a value of -17664 N/m

2
 rather 

than that of -29430 N/m
2
 according to a linear hydrostatic distribution. At the bottom a 

degree of saturation S
w
 = 0.937 is reached and the saturation decreases to a value of S

w
 

= 0.281 at the top. This indicates that the whole soil column is under partially 

saturated conditions. The response at t = 0.8 X 10
5
 sec. shows similar distributions 

with slightly larger suction and a further increased desaturation. 

The calculation failed by a division by zero at around t = 9.55 X 10
5
 sec. This 

failure can be attributed to the limitation of the mathematical formulation adapted 

from the literature for handling the partially saturated conditions. Close inspection of 

figure (3) shows that at the last two time intervals, namely t = 7.5 X 10
5
 and t = 8 X 

10
5
 sec. the saturation values at the top of soil column are approaching the saturation 

value at retention, namely S
r
 = 0.25 of the soil under consideration. The corresponding 
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hydrostatic heads at these times are only -1.8 and -1.817 m respectively which should 

not be severe compared to the high suction values encountered in real situations. 

 

ANALYSIS OF TRANSIENT FLOW 

Zero Prescribed Pore-water Flux at Top 

To investigate the ability of the formulation and numerical implementation to simulate 

transient phenomena during and following a ramp type of change, the previously 

prescribed maximum pore-pressure in ramp loading at the bottom of the soil column 

was reduced from p =19620 N/m
2
 to p=4905 N/m

2
 . While at the top zero pore-water 

flux was prescribed. 

The degree of saturation as a function of depth for the same time intervals 

indicates that the soil is practically fully saturated throughout the soil column at the 

first three time intervals, namely, t = 0, t = 2.5 X 10
5
 and t = 5 X 10

5
 sec. At time t = 

7.5 X 10
5
 sec. the top 0.4 m of the soil column starts to become partially saturated with 

a minimum value of S
w
 = 0.8485 at the top of the soil column. At the time equal to the 

ramp time, namely t= 10
6
 sec. the soil is saturated up to about 1.2 m above the bottom. 

At higher levels the saturation decreases drastically to a value of S
w
 = 0.4025 at the 

top. At five times the ramp time, namely t = 5 X 10
6
 sec. the soil is still fully saturated 

up to about 1.2 m above the bottom. At the top the saturation decreases to a value of 

S
w
 = 0.3944. At ten times the ramp time, namely, t = 10 X 10

6
 sec. the saturation has 

not changed anymore. 

This value of final saturation at the top of mesh in fact is corresponding to 

about 20% of the total saturation between S
w
 = 1.0 and S

w
 = 0.25. The corresponding 

minimum value of the relative permeability f as a result of this analysis was found to 

be equal to 0.009. The corresponding pore-water flux distribution at time intervals t = 

0, t = 2.5 X 10
5
, t = 5 X 10

5
, t = 7.5 X 10

5
, t = 10

6
, t = 5 X 10

6
 and t = 10 X 10

6
 sec. 

indicates that at the early times, namely, t = 0, t = 2.5 X 10
5
 and t = 5 X 10

5
 sec., when 

the soil is practically saturated, the calculated pore-water flux at the bottom at these 

times is also practically equal to zero. As the time goes by, namely, at t = 7.5 X 10
5
 

and t = 10
6
 sec. the soil starts to de-saturate at the top. In such case the flux at the 

bottom must be larger than the zero value in order to withdraw the amount of water 

already existing in the larger pores between the state of full saturation and the new 

saturation values at the top of S
w
 = 0.8485 and S

w
 = 0.4025 at these times respectively. 

The corresponding effective saturations are about Θ = 0.8 and Θ= 0.2 respectively. 

At five and ten times of the ramp time, namely, t = 5 X 10
6
 and t = 10 X 10

6
 

sec. the pore water flux distributions were found to have practically returned back to a 

zero value as expected. This indicates that the soil has reached its equilibrium state at 

which no further water is withdrawn. This analysis seems to be satisfactory. 

