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One of the most important steps in environmental studies is to get an 

accurate distribution of the pollutants in terms of its quantity and 

qualities. Some environmental studies are acquiring a good 

classification of the particle size including the average mean of the 

particle. Many researchers use the median size (x50) or until the size 

passing 80% cumulative undersize (x80) as a measure for evaluation of 

the particle size distribution resulted from different mineral processing 

operations such as crushing, grinding, classification, sedimentation, 

and/or solid-liquid separation or even during the study of the pollutant 

settlement. These measures are not so accurate to differentiate between 

different particle size distributions (PSDs) because many PSDs data sets 

may have the same values of x50 or x80 if these data sets are represented 

between the particle size, x and the cumulative undersize distribution, F 

(x). This paper is a trial to introduce a new methodology to determine the 

mean of a particle size distribution (MPSD) accurately using Gates-

Gaudin-Schuhmann and Rosin-Rammler models. The value of this 

measure takes into consideration all particle sizes and their 

corresponding distributions. The results showed that the different PSD, 

which have the same values of median (x50) have different values of this 

measure, especially with Rosin-Rammler model. In this paper, the 

expressions of different types of means of a particle size distribution 

(arithmetic, quadratic, cubic, geometric, and harmonic) were derived 

mathematically using the two mentioned models. It is recommended to 

select RR model to be applied in estimation of the different means of a 

particle size distribution because it fits the available data better than the 

GGS model, as well as, it determines the correct values and exerts the 

actual differences between the different means of different particle size 

distribution data sets. This work will be continuing by demonstrating a 

case study using real environmental data in Part (2). 

KEY WORDS: Frequency or density function, distribution function, 

particle size, mean, Gates-Gaudin-Schuhmann model, Rosin-Rammler 

model 
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NOMENCLATURE 
 

c  the particle size corresponding to 63.2% cumulative distribution undersize 

f (x)   particle size distribution frequency function either by number,  

length, surface, or mass, whichever may be of interest 

fL (x)  particle size distribution by length 

fM (x)  particle size distribution by mass 

fN (x)  particle size distribution by number 

fS (x)  particle size distribution by surface 

GGS  Gates-Gaudin-Schuhmann 

k  the maximum size of particles which corresponding to 100%  

cumulative distribution undersize 

k1, k2, k3  shape factors 

m   a characteristic constant of the material under analysis and gives  

a measure of steepness of cumulative curve 

m (x)  a certain function of particle size x 

)x( m
-

 the area under the distribution curve with respect to F (x) axis 

MPSD mean of particle size distribution 

n   a characteristic constant of the material under analysis and gives  

a measure of steepness of cumulative distribution curve 

PSD  particle size distribution 

R
2
   coefficient of correlation 

RR  Rosin-Rammler 

x  particle size 

x50  the median or the size which corresponds to 50% cumulative undersize 

x80  the size which corresponds to 80% cumulative undersize 

)x(
-

  mean diameter 

a

-

)x(   arithmetic (length) mean 

c

-

)x(   cubic (volume) mean 

g

-

)x(   geometric mean 

h

-

)x(   harmonic (surface volume) mean 

q

-

)x(   quadratic (surface) mean 

y = F (x)  cumulative undersize distribution function 

 

 

INTRODUCTION 

Primary properties of particles such as the particle size distribution, shape, density, and 

surface properties govern the secondary properties such as the settling velocities of 

particles, the permeability of a bed, or the specific resistance of a filter cake. 

Knowledge of these properties is a vital in the design and operation of mineral 

processing equipment [1]. 
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Particle size is probably the most important single physical characteristic of 

solids. It influences the combustion efficiency of pulverized coal, the settling time of 

cements, the flow characteristics of granular materials, the compacting and sintering 

behavior of metallurgical powders, pharmaceutical products, and the masking power of 

paint pigment [2]. These examples illustrate the intimate involvement of particle size in 

energy generation, industrial processes, resource utilization, and many other 

phenomena [3]. 

Crushing and grinding operations are employed to fracture mineral aggregates, 

and thus to increase liberation. The choice of fineness of grinding is an important 

decision as the ore must be sufficiently finely ground to liberate the valuable minerals. 

The accurate determination of grain liberation during reduction has a significant impact 

on the advancing of physical or chemical mineral processing operations. Deriving a 

measure that can be used to estimate quantitatively the fineness of grinding becomes of 

great practical utility [4]. 

