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One of the most important steps in environmental studies is to get an
accurate distribution of the pollutants in terms of its quantity and
gualities. Some environmental studies are acquiring a good
classification of the particle size including the average mean of the
particle. Many researchers use the median size (xso) or until the size
passing 80% cumulative undersize (xgo) as a measure for evaluation of
the particle size distribution resulted from different mineral processing
operations such as crushing, grinding, classification, sedimentation,
and/or solid-liquid separation or even during the study of the pollutant
settlement. These measures are not so accurate to differentiate between
different particle size distributions (PSDs) because many PSDs data sets
may have the same values of Xsq Or Xg if these data sets are represented
between the particle size, x and the cumulative undersize distribution, F
(X). This paper is a trial to introduce a new methodology to determine the
mean of a particle size distribution (MPSD) accurately using Gates-
Gaudin-Schuhmann and Rosin-Rammler models. The value of this
measure takes into consideration all particle sizes and their
corresponding distributions. The results showed that the different PSD,
which have the same values of median (xs) have different values of this
measure, especially with Rosin-Rammler model. In this paper, the
expressions of different types of means of a particle size distribution
(arithmetic, quadratic, cubic, geometric, and harmonic) were derived
mathematically using the two mentioned models. It is recommended to
select RR model to be applied in estimation of the different means of a
particle size distribution because it fits the available data better than the
GGS model, as well as, it determines the correct values and exerts the
actual differences between the different means of different particle size
distribution data sets. This work will be continuing by demonstrating a
case study using real environmental data in Part (2).

KEY WORDS: Frequency or density function, distribution function,
particle size, mean, Gates-Gaudin-Schuhmann model, Rosin-Rammler
model
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NOMENCLATURE

c the particle size corresponding to 63.2% cumulative distribution undersize
f(x) particle size distribution frequency function either by number,
length, surface, or mass, whichever may be of interest
fL (X) particle size distribution by length
fm (X) particle size distribution by mass
fn (X) particle size distribution by number

fs (X) particle size distribution by surface
GGS Gates-Gaudin-Schuhmann
k the maximum size of particles which corresponding to 100%

cumulative distribution undersize

ki, ko, k3 shape factors

m a characteristic constant of the material under analysis and gives
a measure of steepness of cumulative curve

m (x) a certain function of particle size x

m (x) the area under the distribution curve with respect to F (x) axis

MPSD  mean of particle size distribution

n a characteristic constant of the material under analysis and gives
a measure of steepness of cumulative distribution curve

PSD particle size distribution

R? coefficient of correlation

RR Rosin-Rammler

X particle size

Xs0 the median or the size which corresponds to 50% cumulative undersize
Xs0 the size which corresponds to 80% cumulative undersize
(x) mean diameter

(x), arithmetic (length) mean

(x), cubic (volume) mean

(x), geometric mean

(x), harmonic (surface volume) mean

(;()q quadratic (surface) mean

y =F (x) cumulative undersize distribution function

INTRODUCTION

Primary properties of particles such as the particle size distribution, shape, density, and
surface properties govern the secondary properties such as the settling velocities of
particles, the permeability of a bed, or the specific resistance of a filter cake.
Knowledge of these properties is a vital in the design and operation of mineral
processing equipment [1].
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Particle size is probably the most important single physical characteristic of
solids. It influences the combustion efficiency of pulverized coal, the settling time of
cements, the flow characteristics of granular materials, the compacting and sintering
behavior of metallurgical powders, pharmaceutical products, and the masking power of
paint pigment [2]. These examples illustrate the intimate involvement of particle size in
energy generation, industrial processes, resource utilization, and many other
phenomena [3].

Crushing and grinding operations are employed to fracture mineral aggregates,
and thus to increase liberation. The choice of fineness of grinding is an important
decision as the ore must be sufficiently finely ground to liberate the valuable minerals.
The accurate determination of grain liberation during reduction has a significant impact
on the advancing of physical or chemical mineral processing operations. Deriving a
measure that can be used to estimate quantitatively the fineness of grinding becomes of
great practical utility [4].

The maximum utilization of particle size distribution data can be obtained if
the data was represented by a mathematical expression. The mathematical function
allows ready graphical representation and offers maximum opportunities for
interpretation, extrapolation, and comparison of different PSDs [5]. Furthermore, more
useful information can be revealed if the parameters of the function can be related to
the properties of the particulate system or process that produces it. This would allow of
product control, tighter product specifications and quality assurance [1].

