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The problem of picturization of an object is the problem of determination 
of what lines to draw in a plane in order that the impression conveyed to 
the eye shall be that of three dimensional object. In this paper computer 
procedure for generating line drawings of solid objects bounded by 
quadratic surfaces is described. It embodies an efficient solution to the 
'hidden-line' problem, that is, the problem of determining which parts of 
an opaque object are invisible when the object is viewed from a given 
view point. In this paper, we present a method to view a quadratic surface 
of revolution when it is projected using parallel and central projections. 

KEY WORDS: Projective geometry, central and parallel projection, 
computer graphics. 

 

1. INTRODUCTION 
Projection of quadratic surfaces and estimating their visible parts are important in 
many fields such as computer graphics and photogrammetric application. The surface 
of some objects may contain quadratic surfaces (such as cylinder cone, sphere, ... etc). 
And the main aim in photogrammtery, when we have a photo for the object, is to 
determine the space coordinates of any point appearing in the image plane. To do this, 
we have to determine at first on which surface the point is located, then find out  if it 
belongs to the visible part of the surface or  not. In the following section, we briefly 
present different types of quadrics 
 

2. QUADRATIC SURFACES (QUADRICS) 

Quadrics are second-degree algebraic surfaces in three dimensional space3R , that is, 
they are described by polynomials of degree two in the variables x , y  , and  z. The 
general common equation of all quadratics is [1]: 
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Where 44342414132312332211  anda , a, a, a, a, a, a,  a, aa are constants, and at least one 

of the first six does not vanish. 
The quadratic surface can be classified into three groups: 

1. surfaces without center (such as elliptic paraboloid, hyperbolic paraboloid and 
parabolic cylinder) 

2. surfaces with one center point (such as ellipsoid, one sheeted hyperboloid, two-
sheeted hyperboloid, cone surface and spheres) 
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3. surfaces with infinitely many center points such as hyperbolic and elliptic 
cylinder. 

Obviously, this definition is invariant to the system of coordinates chosen. 
Indeed, the equation of the surface in any other system of coordinates ''' zyx  is 
obtained from the above equation by substituting yx,  and z by linear expressions in x', 
y' and z'. If a quadrics has its center at O (0,0,0) and its principal axes aligned with x', 
y' and z', its equation can be simplified into the form (canonical form): 

0''' 222 =+++ δγβα zyx       (2) 

Where: ',' yx  and 'z  are linear functions of yx,  , and  z. 

 

3. SURFACES OF REVOLUTION 
If a curve in R3 rotates about a line, it generates a surface of revolution [5]. Let 

)(xfy =  be a curve of the xy-plane rotating about the x-axis. Then any point (yx, ) 

of this 0-meridian draws a circle of latitude, parallel to the zy-plane, with centre on 

the x -axis and with the radius 
)(xf . So the y  - and z-coordinates of each point on 

this circle satisfy the equation 

 
222 )]([ xfzy =+        (3) 

This equation is thus satisfied by all points ( zyx ,, ) of the surface of 

revolution and therefore it is the equation of the whole surface of revolution.  
More generally, if the equation of the meridian curves in the xy -plane is 

given in the implicit form 0),( =yxF , then the equation of the surface of revolution 
may be written  

0),( 22 =+ zyxF        (4) 
The most important quadratic surfaces of revolution for our discussion are: 

• When the ellipse  
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 rotates about the x-axis, we get the ellipsoid 
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This is a stretched ellipsoid, if ba > , and a flattened ellipsoid, if ba < , and a sphere 

of radius a, if. ba =  

• When the parabola pxy 22 =   (with p  the latus rectum or the parameter of 

parabola) rotates about the x -axis, we get the paraboloid of revolution  
.222 pxzy =+        (6) 

• When we let the conjugate hyperbolas and their common asymptotes 
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 (with 0,1,1−=s ) rotate about the x  -axis, we obtain the two-sheeted hyperboloid  
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the one-sheeted hyperboloid  
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and the cone of revolution 
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which apparently is the common asymptotic  cone of both hyperboloids. 
 

4. NOTATIONS: 
In this paper we will use lower case for scalar variables, lower bold case for vectors 
and we use the homogeneous coordinate notation ):::( 3210 xxxx  where the 

coordinates of any point in Cartesian coordinates are: )./,/,/( 030201 xxxxxx ]0[ ≠Ox  
 

5. DETERMINING THE SILHOUETTE 
In the following, we describe an algorithm to calculate the silhouette of quadrics. The 
silhouette is the curve on the surface, whose projection embraces the projection of the 
whole surface.  For clarification, we shall explain this method using a hyperboloid 
surface. This method can also be applied  for all quadrics. 
Let the homogeneous equation of the hyperboloid be in the form: 
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In case of a hyperboloid of revolution about theaxisz − , we have 
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To compute visibility for the surface, we determine the polar plane w.r.t. the 
center of projection ):::( 321 xxxxS O (see figure 1), then find its curve of 

intersection with the surface. This curve called silhouette. 
The silhouette clearly separates the visible and the invisible parts. The equation of 

polar planeε   has the form: 
0000333222111 =+++ xxaxxaxxaxxa      (12) 

Note: in case of parallel projection 00 =x  , but in case of central projection the 

coordinates of center of projection S can be: zxyxxxx ==== 3210 ,,,1 .  
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Figure (1): Silhouette of the surface 

 
From equation (12) we get: 

11

000333222
1 xa

xxaxxaxxa
x

++
−=      (13) 

Substituting 1x   in equation (11) we get: 

063524332
2
32

2
21 =+++++ dxdxddxxxdxd    (14) 

Where 54321 ,,,, ddddd  and 6d  are constants. 