The maximum utilization of particle size distribution data can be obtained if 

the data was represented by a mathematical expression. The mathematical function 

allows ready graphical representation and offers maximum opportunities for 

interpretation, extrapolation, and comparison of different PSDs [5]. Furthermore, more 

useful information can be revealed if the parameters of the function can be related to 

the properties of the particulate system or process that produces it. This would allow of 

product control, tighter product specifications and quality assurance [1]. 

Several parameter mathematical models and expressions have been developed 

to obtain the distribution and density functions from experimental PSD curves. These 

functions range from the well-established normal and log-normal distributions to the 

RR and GGS models [1,3,5]. The RR distribution function has long been used to 

describe the PSD of powders of various types and sizes. This function is particularly 

suited to represent powders made by grinding, milling, and crushing operations [3]. 

Numerous three and four parameter models have also been proposed for greater 

accuracy in describing particle size distributions.  But they have limit applications due 

to their greater mathematical complexity [1]. 

 

AIM OF THE WORK 

Many researchers [5-9] have used the median (x50) or x80 to compare and evaluate 

different particle size distributions.  But, these measures may be not so accurate and 

enough to differentiate between different distributions because different particle size 

distributions may have the same values of x50 or x80.  The aim of this research is to 

compare the mean of a particle size distribution (MPSD) estimated from Gates-

Gaudin-Schuhmann and Rosin-Rammler models for different particle size distribution 

data sets.  The value of this index is a valuable and more reliable to be used to 

differentiate between different PSDs which have the same values of x50.  Also, it was 

derived expressions which can be used to determine mathematically the values of 

different types of means of a distribution (arithmetic, quadratic, cubic, geometric, and 

harmonic) using the two mentioned models.  This paper may be the first one developed 

to derive the mean of a particle size distribution from Gates-Gaudin-Schuhmann and 

Rosin-Rammler models. 
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TYPES OF PARTICLE SIZE ANALYSIS 

An irregular particle can be measured by a number of different sizes which depend on 

the dimension and/or property studied. There are basically three groups of sizes, 

namely, equivalent sphere diameter, equivalent circle diameter, and statistical diameter 

[10]. The first type of sizes is defined as the diameter of a sphere which would have the 

same property as the particle itself (the same volume, the same projected area, the same 

settling velocity, etc.). The second type of sizes is defined as the diameter of a circle 

that would have the same property as the projected outline of the particle. The 

statistical diameter is obtained when a linear dimension parallel to a fixed direction is 

measured [1,5]. 

Many methods have been developed to determine the size distribution of 

particulate system [11-12]. A number of methods aimed at determining PSDs (i.e., 

sieving, cycloning, microscopy, etc.) have been described [13]. Using different 

characterization techniques for the PSD analysis of a material, one may obtain quite 

radically different information and different measures of size [14-15]. Hence, any 

analysis technique used will depend on the ultimate goal of the characterization [3]. 

In methods of solid-liquid separation at which the motion of a particle relative 

to the fluid is the governing mechanism, it is of course most relevant to use a method 

which measures the free-falling diameter or, more often, the Stokes’ diameter [5,10]. In 

liquid filtration on the other hand, the surface volume diameter is more relevant to the 

mechanism of separation because the resistance to flow through packed beds depends 

on the specific surfaces of the particles that make up the bed [1]. 

 

TYPES OF PARTICLE SIZE DISTRIBUTIONS (PSDS) 

Four different types of a particle size distribution may be defined, as follows: 

1. Particle size distribution by number, fN (x). 

2. Particle size distribution by length, fL (x). 

3. Particle size distribution by surface, fS (x). 

4. Particle size distribution by mass, fM (x). 

Although that the above distributions are related together, the conversion from 

one distribution to another is possible only when the shape factor is constant, i.e. 

particle shape is independent on particle size. The following relationships show the 

basis of such conversion [1]: 
 

 (x)
N

 x f k (x) 
L

f
1

          (1) 
   

 (x)
N

 f x k (x) 
S

f
2

2
         (2) 

 

 (x)
N

 f x k (x) 
M

f
3

3
         (3) 

 

The constants k1, k2, and k3 contain the shape factor which depends often on 

particle size distribution. This assures that the accurate conversion from one type of 

particle size distribution to another is not possible without a full quantitative 

knowledge of the shape factor
’
s dependence on particle size. These constants can easily 

be found if the shape of particles does not vary with size. 
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From the definition of frequency distribution, the area under the frequency 

curve against particle size should be equal to one. This can be revealed by the 

following equation [16-17]: 
 