Several parameter mathematical models and expressions have been developed
to obtain the distribution and density functions from experimental PSD curves. These
functions range from the well-established normal and log-normal distributions to the
RR and GGS models [1,3,5]. The RR distribution function has long been used to
describe the PSD of powders of various types and sizes. This function is particularly
suited to represent powders made by grinding, milling, and crushing operations [3].
Numerous three and four parameter models have also been proposed for greater
accuracy in describing particle size distributions. But they have limit applications due
to their greater mathematical complexity [1].

AIM OF THE WORK

Many researchers [5-9] have used the median (x50) or x80 to compare and evaluate
different particle size distributions. But, these measures may be not so accurate and
enough to differentiate between different distributions because different particle size
distributions may have the same values of x50 or x80. The aim of this research is to
compare the mean of a particle size distribution (MPSD) estimated from Gates-
Gaudin-Schuhmann and Rosin-Rammler models for different particle size distribution
data sets. The value of this index is a valuable and more reliable to be used to
differentiate between different PSDs which have the same values of x50. Also, it was
derived expressions which can be used to determine mathematically the values of
different types of means of a distribution (arithmetic, quadratic, cubic, geometric, and
harmonic) using the two mentioned models. This paper may be the first one developed
to derive the mean of a particle size distribution from Gates-Gaudin-Schuhmann and
Rosin-Rammler models.
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TYPES OF PARTICLE SIZE ANALYSIS

An irregular particle can be measured by a number of different sizes which depend on
the dimension and/or property studied. There are basically three groups of sizes,
namely, equivalent sphere diameter, equivalent circle diameter, and statistical diameter
[10]. The first type of sizes is defined as the diameter of a sphere which would have the
same property as the particle itself (the same volume, the same projected area, the same
settling velocity, etc.). The second type of sizes is defined as the diameter of a circle
that would have the same property as the projected outline of the particle. The
statistical diameter is obtained when a linear dimension parallel to a fixed direction is
measured [1,5].

Many methods have been developed to determine the size distribution of
particulate system [11-12]. A number of methods aimed at determining PSDs (i.e.,
sieving, cycloning, microscopy, etc.) have been described [13]. Using different
characterization techniques for the PSD analysis of a material, one may obtain quite
radically different information and different measures of size [14-15]. Hence, any
analysis technique used will depend on the ultimate goal of the characterization [3].

In methods of solid-liquid separation at which the motion of a particle relative
to the fluid is the governing mechanism, it is of course most relevant to use a method
which measures the free-falling diameter or, more often, the Stokes’ diameter [5,10]. In
liquid filtration on the other hand, the surface volume diameter is more relevant to the
mechanism of separation because the resistance to flow through packed beds depends
on the specific surfaces of the particles that make up the bed [1].

TYPES OF PARTICLE SIZE DISTRIBUTIONS (PSDS)

Four different types of a particle size distribution may be defined, as follows:

1. Particle size distribution by number, fy (X).

2. Particle size distribution by length, f_ (x).

3. Particle size distribution by surface, fs (x).

4. Particle size distribution by mass, fy (x).

Although that the above distributions are related together, the conversion from

one distribution to another is possible only when the shape factor is constant, i.e.
particle shape is independent on particle size. The following relationships show the
basis of such conversion [1]:

fL® = kg xfy ® @
fo (0 = kX2 T () 2)
fy 00 = kg xSy () (3)

The constants ky, k,, and ks contain the shape factor which depends often on
particle size distribution. This assures that the accurate conversion from one type of
particle size distribution to another is not possible without a full quantitative
knowledge of the shape factor s dependence on particle size. These constants can easily
be found if the shape of particles does not vary with size.
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From the definition of frequency distribution, the area under the frequency
curve against particle size should be equal to one. This can be revealed by the
following equation [16-17]:

o0

(f)f(x) dx =10 4)

where: f (x) = particle size distribution frequency function either by number, length,
surface, or mass, whichever may be of interest

Different methods give different particle size distributions and the selection of
the method is made on the basis of particle size and the type of distribution required. In
most applications, particle size distribution by mass is of interest. There are, however,
cases such as liquid clarification where the turbidity of the overflow is of importance
and particle size distribution by surface or even by number are more relevant [1].