Equation (14) represents a quadratic cylinder through the silhouette with 
generators parallel to the axisx −  
Note: In case 01 =x , a similar procedure can be done by substituting for 2x  or 3x  

instead of 1x . The origin is excluded. 

Since for the silhouette  231 zxz ≤≤   ( 1zz =  and 2zz =  are planes of upper 

and lower bases of hyperboloid), we can assume a value for 3x  and substitute it in 

equation (14) to get a quadratic equation in 2x  having the form: 

0___ 2
2
2 =++ cxbxa  

Then,  

_2

__4_2

2 a

cabb
x

−±−
=       (15) 

Substituting 2x  in (13), two values of  1x  can be obtained. The point p  

whose coordinates are ),,( 321 xxx is located on the silhouette curve. As 3x  varies 

from 1z  to 2z  , the point p  traces out the silhouette curve.   

In the special case, when the view center ),0,0( zS  is located on −z axis, then the 

silhouette is a circle (intersection of the polar planeε  with surface) with radius  
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In case of parallel projection 00 =x  then aR =_  

Note: The silhouette is in general a conic section. In case it is not extended to infinity, 
its upper or lower limits may lie between 1zz =  and 2zz = . Here we have to 
determine these points by using equation (15). The quantity under the radical root is 
zero for this case, from which z  can be calculated (see Fig. 2). 
 

CIRCULAR BASES 

The two bases of hyperboloid are circles with radii 1R and 2R  located in the planes 

1zz =  and 2zz =  respectively, where: 
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Figure (2): S inside the surface 

 

 

Figure (3): Intersection of polar plane with surface 
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6. VISIBILITY OF THE SURFACES 
In general, the visible part of the projection's outline surface consists of the projection 
of three parts: silhouette, one of the circular bases and part of the other circular base. 
 

6.1 In case of parallel projection 

A) Silhouette Curve 
Silhouette curve is generally visible. In parallel projection the polar-plane passes 
through the center of the surface (origin), since ).:::0( 321 xxxS  . 

The equation of polar plane ε  can be written in the vector form as: 
d=⋅ xn:ε         0333222111 =++ xxaxxaxxa .   (18)  
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B) Circular bases 
There are two circles; one of them and a part of the other circle are visible. At first, we 
determine which one is visible. This depends on the direction of view vectorv . 

When 0<⋅ zv , the upper circle 2k  is visible and the other one 1k  is invisible. The 

points 1P  and 2P  of intersection of polar plane and circle 1k  are separated visible 

from the invisible parts of 1k . 
 
 

 

Figure (4): line of intersection between ε  andα  
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The following procedure illustrates how these points can be calculated. 
[1] determine the line of intersection g  between polar- plane ε  and the planeα   

containing  circle 1k  

two unbounded non-parallel planes such as d=⋅ xn:ε  and 1: d=⋅ xmα  

intersect in a straight line g in the form:  

cgx 0 λg +=:        (20) 

g  must be orthogonal to both vectors mn, , the direction c  of g  can be calculated 

as  
mnc ×=  

εα ,⊂g implies that  0cmcn =⋅=⋅ . Now let: 

cxc* ×=  
From the theorems of vector algebra it is known that [3] 

mnc* dd −= 1 . 

and the position vector for the pedal point 0G  on g with respect to the origin reads 

.0 cc
cc

g
*

⋅
×=         (21) 

[2] Intersection points between g  and circle 1k  

The equation of the circle, located in plane 1: zz =α  can be written as 

2
2

2
122 )1( a

c

z
yx +=+        (22) 

Let ),,( 1zyxL LL  be one of the points of intersection between g  and 1k . Since 

point L lies on lineg , its coordinates satisfy equation ofg (20). Then the base vectorl  

of this point is 
cgl 0 λ+=         (23) 

Also this point L lies on circle 1k , its coordinates satisfy the equation (22). 
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c

z
cycx GG =+=+++ λλ  

Where Gx , Gy    are coordinates of ),( GGO yxG  and 1c , 2c  are components of c ; λ  

is the only unknown in the above equation, so we can put it in the form: 

0___ 2 =++ cba λλ  

Where _ __, candba  are constants. Since the above equation is quadratic 

equation in λ , there are two solutions for ).,( 21 λλλ By substituting about the values 

of λ , the points of intersection 21,LL  can be obtained. 
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Figure (5): Relation between  TP  and ε  
 