01

0

. dx f (x) 


          (4) 

 

where: f (x) = particle size distribution frequency function either by number, length, 

surface, or mass, whichever may be of interest 

Different methods give different particle size distributions and the selection of 

the method is made on the basis of particle size and the type of distribution required. In 

most applications, particle size distribution by mass is of interest. There are, however, 

cases such as liquid clarification where the turbidity of the overflow is of importance 

and particle size distribution by surface or even by number are more relevant [1]. 
 

Representation of the Particle Size Distribution Data 

Particle size distribution data are given either in an analytical form (as a function) or as 

a set of data in a table or a diagram. The distributions are represented as frequencies, f 

(x) or cumulative frequencies, F (x) which mutually corresponds because the frequency 

curve can be obtained by differentiation of the cumulative curve as follows [16,18]: 
 

dx

dF (x)
 f (x)            (5) 

 

or vice versa, the cumulative curve, F (x) can be obtained by integration of the 

frequency curve, f (x), i.e.: 
 

 f (x) dx F (x)           (6) 
 

where: F (x) = cumulative undersize distribution function. 

The area under the frequency curve is, by definition, equal to 1.0 as given in 

equation (4), so that F (x) goes from 0 to 1.0 or 100%. The cumulative percentages are 

given as either oversize or undersize, which mutually correspond, because the sum of 

oversize and undersize fractions are equal to one at any given particle size [1,16]. 
 

The Measures of a Particle Size Distribution 

There are great number of different average or mean sizes which may be defined for a 

given particle size distribution. The purpose of such measures is to represent a 

population of particles by a single figure. There are three important measures for a 

given particle size distribution. These are the mode, the median, and the mean 

[9,16,19]. 

 

a. The mode 

The mode is defined as the most commonly occurring size or the size corresponding to 

the peak on the size distribution frequency curve. This measure is not a valid for 

comparisons of different distributions because some distributions may have more than 

one peak and are commonly referred to as multi-modal distributions [1,16]. 
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b. The median 

The median or the 50% size (x50) is the size at which half of the particles are larger and 

the other half are smaller. The median is most easily determined from the cumulative 

undersize or oversize curves, i.e. it is the size which corresponds to 50%.  This 

measure may be not also so accurate and valuable measure to differentiate between 

different particle size distributions (PSDs) data because different particle size 

distribution data sets may have the same values of median [1,5,20]. 

 

c. The mean 

It is the average of particle sizes and is a very valuable measure for the sample. There 

are many mean diameters that can be defined for a given particle size distribution. 

Their definitions are, in a general form, as follows [1,9,16]: 

 f (x) dxm (x) ) 

-

xm ( 




0

        (7) 

where: 

m (x)  =  a certain function of particle size x 

)x( m
-

 =  mean diameter 

Depending on the form of this function, there are several types of mean 

diameters as shown in Table 1 [1,9]. 

Evaluation of the various means required for a given particle size distribution 

is based on equation (7). By substituting of equation (5) into equation (7), the latter can 

be rewritten as follows: 

 dy
.

m (x) ) 

-

xm ( 
01

0

         (8) 

where: 

y = F (x)  =  cumulative undersize distribution function 

 

Table 1: Types of mean diameters of a distribution 

Name of mean diameter )x(
-

 Form of m (x) 

Arithmetic (length) mean 
a

-

)x(  
m (x) = x 

Quadratic (surface) mean 
q

-

)x(  
m (x) = x

2 

Cubic (volume) mean 
c

-

)x(  
m (x) = x

3 

Geometric mean 
g

-

)x(  
m (x) = Ln (x) 

Harmonic (surface volume) mean 
h

-

)x(  
m (x) = 1/x 
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m  (x)

F
 (

x
)

 

Fig. 1: Evaluation of a mean )x( 
-

of a particle size distribution from the cumulative 

undersize distribution function (F (x)) 

 

If either frequency function, f (x), or cumulative undersize distribution 

function, F (x) is available as analytical functions, the desired mean is evaluated by 

integration of equations (7) or (8), respectively. If, however, no analytical function is 

fitted and the particle size distribution is in the form of a graph or a table, evaluation of 

mean diameters can be best done graphically. If the cumulative undersize function, F 

(x) was plotted against m (x) for the corresponding type of size required, the mean size, 

)x( m
-

 is then represented by the area under the curve with respect to F (x) axis as 

illustrated in Figure 1 [1]. The mean size is evaluated from this area using the 

corresponding equation for m (x) as shown in Table 1. 