Representation of the Particle Size Distribution Data

Particle size distribution data are given either in an analytical form (as a function) or as
a set of data in a table or a diagram. The distributions are represented as frequencies, f
(x) or cumulative frequencies, F (x) which mutually corresponds because the frequency
curve can be obtained by differentiation of the cumulative curve as follows [16,18]:
dF (x)
f) = )
dx

or vice versa, the cumulative curve, F (x) can be obtained by integration of the
frequency curve, f (x), i.e.:

FO) = [fE)ax (6)

where: F (x) = cumulative undersize distribution function.

The area under the frequency curve is, by definition, equal to 1.0 as given in
equation (4), so that F (x) goes from 0 to 1.0 or 100%. The cumulative percentages are
given as either oversize or undersize, which mutually correspond, because the sum of
oversize and undersize fractions are equal to one at any given particle size [1,16].

The Measures of a Particle Size Distribution

There are great number of different average or mean sizes which may be defined for a
given particle size distribution. The purpose of such measures is to represent a
population of particles by a single figure. There are three important measures for a
given particle size distribution. These are the mode, the median, and the mean
[9,16,19].

a. The mode

The mode is defined as the most commonly occurring size or the size corresponding to
the peak on the size distribution frequency curve. This measure is not a valid for
comparisons of different distributions because some distributions may have more than
one peak and are commonly referred to as multi-modal distributions [1,16].
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b. The median

The median or the 50% size (Xso) is the size at which half of the particles are larger and
the other half are smaller. The median is most easily determined from the cumulative
undersize or oversize curves, i.e. it is the size which corresponds to 50%. This
measure may be not also so accurate and valuable measure to differentiate between
different particle size distributions (PSDs) data because different particle size
distribution data sets may have the same values of median [1,5,20].

c. The mean

It is the average of particle sizes and is a very valuable measure for the sample. There
are many mean diameters that can be defined for a given particle size distribution.
Their definitions are, in a general form, as follows [1,9,16]:

0

m(>_<)= [m () () dx (7)
0

where:
m (x) a certain function of particle size x
m (x) =  mean diameter

Depending on the form of this function, there are several types of mean
diameters as shown in Table 1 [1,9].

Evaluation of the various means required for a given particle size distribution
is based on equation (7). By substituting of equation (5) into equation (7), the latter can
be rewritten as follows:

- 1.0
m(x) = [m) dy )
0
where:
y=F(x) = cumulative undersize distribution function

Table 1: Types of mean diameters of a distribution

Name of mean diameter (x) Form of m (x)
Arithmetic (length) mean (>_<)a m (x) =X
Quadratic (surface) mean (>_<)q m (x) = X°
Cubic (volume) mean (x), m (x) =x°
Geometric mean (>_<)g m (X) = Ln (X)
Harmonic (surface volume) mean (x), m (x) = 1/x
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F (x)

Area = m (x)

\

Fig. 1: Evaluation of a mean (>;) of a particle size distribution from the cumulative
undersize distribution function (F (x))

m (x)

If either frequency function, f (x), or cumulative undersize distribution
function, F (x) is available as analytical functions, the desired mean is evaluated by
integration of equations (7) or (8), respectively. If, however, no analytical function is
fitted and the particle size distribution is in the form of a graph or a table, evaluation of
mean diameters can be best done graphically. If the cumulative undersize function, F
(x) was plotted against m (x) for the corresponding type of size required, the mean size,

m (x) IS then represented by the area under the curve with respect to F (x) axis as

illustrated in Figure 1 [1]. The mean size is evaluated from this area using the
corresponding equation for m (x) as shown in Table 1.