The points 21,LL  divide the circle 1k  into two parts. One of them is visible and other 

is not. To determine which part is visible, we use any point located on any part of 
them,  called test point TP . The oriented distanceTd  between point TP (with base 

vector Tp ) and plane ε   is 

ddT −⋅= npT  

When 0>Td , then the part passes through TP is visible 

 
SPECIAL CASES 
In some cases the line g does not intersect circle 1k  as shown in Fig. 6. There are two 

possible cases: 

1. The projection of the two circles pp kk 21 ,  will intersect. The points of 

intersection can be calculated as follows: 

Assume pT is one of intersection points between pk1  and pk2  . this means the 

point pT  is projection of two points one )(T located on upper circle 2k and other 

one 'T  located on the lower circle1k , and the line passes them is parallel to view 

vector v .(see Fig. 7) 
Since ),,( 2zyxT  and ),','(' 1zyxT are located on  2k  and 1k  respectively, 

then 
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(a)                                                  (b) 

Figure (6): special cases of Projection of circular bases 
 

 
 

Figure (7): Points of intersection of the projection of the circular bases 
 

Let the direction of view be defined by the two angles (λ  and β ) relative to xyz-

system [4]. Where angleλ  is the angle between x-axis and the projection of view 
vector on xy-plane and angle β  is the angle between xy-plane and view vector. (see 
figure7).  The vector components of v  are: 

β)β,λβ,λ( sincossincoscos −−−v  
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Since the direction of the line passing through T and T' is parallel to view vectorv  
then 

.sin
'

,cossin
'

,coscos
'

β

βλ

βλ

−=−

−=−

−=−

l

zz
l

yy
l

xx

      (25) 

Where  222 )'()'()'( zzyyxxl −−+−=  

For simplicity, suppose that the rectangular −xyz  coordinate system is 

rotated around its −z axis counterclockwise through an angle λ  (figure 7), we obtain 
the new coordinate system ZYX ,, . The new coordinates ZYX ,,  of any point can be 
computed from old coordinatesxyz by. 
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The inverse transformation is: 
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The equation (25) can be rewritten as 
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By solving equation (24)and (27),  we can get, after some reductions,  the 
coordinates of )(T  and T' relative to ZYX ,, -system.  
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Where constzzc =−
−

= 2
212

2

)(
cos1

cos
_

β
β

 

The coordinate of ),,( 2zyxT  and ),','(' 1zyxT  can be obtained from equation (27)  

2. The projection of the two circles pp kk 21 ,  will not intersect. 

When 0'22
1 <− xR , the projection of the two circles 1k and 2k  will not intersect. 

In this case, we calculate zv ⋅ , then 

o if 0<⋅ zv , then  

� pk2 ( the projection  of circle 2k ) is visible. 

� For the other circle pk1  , we compare the radius of 1k with that of 2k  

�   if 21 RR < , then 
pk1  is invisible else it is visible (the projection of silhouette 

is imaginary) (see figure 8) 
 

 
 

Figure (8): Relative position between the two circular bases 
 

6.1. In case of central projection 
Let S be the center of projection and its coordinates relative to xyz-system be 
( ),,( SSS zyx  and in homogeneous form be ):::( 3210 xxxx ., where .10 =x  

The equation of polar – plane will be in the form: 

1: 0032
3

22
2

12
1 ==−+ xxx

c

x
x

a

x
x

a

xε  

The above equation can be rewritten in the form: 
1___: 321 =++ xcxbxaε      (29) 
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The oriented distance 

  
222 ___

1

cba
d

++
=  

from the origin and plane ε  is always positive. This means that ε  is located between 
origin O and center point of perspective S. 

In central projection, we consider that the polar plane is the projection plane. 
So, the points located between the center S and polar-plane are visible, in other words, 
when the oriented distance between point P (with a base vector p ) and polar planeε   

is positive ( .0      0 >−⋅> dorP npε ) 

 

 
 

Figure (9): Central Projection 
 

7. CONCLUSIONS 
Projection of quadratic surfaces and estimating their visible parts are important in 
many fields such as computer graphics and photogrammetric applications.  

In this work, a new technique is described to display quadratic surfaces such as 
hyperboloid, sphere…etc under parallel and central projection. At first, the polar plane 
is determined, then its curve of intersection with the surface is found. This curve is 
called silhouette. The silhouette clearly separates visible and invisible parts and is in 
general a conic section. 

I hope that this method will be useful for researchers who are interested in work on 
visibility. 
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  تمثيل مجسمات الدرجة الثانية على الكمبيوتر
  

�ط� 	���ن ا�ط��� ��ن ) أو إ���ط��(إن ����� ����ل ا	�����ت �� ا	����و�ر ����ط�� أن  ��	
!ورة "را(�� "� ا	�)ث أ���د ھ� ����� "� ا	���م ا#ول "�  ��رة ن!ورة ا	�����ت ا	���ط� 

و"� ھذا ا	�-ث �م �رح طر��� 	�-د�د . ة وا	��1.�� 	�ذه ا	�����ت��.�� �-د�د ا#�زاء ا	ظ�ھر
  .��واز�� أو �ر�ز�� إ���ط�� إ���ط�ا#�زاء ا	ظ�ھرة وا	��1.�� 	�����ت ا	در�� ا	����� وذ	ك "� -�	� 