Non-zero Prescribed Pore-water Flux at Top 

The same analysis was repeated for a boundary condition with a prescribed pore-water 

influx of q = 5 X 10
-9

 m/ sec. at the top of the soil column. This value was maintained 

throughout the calculation time. The corresponding pore-water flux distribution at time 

intervals t = 0, t = 2.5 X 10
5
, t = 5 X 10

5
, t = 7.5 X 10

5
, t = 10

6
, t = 5 X 10

6
 and t = 10

7
 

see. indicates that at early times, namely t = 2.5 X 10
5
 and t = 5 X 10

5
 sec. when the 
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soil is also practically saturated the calculated pore-water flux at the bottom at these 

times are q = 5 X 10
-9

 and q = 5.5 x 10
-9

m/ sec. respectively which is practically equal 

to the prescribed value at the top. As the time goes by, namely, at t = 7.5 X 10
5
 and t = 

10
6
 sec. the soil starts to desaturate at the top. At these times the flux at the bottom will 

be larger than the prescribed value in order to withdraw the amount of water between 

the state of full saturation and the new saturation values at the top of S
w
 = 0.8485 and 

S
w
 = 0.4025 at these time respectively. The maximum flux at the bottom at time t = 

10
6
 sec. is practically equal to that in the previous case with zero prescribed flux at the 

top. 

At five and ten times of the ramp time, namely, t = 5 X 10
6
 and t = 10 X 10

6
 

see. The pore water flux distributions were found equal to the prescribed value of q= 5 

x10
-9

 m/sec. at the top and equal to q = 4.268 x 10
-11

 at the bottom for both time 

intervals. This flux value at the bottom is in fact much smaller than steady state value 

of q= 5 x 10
-9

 m/sec. Considering the calculated difference in flux at top and bottom 

and the conservation of mass of pore-water, basic to the formulation it must be 

expected that near the top of the soil column during the period following the ramp 

time the saturation must increase. 

To investigate this further, consider the difference in time between the ramp 

time of 10
6
 sec. and the time of the last time interval 10

7
 sec. which is equal to 9 x 10

6
 

sec. The volume of water passing through the area per m
2
 due to the prescribed pore-

water flux can be expressed in terms of height of a water column h = q.t = 5 x 10
-9

 x 9 

x 10
6
 = 45 x 10

-3
 m. the analysis indicates that at the last time interval the saturation 

value at the top of the soil column is equal to S
w
 = 0.3944. Considering the soil 

porosity n = 0.35 the real height of the resaturating water column in terms of H 

follows from: 

m
xnS

h
H

w
21.0

)1(



                                                                                 (7) 

This indicates that about 21 cm of the soil column at the top would be 

completely replenished and would become fully saturated if the mass of pore-water 

had been conserved. In fact, this has not occurred. It can be concluded that the 

numerical analysis through its iterative procedure is not handling the calculation of the 

pore-water flux properly under partially saturated conditions if the pore-water flux is 

prescribed at the boundary. 

 

STEADY STATE FLOW 

To investigate this limitation of not accounting for the prescribed pore-water flux at 

the top further numerical pore-water flux calculations for steady state pore-water flow 

were performed using the Newton-Raphson (N-R) iteration procedure. The 

calculations were started at a fully saturated hydrostatic state. Starting from this initial 

state both the pore pressure at the bottom of the mesh and the pore-water flux at the 

top of the mesh were changed step wise to reach the envisaged steady state in a chosen 

number of increments. For each increment a Newton-Raphson iteration was 

performed. The pore pressure at the bottom of the mesh at the investigated steady state 

were the same as considered in the transient case, namely, P=19620, P=15941, 

P=12262, P= 8583 and P= 4905 N/m
2
. 
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In this procedure, at the boundary with prescribed pressure at the bottom of 

the mesh the difference in pressure between the initial hydrostatic pressure 

distribution and the envisaged steady state pressure as mentioned above is divided 

into an equal number of increments. The prescribed steady state pore-water flux at 

the top of the mesh is divided into the same number of flux increments. For every 

increment of pressure and flux the N-R-iteration procedure is applied to arrive at a 

better estimate of the pore-water pressure and flux. 