Determination of the Mean of Particle Size Distribution (MPSD)
Using Gates-Gaudin-Schuhmann Distribution Model:

Referring to the availability of many progressive computer softwares, it is more
convenient to fit the experimental particle size distribution data with an analytical
function and to use this function mathematically in further treatment. It can be decided
that it is easier to evaluate the mean size from analytical functions more than from
experimental data. The Gates-Gaudin-Schuhmann distribution function is a widely
used function which is usually applied to evaluate the particle size distribution data
resulted from comminution processes [3,5,18,21-25]. It is a two parameter distribution
function which can be expressed by the following function:

y = FE = (% ©)
k
where:
y =F (x) = cumulative undersize distribution function
X =  particle size
k = the maximum size of particles which corresponding to 100%

cumulative distribution undersize
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n =  acharacteristic constant of the material under analysis and
gives a measure of steepness of cumulative distribution curve
Equation (9) may be rewritten as follows:
1
x = ky N (10)
The frequency distribution function can be obtained by differentiation of equation (9)
as follows:

fx) = d_y - m - Ln X n-1 (11)
dx dx k
Equation (9) can be reduced to the following formula:
Ln(y) = nLn(X) -nLn(K) (12)

Equation (12) gives a straight line if Ln (y) is plotted against Ln (x) where n is
the slope of the best fitting line of the data and - n Ln (k) is the intercept part of the Ln
(y) axis. Both the constants n and k can be obtained easily using the least squares
method through computer software.

The various mean sizes available in Table 1 may be easily determined from
Gates-Gaudin-Schuhmann distribution function as explained below. For example, if it
is required to obtain the arithmetic mean size, this may be evaluated by integration of
equations (7) or (8) after replacing m (x) by x. In this case, the equations may be
rewritten as follows:

m( x)g) = éxf(x)dx (13)
or:
- 1.0
m( x)g) = (j)xdy (14)

From integration rules, it is better and easier to use equation (14). Replace the
value of x in equation (10) by y and then substitute in equation (14), this change the
latter one into the following form:

- 10 1
m(( x)a) =k [y"dy (15)
0

By integration of the previous equation and substitution the values of
integration limits of y by (0, 1.0), the final expression of arithmetic mean may be
determined as follows:

nk

(16)

(x)ag = m( x)g) =
n + 1

To determine the values of other mean sizes, the value of m (x) in equation (8)
is substituted by x* (quadratic mean), x* (cubic mean), Ln (x) (geometric mean), and 1/x
(harmonic mean). Hence, by applying the same previous procedure, the final
expressions of different mean sizes may be obtained as follows:

- ) n
= =k
(x)g = M X)) —

(17)



A Comparison Study to Determine the Mean of Particle....... 155

. 3/ - .
- = k3 18
(x ) m((X)C) ,/n+3 (18)

- m((>-<)) ntnk)- 1
(x)g = e 9 _ e n (19)

- 1 -1k
(x), = _ D (20)

- n
m{ x),)

Although the mean particle size of the distribution (MPSD) is more convenient
and valuable than the other measures, because it takes into consideration the complete
distribution of the sizes and their corresponding percentages, this measure has some
drawbacks with Gates-Gaudin-Schuhmann distribution model. Firstly, it is possible to
obtain the same value of this measure with different distributions. This may be
occurred if the distributions have corresponding values of the model constants, n and k.

Also, this measure may have a negative value of the harmonic mean if the value of the
steepness of cumulative distribution curve of the data, n is lesser than the unity.

Determination of the Mean of Particle Size Distribution (MPSD)
Using Rosin-Rammler Distribution Model:

The Rosin-Rammler distribution function is a commonly used model which is usually
applied to evaluate the particle size distribution data. The Rosin-Rammler function is
particularly suited for representing particles generated by grinding, milling and
crushing operations. This model has long been used by many researchers [2,3,5,22,26]
to describe the particle size distribution of powders of various types and sizes. It is a
two parameter distribution model and can be expressed by the following general
equation:

[ rx)" ]

y-Fe - 1em |- X) ) @
L\ ]

where:

y =F (X) = cumulative undersize distribution function

X =  particle size

c = the particle size corresponding to 63.2% cumulative distribution
undersize

m = acharacteristic constant of the material under analysis and gives a

measure of steepness of cumulative curve
Equation (21) may be rewritten as follows:

x =c[ - Ln(1-y]"" (22)

The frequency distribution function can be obtained by differentiation of
equation (21) as follows:
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[ (x)" ]
o - Y- O M e |_(£] | (23)
dx dx c L c J
Equation (21) can be reduced to the following equation:
Log I—Ln ( ]—I =mLog(x) -mLog(c ) (24)
L 1-F(X ]

Equation (24) gives a straight line if Log [Lh (1 / (1 — F (x)] was plotted
against Log (x) where m is the slope of the best fitting line of the data and —m log (c) is
the intercept part of the Log [Ln (1 / (1 — F (x)] axis. Both the constants m and c can
be obtained easily using the least squares method through a computer program.