 

Determination of the Mean of Particle Size Distribution (MPSD) 
Using Gates-Gaudin-Schuhmann Distribution Model: 

Referring to the availability of many progressive computer softwares, it is more 

convenient to fit the experimental particle size distribution data with an analytical 

function and to use this function mathematically in further treatment. It can be decided 

that it is easier to evaluate the mean size from analytical functions more than from 

experimental data. The Gates-Gaudin-Schuhmann distribution function is a widely 

used function which is usually applied to evaluate the particle size distribution data 

resulted from comminution processes [3,5,18,21-25]. It is a two parameter distribution 

function which can be expressed by the following function: 
n

k

x
  F (x) y 








          (9) 

where: 

y  = F (x)  =  cumulative undersize distribution function 

x  =  particle size 

k  =  the maximum size of particles which corresponding to 100% 

cumulative distribution undersize 

Area = )x( m
-
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n   = a characteristic constant of the material under analysis and 

gives a measure of steepness of cumulative distribution curve 

Equation (9) may be rewritten as follows: 

n k yx 

1

            (10) 

The frequency distribution function can be obtained by differentiation of equation (9) 

as follows: 

1n-
 x

n
k

n
  

dx

dF (x)
  

dx

dy
 f(x)        (11) 

Equation (9) can be reduced to the following formula: 
 

- n Ln (k) n Ln (x) Ln (y)          (12) 
 

Equation (12) gives a straight line if Ln (y) is plotted against Ln (x) where n is 

the slope of the best fitting line of the data and - n Ln (k) is the intercept part of the Ln 

(y) axis. Both the constants n and k can be obtained easily using the least squares 

method through computer software. 

The various mean sizes available in Table 1 may be easily determined from 

Gates-Gaudin-Schuhmann distribution function as explained below. For example, if it 

is required to obtain the arithmetic mean size, this may be evaluated by integration of 

equations (7) or (8) after replacing m (x) by x. In this case, the equations may be 

rewritten as follows: 

 f (x) dxx ) a)

-

xm (( 




0

        (13) 

or: 

 dy
.

x ) a)

-

xm (( 
01

0

         (14) 

From integration rules, it is better and easier to use equation (14). Replace the 

value of x in equation (10) by y and then substitute in equation (14), this change the 

latter one into the following form: 

 dy
.

ny k) a)

-

xm (( 
01

0

1

        (15) 

By integration of the previous equation and substitution the values of 

integration limits of y by (0, 1.0), the final expression of arithmetic mean may be 

determined as follows: 

1 n 

n k
 ) a)

-

x m (( a)

-

x(


        (16) 

To determine the values of other mean sizes, the value of m (x) in equation (8) 

is substituted by x
2
 (quadratic mean), x

3
 (cubic mean), Ln (x) (geometric mean), and 1/x 

(harmonic mean). Hence, by applying the same previous procedure, the final 

expressions of different mean sizes may be obtained as follows: 

2 n 

n
 k  )

q
)

-

xm ((  q)

-

x(


       (17) 
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3

3

3

 n 

n
 k )

c
)

-

xm ((  c)

-

x(


       (18) 

n

 n Ln (k) -

 e

)
g

)

-

xm ((

 e g)

-

x(

1

       (19) 

n

) k(n - 
 

)
h

)

-

xm ((

  
h

)

-

x(
11

        (20) 

Although the mean particle size of the distribution (MPSD) is more convenient 

and valuable than the other measures, because it takes into consideration the complete 

distribution of the sizes and their corresponding percentages, this measure has some 

drawbacks with Gates-Gaudin-Schuhmann distribution model. Firstly, it is possible to 

obtain the same value of this measure with different distributions. This may be 

occurred if the distributions have corresponding values of the model constants, n and k. 

Also, this measure may have a negative value of the harmonic mean if the value of the 

steepness of cumulative distribution curve of the data, n is lesser than the unity.  