The analysis of combined pore-water pressure distributions for the five steady 

state cases are indicated clearly that the calculated flux distribution deviates more 

severely from the prescribed steady state value of q = 5 X 10
-9

 m/ sec. as the 

desaturation increases. A possibly acceptable limit case is found for the case with 

prescribed pressure P = 12262 N/m
2
 at the bottom of the mesh which is corresponding 

to the first flux distribution. In this case, the deviation from the prescribed flux is 

about 98.7%. In this case the effective saturation at the ground surface is about Θ = 

0.996. From this it can be concluded, that the applied numerical model is not able to 

simulate the partially saturated flow for the case of prescribed pore-water flux at the 

boundary for Θ <0.996. This is similar to the limitation observed for the transient 

analysis. 

 

CONCLUDING REMARKS 

The applied common mathematical formulation for one-phase partially saturated 

groundwater flow is found to have severe limitations in the relation between the 

saturation and the pore suction. In particular, the limitation to desaturate below the 

retention value seems to be fundamental. 

 
Figure (1) Relationship between the pressure head 'P, and the degree of saturation S

W
, 

of sandy soil 
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Figure (2) Relationships between the relative permeability f and the pressure head 

 
Figure (3) uniform soil column mesh of 2.0 m deep divided into 100 elements. 
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Figure (4) Numerical pore-water pressure distributions at t = 0, t = 2.5 X 10

5
, t = 5 X 

10
5
, t = 7.5 X 10

5
 and t = 8 X 10

5
 sec. 

 

Figure (5) The relationship between the degree of saturation S
W

 and the depth of soil 

column at t=O, t=2.5xl0
5
, t=5xl0

5
, t=7.5xl0

5
 and t=8x10

5
 sec. 



SIMULATION OF ONE-PHASE PARTIALLY …….. 
__________________________________________________________________________________________________________________________________________________________ 

49 

It can be concluded that the developed numerical model is capable of 

simulating the partially saturated flow for the case of prescribed pore-water flux at the 

boundary, namely: 

 If the prescribed boundary flux is zero then the effective saturation Θ must be 

larger than zero thus Θ>0 to avoid division by zero. Reasonable simulations 

have been obtained for Θ≥ 0.2. 

 If the prescribed boundary flux is non-zero then the effective saturation e must 

be larger than about Θ>0.996.  

 Practically full saturation can be simulated also. For lower saturation the 

Newton-Raphson iteration will not converge. 
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 تمثيل سريان المياه الجوفية فى حالة التشبع الجزئي
الوصف أو التمثيل الرياضي لسريان المياه الجوفية فى التربة يتم الحصول عليه من تكامل قااوون اارساي 

ويكاون الوااتع عباارن عان معاالاة تفاضالية ج  ياة   ومعاالة الحفاظ على الكتلة وذلك بالوسبة للمياه والترباة 
(  Garlerkinطاار   فااى اااذا البحااخ تاام اسااتلاام طريلااة العواصاار المحاااان لجااالركن   يمكاان حل ااا بعااان

كوساا ل رقمياة لحال معاالاة الساريان للميااه الجوفياة فاى حالاة الت اب   (Green theorem)ووظرياة قارين 
وقااا تاام فااى اااذا البحااخ  لثباااع أن الحاال العااااة  بااالطر  العاايااة( ممكوااا ل ااذه المعاالااة وذلااك  الج  ااي 

  التحليلي الصحيح ووجا أن اواك تواف  فى الوتا ع بين الحلين ملاروة الوتا ع بوتا ع الحل الرياضيب
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