The various mean sizes available in Table 1 can be determined from Rosin-
Rammler equation as explained below. For example, if it is required to obtain the
arithmetic mean particle size. This may be evaluated by integration of equations (13) or
(14) after replacing of m (x) by x. Then, substitution the value of y by x from equation
(22) into equation (14). This will result the following form:

1.0

m( x),) = ¢ [[-Ln(1 -] dy (25)

It can be decided that it is so difficult to determine the value of above
integration directly but it may be obtained indirectly with a mathematical procedure by
aiding a computer program. After integration of the above equation and substitution the
values of integration limits of y by (0, 1.0), the final expression of arithmetic mean
may be determined in a final expression as follows:

(x), = ¢ exp [0.0813298 -( 0.0607635 m)~+( 13431264 / /m) (26)

-( 1.0604682 Ln(m)/ m)-( 1.3636892 /m)]
By executing the same previous procedure, the other mean particle sizes may
be determined. This can be carried out by substituting m (x) in equation (8) by x*
(quadratic mean), x> (cubic mean), Ln (x) (geometric mean), and 1/x (harmonic mean).
The final expressions of different mean sizes can be obtained by the following
equations:

(-) exp [0.6337644 -( 0.0657717 m)-( 15545005 Ln(m)/ m) @7
X = C
‘ + (0.0289583 Ln(m)/ m?) + (01255898 /m ?)]
( - ) exp [1.4692305 + (0.0252045 m)-( 0.4964976 Ln (m)) 28)
X = 3
¢ — (29997296 Ln(m)/ m) + (0.2973719 /m)]
(>><)h = c/[ exp [{- 259 515 - 188.284 m) + (71.242 m?*)}/ (29)

{1+ (104378 *m)-( 645.988 *m *)}]
Finally, the geometric mean can be expressed by the following equation:

1.0

m( x),) = [Lfe( - tn(1 - )1 dy (30)
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It is found that it is not possible to solve this equation mathematically
and hence, the value of above integration can not be determined. Hence, it can
be decided that the geometric mean value of a particle size distribution using
Rosin-Rammler model can not be derived mathematically.

RESULTS AND DISCUSSION

Illustrated Example on the Estimation of MPSD from GGS and RR
Models:

Four data sets of different particle size distribution are available in the present study.
The values of the weight percentages of different particle size fractions, together with
the cumulative weight pass percentages are listed in Table 2. The cumulative weight
pass percentages, i.e. cumulative undersize distribution function, F (x) versus particle
size, x are shown also in Figure 2.

From Table 2 and Figure 2, it can be revealed that the different data sets have
different distributions of particle sizes. Furthermore, it was found that the different data
sets have the same values of median (Xso = 305um).

The procedure of calculation of MPSD from GGS and RR models

The procedure of calculation of different means of a particle size distribution from
Gates-Gaudin-Schuhmann and Rosin-Rammler models can be summarized in the
following simple steps:

1. Calculation of the cumulative distribution undersize of different particle sizes,
F(x) of the different data sets as shown in Table 2 and Figure 2.

2. For GGS model, Ln [F(x)] is plotted versus Ln (x) and the least squares
regression analysis through computer software is used to fit the best straight
line to the data points and hence, the values of GGS parameters (n & k) are
estimated. The correlation coefficient may be used as the parameter for
goodness of fit.

3. The values of these parameters are introduced into the formulas 16 through 20
to estimate the values of arithmetic, quadratic, cubic, geometric, and
harmonic means of the different data sets.

4. In the case of RR model, Log [Ln [1/(1-F(x))]] is plotted against Log [Xx] and
hence the model parameters (m & c) can be determined using the least squares
regression method through a computer software.