 

Determination of the Mean of Particle Size Distribution (MPSD) 
Using Rosin-Rammler Distribution Model: 

The Rosin-Rammler distribution function is a commonly used model which is usually 

applied to evaluate the particle size distribution data. The Rosin-Rammler function is 

particularly suited for representing particles generated by grinding, milling and 

crushing operations. This model has long been used by many researchers [2,3,5,22,26] 

to describe the particle size distribution of powders of various types and sizes.  It is a 

two parameter distribution model and can be expressed by the following general 

equation: 
























m

c

x
-   -   F (x) y exp1        (21) 

where: 

y  = F (x)  =  cumulative undersize distribution function 

x  =  particle size 

c  =  the particle size corresponding to 63.2% cumulative distribution 

    undersize 

m   = a characteristic constant of the material under analysis and gives a 

    measure of steepness of cumulative curve 

Equation (21) may be rewritten as follows: 
 

/m)(
 y)]  Ln ( c [x 

1
1         (22) 

 

The frequency distribution function can be obtained by differentiation of 

equation (21) as follows: 
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 























m

m - 

m
c

x
-   x 

c

m
  

dx

dF (x)
  

dx

dy
 f(x) exp

1
    (23) 

Equation (21) can be reduced to the following equation: 

)- m Log (cm Log (x) 
 - F (x)

Ln Log 























1

1
    (24) 

Equation (24) gives a straight line if Log [Ln (1 / (1 – F (x)] was plotted 

against Log (x) where m is the slope of the best fitting line of the data and –m log (c) is 

the intercept part of the Log [Ln (1 / (1 – F (x)] axis.  Both the constants m and c can 

be obtained easily using the least squares method through a computer program. 

The various mean sizes available in Table 1 can be determined from Rosin-

Rammler equation as explained below. For example, if it is required to obtain the 

arithmetic mean particle size. This may be evaluated by integration of equations (13) or 

(14) after replacing of m (x) by x. Then, substitution the value of y by x from equation 

(22) into equation (14). This will result the following form: 

 dy y)]  Ln ([ c ) )x m ((

.

/m)(

a

-

 

01

0

1
1      (25) 

It can be decided that it is so difficult to determine the value of above 

integration directly but it may be obtained indirectly with a mathematical procedure by 

aiding a computer program. After integration of the above equation and substitution the 

values of integration limits of y by (0, 1.0), the final expression of arithmetic mean 

may be determined in a final expression as follows: 

 / m)].m) - ( Ln (m) / .      - (                    

)m / . m) + (. - (. [ c )x (
a

-

3636892106046821

343126410607635008132980exp    (26) 

By executing the same previous procedure, the other mean particle sizes may 

be determined. This can be carried out by substituting m (x) in equation (8) by x
2
 

(quadratic mean), x
3
 (cubic mean), Ln (x) (geometric mean), and 1/x (harmonic mean).  

The final expressions of different mean sizes can be obtained by the following 

equations: 
 

)] / m. () m Ln (m) / . (

m) Ln (m) / . m) - (. - (. [
 c  )x (

q

-

22
1255898002895830

554500510657717063376440exp


  (27) 

 

3

2973719099972962

496497600252045046923051exp

 / m)]. (m)  Ln (m) / .(

 Ln (m)). m) - (. ( .[
 c  )x (

C

-




   (28) 

 

)}]] * m. * m) - (. (        {          

)} / m. ( m) . - . [{-  c /[  )x (
h

-

2

2

9886453781041

24271284188515259exp




   (29) 

 

Finally, the geometric mean can be expressed by the following equation: 
 

 dy] y))  Ln (Ln [c ( ) )x m ((
/m)(

.

g

-
1

01

0

1      (30) 
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It is found that it is not possible to solve this equation mathematically 

and hence, the value of above integration can not be determined. Hence, it can 

be decided that the geometric mean value of a particle size distribution using 

Rosin-Rammler model can not be derived mathematically. 
 

RESULTS AND DISCUSSION 

Illustrated Example on the Estimation of MPSD from GGS and RR 
Models: 

Four data sets of different particle size distribution are available in the present study. 

The values of the weight percentages of different particle size fractions, together with 

the cumulative weight pass percentages are listed in Table 2. The cumulative weight 

pass percentages, i.e. cumulative undersize distribution function, F (x) versus particle 

size, x are shown also in Figure 2. 

From Table 2 and Figure 2, it can be revealed that the different data sets have 

different distributions of particle sizes. Furthermore, it was found that the different data 

sets have the same values of median (x50 = 305µm). 