5. The obtained values of RR parameters of the studied data sets are introduced
into the expressions 26 through 29 to compute the values of arithmetic,
quadratic, cubic, and harmonic means.
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Table 2: Particle size distributions of the different data sets

size fraction,| Datasetl Data set 2 Data set 3 Data set 4
Hm wt., % | c.w.p.% | wt., % |c.w.p.%| wt., % | c.w.p.% | wt., % | c.w.p.%
(+500) 27.64| 100 |21.68| 100 [ 16.25| 100 | 12.79 100
(-500+400) | 10.16 | 72.36 | 12.63 | 78.32 | 14.60 | 83.75 | 1561 | 87.21
(-400+315) | 10.79 | 62.20 | 13.88 | 65.69 | 16.95 | 69.15 | 19.11 | 71.60
(-315+250) | 9.65 | 51.41 |12.20 | 51.80 | 14.68 | 52.20 | 16.41 | 52.49
(-250+200) | 8.19 | 41.76 | 9.87 | 39.60 | 11.28 | 37.52 | 12.12 | 36.08
(-200+160) | 6.95 | 33,57 | 7.85 | 29.73 | 836 | 26.24 | 853 | 23.96
(-160+125) | 6.28 | 26.62 | 6.55 | 21.88 | 6.42 | 17.88 | 6.16 | 1544
(-125+100) | 453 | 20.33 | 4.34 | 1532 | 3.89 | 1146 | 3.49 9.28
(-100+080) | 3.60 | 15.80 | 3.17 | 10.99 | 2.61 7.58 2.20 5.79
(-080+063) | 3.00 | 12.20 | 242 | 7.82 | 1.82 4.97 1.45 3.58
(-063) 920 | 9.20 | 541 | 541 | 3.15 3.15 2.13 2.13
Sum 100 100 100 100
90
s 80 ////{
A
; 00 {:‘/'/'/ -
2 50 _
Z 40 - & /
g 30 YA
g 20 ./'///‘/ '_:-_gatal
3 1o Leam a2 - data 3
. ,/,‘ﬁ‘/' | | | | | | | c‘jata 4

200 250 300 350 400 450 500

Particle size, pm

Fig. 2: Particle size distribution of the different data sets
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Fig. 3: Fitting of the studied data sets to Gates-Gaudin-Schuhmann model
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Fig. 4: Fitting of the studied data sets to Rosin-Rammler model

Figures 3 and 4 illustrate the fitting of the studied data sets to GGS and RR
models, respectively. A Summary of the particle size distribution parameters obtained
from GGS and RR models, as well as, the corresponding correlation coefficients of the
best-fit straight lines of the studied data sets are tabulated in Table 3. From the
observations in Figures 3 and 4 and the corresponding correlation coefficient, one can
decide that the two models provides a good representation for all the available data sets
although the RR model provides a better fit to the data than GGS does.
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Table 3: Summary of the particle size distribution parameters obtained from Gates-
Gaudin-Schuhmann and Rosin-Rammler models, as well as, the corresponding
correlation coefficients of the best-fit straight lines of the studied data sets

Gates-Gaudin-Schuhmann model

Rosin-Rammler model

n K, um R? m c, um R?
Dataset 1| 1.00981 624.34 0.99453 1.25212 408.31 0.99991
Dataset 2| 1.31632 536.42 0.99283 1.59697 384.60 0.99988
Data set 3| 1.62478 489.27 0.99119 1.94242 368.65 0.99996
Dataset 4| 1.84511 467.60 0.99004 2.19697 360.78 0.99994

The median size (xso) of the different particle size distribution data sets were
determined from graphical representation of data, GGS, and RR models. The obtained
results are listed in Table 4 and represented in Figure 5, where it can be revealed that
the values of median size are nearly the same for the different studied data sets when
these values are determined from graphical representation of data shown in Figure 2
and also from RR model. Furthermore, there is a clear difference between the values of
this measure when they are determined from GGS model compared with RR model for
the different data sets. This means that the RR model is more reliable to fit the
available data sets than GGS model does.

325

320

E graphical representation

O GGS model
B RR model

315

The median size (x50), um

305

s
R
i

300

data 1

data 3

Fig. 5: Comparison of the values of median size (x50) obtained from graphical
representation of data, Gates-Gaudin-Schuhmann, and Rosin-Rammler models
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Table 4: The median size (xso) of the different particle size distributions data sets
determined from graphical representation of data, Gates-Gaudin-Schuhmann, and
Rosin-Rammler models

Graphical representation GGS RR
of data model model
Xs0, MM Xs0, MM Xs0, MM
Data set 1 305 314.28 304.69
Data set 2 305 316.82 305.73
Data set 3 305 319.36 305.26
Data set 4 305 321.16 305.34

Comparison of different means estimated from GGS and RR models

The values of arithmetic, quadratic, cubic, and harmonic mean sizes of the different
particle size distribution data sets estimated from Gates-Gaudin-Schuhmann and
Rosin-Rammler models are shown in Figures 6 through 9. These results are also
presented in Table 5.

Comeparison of the values of arithmetic, quadratic, and cubic mean sizes
revealed that there are small differences between the lowest and highest values of these
means for different data sets when they are evaluated from GGS model although there
are clear differences in the behavior of the available data sets as shown in Figure 2 and
then they should have different values of means. On the other hand, there are clear
differences between the lowest and highest values of these measures if they are
estimated from RR model. This difference may reach to 20% with arithematic mean
size, 32% with quadratic mean size, and 42% with cubic mean size between different
data sets. This means that RR model is more reliable to evaluate the means of a particle
size distribution than GGS does.

Referring to Figure 9 which illustrates a comparison of the values of harmonic
mean size estimated from the two models for the different data sets, it can be revealed
that there are clear differences between the lowest and highest values of this measure
for different data sets whichever they are computed from GGS or RR models. From
Figure 9, it can be also shown that the two models give a reverse behavior of this
measure with the different data sets. Moreover, RR model gives a logical behavior for
the different data sets because the behavior of harmonic mean should be in a reverse of
the behavior of arithmetic mean and this conclusion is in an agreement with the results
obtained from RR model.

From the above discussions, it is recommended to select RR model to be
applied in estimation of the different means of a particle size distribution because it fits
the available data better than the GGS model, as well as, it determines the correct
values and exerts the actual differences between the different means of different
particle size distribution data sets.



162 M.M. Ahmed and S.S. Ahmed

400
c OGGS model
= ERR model
(o]
N
o 350
c
©
(4]
€
L2
® i
£ 300
s
=
<

250 T T T

data 1 data 2 data 3 data 4

Fig. 6: Comparison of the values of arithmetic mean size estimated from Gates-
Gaudin-Schuhmann and Rosin-Rammler models for the different data sets
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Fig. 7: Comparison of the values of quadratic mean size estimated from Gates-Gaudin-
Schuhmann and Rosin-Rammler models for the different data sets
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Fig. 8: Comparison of the values of cubic mean size estimated from Gates-Gaudin-
Schuhmann and Rosin-Rammler models for the different data sets
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Fig. 9: Comparison of the values of harmonic mean size estimated from Gates-Gaudin-
Schuhmann and Rosin-Rammler models for the different data sets

Table 5: The values of arithmetic, quadratic, cubic, and harmonic means of the
different particle size distribution data sets estimated from Gates-Gaudin-Schuhmann
and Rosin-Rammler models

Arithmetic
mean
size, um

Quadratic mean
size, um

Cubic mean
size, um

Harmonic
mean
size, um

GGS RR

GGS RR

GGS | RR

GGS | RR

Data set 1
Data set 2
Data set 3
Data set 4

313.69| 379.19
304.84| 341.92
302.87| 321.28
303.25| 311.57

361.63
337.96
327.57
323.91

487.99
409.94
371.06
354.18

394.27
361.07
345.24
338.93

586.80
467.25
409.64
384.94

6.06 |358.95
128.91|268.90
188.141194.06
214.17|149.36

CONCLUSIONS

The following conclusions may be drawn from this research:
1. The different means (arithmetic, quadratic, cubic, geometric, and harmonic) of a
particle size distribution can be easily estimated using Gates-Gaudin-Schuhmann
and Rosin-Rammler models.

The two models provide a very good representation for all the available data sets

although the RR model provides a better fit to the data than GGS does.

sets when they are evaluated from GGS model.

There are small differences between the values of different means for different data

There are clear differences between the lowest and highest values of arithmetic,

guadratic, and cubic means of different data sets if they are estimated from RR
model. This difference may reach to 20% with arithematic mean size, 32% with
guadratic mean size, and 42% with cubic mean size.




164 M.M. Ahmed and S.S. Ahmed

10.

11.

12.

There are clear differences between the lowest and highest values of harmonic
mean for different data sets whichever they are computed from GGS or RR
models. The two models give a reverse behavior of this measure with the different
data sets.

It is recommended to select RR model to be applied in estimation of the different
means of a particle size distribution because it fits the available data better than the
GGS model, as well as, it determines the correct values and exerts the actual
differences between the different means of different particle size distribution data
sets.
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