 

The procedure of calculation of MPSD from GGS and RR models 

The procedure of calculation of different means of a particle size distribution from 

Gates-Gaudin-Schuhmann and Rosin-Rammler models can be summarized in the 

following simple steps: 

1. Calculation of the cumulative distribution undersize of different particle sizes, 

F(x) of the different data sets as shown in Table 2 and Figure 2. 

2. For GGS model, Ln [F(x)] is plotted versus Ln (x) and the least squares 

regression analysis through computer software is used to fit the best straight 

line to the data points and hence, the values of GGS parameters (n & k) are 

estimated.  The correlation coefficient may be used as the parameter for 

goodness of fit. 

3. The values of these parameters are introduced into the formulas 16 through 20 

to estimate the values of arithmetic, quadratic, cubic, geometric, and 

harmonic means of the different data sets. 

4. In the case of RR model, Log [Ln [1/(1-F(x))]] is plotted against Log [x] and 

hence the model parameters (m & c) can be determined using the least squares 

regression method through a computer software. 

5. The obtained values of RR parameters of the studied data sets are introduced 

into the expressions 26 through 29 to compute the values of arithmetic, 

quadratic, cubic, and harmonic means. 
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Table 2: Particle size distributions of the different data sets 
 

size fraction, 

µm 

Data set 1 Data set 2 Data set 3 Data set 4 

wt., % c.w.p.% wt., % c.w.p.% wt., % c.w.p.% wt., % c.w.p.% 

(+500) 27.64 100 21.68 100 16.25 100 12.79 100 

(-500+400) 10.16 72.36 12.63 78.32 14.60 83.75 15.61 87.21 

(-400+315) 10.79 62.20 13.88 65.69 16.95 69.15 19.11 71.60 

(-315+250) 9.65 51.41 12.20 51.80 14.68 52.20 16.41 52.49 

(-250+200) 8.19 41.76 9.87 39.60 11.28 37.52 12.12 36.08 

(-200+160) 6.95 33.57 7.85 29.73 8.36 26.24 8.53 23.96 

(-160+125) 6.28 26.62 6.55 21.88 6.42 17.88 6.16 15.44 

(-125+100) 4.53 20.33 4.34 15.32 3.89 11.46 3.49 9.28 

(-100+080) 3.60 15.80 3.17 10.99 2.61 7.58 2.20 5.79 

(-080+063) 3.00 12.20 2.42 7.82 1.82 4.97 1.45 3.58 

(-063) 9.20 9.20 5.41 5.41 3.15 3.15 2.13 2.13 

Sum 100   100   100   100   
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Fig. 2: Particle size distribution of the different data sets 
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Fig. 3: Fitting of the studied data sets to Gates-Gaudin-Schuhmann model 
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Fig. 4: Fitting of the studied data sets to Rosin-Rammler model 

 
Figures 3 and 4 illustrate the fitting of the studied data sets to GGS and RR 

models, respectively. A Summary of the particle size distribution parameters obtained 

from GGS and RR models, as well as, the corresponding correlation coefficients of the 

best-fit straight lines of the studied data sets are tabulated in Table 3. From the 

observations in Figures 3 and 4 and the corresponding correlation coefficient, one can 

decide that the two models provides a good representation for all the available data sets 

although the RR model provides a better fit to the data than GGS does. 
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Table 3: Summary of the particle size distribution parameters obtained from Gates-

Gaudin-Schuhmann and Rosin-Rammler models, as well as, the corresponding 

correlation coefficients of the best-fit straight lines of the studied data sets 
 

  

  

Gates-Gaudin-Schuhmann model Rosin-Rammler model 

n k, µm R
2 

m c, µm R
2 

Data set 1 1.00981 624.34 0.99453 1.25212 408.31 0.99991 

Data set 2 1.31632 536.42 0.99283 1.59697 384.60 0.99988 

Data set 3 1.62478 489.27 0.99119 1.94242 368.65 0.99996 

Data set 4 1.84511 467.60 0.99004 2.19697 360.78 0.99994 

 

The median size (x50) of the different particle size distribution data sets were 

determined from graphical representation of data, GGS, and RR models. The obtained 

results are listed in Table 4 and represented in Figure 5, where it can be revealed that 

the values of median size are nearly the same for the different studied data sets when 

these values are determined from graphical representation of data shown in Figure 2 

and also from RR model. Furthermore, there is a clear difference between the values of 

this measure when they are determined from GGS model compared with RR model for 

the different data sets. This means that the RR model is more reliable to fit the 

available data sets than GGS model does. 
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Fig. 5: Comparison of the values of median size (x50) obtained from graphical 

representation of data, Gates-Gaudin-Schuhmann, and Rosin-Rammler models 
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Table 4: The median size (x50) of the different particle size distributions data sets 

determined from graphical representation of data, Gates-Gaudin-Schuhmann, and 

Rosin-Rammler models 
 

  

  

  

  

Graphical representation 

of data 

GGS 

model 

RR 

model 

x50, µm x50, µm x50, µm 

Data set 1 305 314.28 304.69 

Data set 2 305 316.82 305.73 

Data set 3 305 319.36 305.26 

Data set 4 305 321.16 305.34 

 

Comparison of different means estimated from GGS and RR models 

The values of arithmetic, quadratic, cubic, and harmonic mean sizes of the different 

particle size distribution data sets estimated from Gates-Gaudin-Schuhmann and 

Rosin-Rammler models are shown in Figures 6 through 9. These results are also 

presented in Table 5. 

Comparison of the values of arithmetic, quadratic, and cubic mean sizes 

revealed that there are small differences between the lowest and highest values of these 

means for different data sets when they are evaluated from GGS model although there 

are clear differences in the behavior of the available data sets as shown in Figure 2 and 

then they should have different values of means. On the other hand, there are clear 

differences between the lowest and highest values of these measures if they are 

estimated from RR model. This difference may reach to 20% with arithematic mean 

size, 32% with quadratic mean size, and 42% with cubic mean size between different 

data sets. This means that RR model is more reliable to evaluate the means of a particle 

size distribution than GGS does. 

Referring to Figure 9 which illustrates a comparison of the values of harmonic 

mean size estimated from the two models for the different data sets, it can be revealed 

that there are clear differences between the lowest and highest values of this measure 

for different data sets whichever they are computed from GGS or RR models. From 

Figure 9, it can be also shown that the two models give a reverse behavior of this 

measure with the different data sets. Moreover, RR model gives a logical behavior for 

the different data sets because the behavior of harmonic mean should be in a reverse of 

the behavior of arithmetic mean and this conclusion is in an agreement with the results 

obtained from RR model. 

From the above discussions, it is recommended to select RR model to be 

applied in estimation of the different means of a particle size distribution because it fits 

the available data better than the GGS model, as well as, it determines the correct 

values and exerts the actual differences between the different means of different 

particle size distribution data sets. 
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Fig. 6: Comparison of the values of arithmetic mean size estimated from Gates-

Gaudin-Schuhmann and Rosin-Rammler models for the different data sets 
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Fig. 7: Comparison of the values of quadratic mean size estimated from Gates-Gaudin-

Schuhmann and Rosin-Rammler models for the different data sets 
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Fig. 8: Comparison of the values of cubic mean size estimated from Gates-Gaudin-

Schuhmann and Rosin-Rammler models for the different data sets 
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Fig. 9: Comparison of the values of harmonic mean size estimated from Gates-Gaudin-

Schuhmann and Rosin-Rammler models for the different data sets 

 

Table 5: The values of arithmetic, quadratic, cubic, and harmonic means of the 

different particle size distribution data sets estimated from Gates-Gaudin-Schuhmann 

and Rosin-Rammler models 
 

  

  

  

Arithmetic 

mean 

size, µm 

Quadratic mean 

size, µm 

Cubic mean 

size, µm 

Harmonic 

mean 

size, µm 

GGS RR GGS RR GGS RR GGS RR 

Data set 1 313.69 379.19 361.63 487.99 394.27 586.80 6.06 358.95 

Data set 2 304.84 341.92 337.96 409.94 361.07 467.25 128.91 268.90 

Data set 3 302.87 321.28 327.57 371.06 345.24 409.64 188.14 194.06 

Data set 4 303.25 311.57 323.91 354.18 338.93 384.94 214.17 149.36 

 

CONCLUSIONS 

The following conclusions may be drawn from this research: 

1. The different means (arithmetic, quadratic, cubic, geometric, and harmonic) of a 

particle size distribution can be easily estimated using Gates-Gaudin-Schuhmann 

and Rosin-Rammler models. 

2. The two models provide a very good representation for all the available data sets 

although the RR model provides a better fit to the data than GGS does. 

3. There are small differences between the values of different means for different data 

sets when they are evaluated from GGS model. 

4. There are clear differences between the lowest and highest values of arithmetic, 

quadratic, and cubic means of different data sets if they are estimated from RR 

model. This difference may reach to 20% with arithematic mean size, 32% with 

quadratic mean size, and 42% with cubic mean size. 



M.M. Ahmed
 
and S.S. Ahmed 164 

5. There are clear differences between the lowest and highest values of harmonic 

mean for different data sets whichever they are computed from GGS or RR 

models. The two models give a reverse behavior of this measure with the different 

data sets. 

6. It is recommended to select RR model to be applied in estimation of the different 

means of a particle size distribution because it fits the available data better than the 

GGS model, as well as, it determines the correct values and exerts the actual 

differences between the different means of different particle size distribution data 

sets. 
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دراسة مقارنة لتحديد متوسط حجم الحبيبات بغرض عمل توصيف حقيقي للبيانات 
بيئةالمتعلقة بال  

 

البيئية هي الحصول على توزيع كمي ونوعي دقيق للملوثات حيث أن هذه  تأحد أهم المراحل في الدراسا
 الدراسات تتطلب حساب حجم الحبيبات بدقة عالية.

وهاااو حجاام المنطاال المناااارر لنساابة ماارور تراكمياااة  (x50)هناااا الكثياار ماان البااااحثين يسااتطدمون الوساايط 
كمقاييس لتقييم توزيع الحجم  05لمنطل المنارر لنسبة مرور تراكمية %وهو حجم ا (x80)أو حتى  %05

للحبيبااات والتااي تنااتل ماان اللمليااات المطتليااة مثاال عمليااة التكساايرا الطحاانا التصااني ا الترساايبا فصاال 
 المواد الصلبة عن السائلةا أو حتى اللمليات الناتجة عن تقييم أو دراسة شكل وتوزيع الملوث.

ييس ليسااات دقيقاااة بدرجاااة كافياااة حتاااى يمكااان التيرياااق باااين التوزيلاااات المطتلياااة لحجااام غيااار أن هاااذه المقاااا
 أو كليهما. x80أو  x50الحبيبات لأن كثير من التوزيلات ربما يكون لها نيس القيمة من 

بصاورة دقيقاة  (MPSD)هذا البحث يلتبر محاولة للمل منهجية جديدة لتحديد الحجم المتوسط للحبيباات 
.  القاااايم المحسااااوبة لهااااذه Rosin-Rammlerو  Gates-Gaudin-Schuhmannجي بإسااااتطدام نمااااوذ

 المقاييس تأطذ في الإعتبار ليس فقط الأحجام اليردية للحبيبات ولكن أيضا النسب الوزنية المناررة لهم.
 (x50)وقد أرهرت نتائل هذا البحث أن التوزيلات المطتلية لأحجام الحبيبات والتي لها نيس قيمة الوسيط 

وطصوصاااا عناااد مساااتطدام ملادلاااة  (MPSD)تلطاااى قااايم مطتلياااة للمقيااااس المساااتطدم فاااي هاااذا البحاااث  
Rosin-Rammler. 

فاي هااذا البحاث تاام أيضاا الحصااول علاى تلبياارات رياضاية بساايطة والتاي ماان طجلهاا أمكاان حسااب الحجاام 
قي وذلاااا عنااااد المتوساااط للحبيباااات ساااوات كاااان المتوساااط الرياضاااايا التكليبااايا الهندسااايا أو حتاااى التاااواف

 مستطدام أي من النموذجين المشار مليهم سابقا.
عناد حسااب الحجام  Rosin-Rammlerووفقا للنتائل التي توصل مليهاا البحاث نوصاى باساتطدام نماوذ  

-Gates-Gaudinالمتوسااط للحبيبااات حيااث أن هااذا النمااوذ  يوفااق البيانااات بصااورة أفضاال ماان نمااوذ  

Schuhmann  طجلا  حساااب القايم الصااحيحة وتليااين اليروقاات اليلليااة بااين وفاي نيااس الوقات يمكاان ماان
 المتوسطات المطتلية للبيانات.

ويلااد هااذا البحاااث الجاازت الأول ماان دراساااة سااو  تتبااع بلمااال دراسااة حالااة حقيقياااة لبيانااات فلليااة مرتبطاااة 
 بالبيئة.
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