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This paper presents the application of intelligent control in the induction
motor drive. In this paper, a strategy for induction motor speed control is
proposed. This strategy is based on a new control stator current strategy.
The proposed technique is based on the principle that the flux level in a
machine can be adjusted to give the required performance for a given
value of speed and load torque. The main advantage of the proposed
technique is its simple structure. The optimum flux level is a function of
the machine load and speed requirements. The proposed strategy with
the method of operation under the condition of constant voltage to
frequency ratio and field oriented control is achieved. Digital computer
simulation results are obtained to demonstrate the effectiveness of the
proposed method.

1- INTRODUCTION

The world’s generated electric energy is consumed by electric machines. Improving
efficiency in electric drives is important, mainly, for two reasons: economic saving and
reduction of environmental pollution.

Induction motors have a high efficiency at rated speed and torque. However, at
light loads, the iron losses increase dramatically, reducing the efficiency.

The main induction motor losses are: the stator and rotor copper losses, iron
losses, mechanical losses and stray losses. The efficiency which decreases with
increasing losses can be improved by minimizing the losses. Copper losses reduce with
decreasing the stator and the rotor currents while the core losses essentially increase
with increasing air-gap flux density. A study of the copper and core losses components
reveals that their trends conflict. When the core losses increase, the copper losses tend
to decrease.

However, for a given load torque, there is an air-gap flux density at which the
total losses are minimized. Hence, the electrical losses minimization process
ultimately comes down to the selection of the appropriate air-gap flux density of
operation. Since the air-gap flux density must be variable when the load is changing,
control schemes in which the (rotor, air-gap) flux linkage is constant will yield sub-
optimal efficiency operation, especially when the load is light. Then to improve the
motor efficiency, the flux must be reduced when the motor operates under light load
conditions, obtaining a balance between copper and iron losses.
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The challenge to engineers, however, is to be able to predict the appropriate
flux values at any operating points over the complete torque and speed range, which
will minimize the machine losses, hence maximizing the efficiency [1-4].

In this paper, a new control is proposed which is simple in structure and has
the straightforward goal of maximizing the efficiency for a given load torque. Digital
copmuter simulation results are obtained to demonstrate the effectiveness of the
proposed method.

2- INDUCTION MOTOR MODEL

The dynamic equations of the three-phase induction motor can be expressed in the
synchronous reference frame. Stator and rotor voltage equations in the synchronous
reference frame are:
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Where vas and var

synchronous reference frame, Vgs and Vgr are the direct axis stator and rotor

voltages in the synchronous reference frame, s and rp are the stator and rotor

are the quadrature axis stator and rotor voltages in the

winding resistances , q,gs is the quadrature axis stator flux linkage in the synchronous
reference frame, q,gs and q,gr are the direct axis stator and rotor flux linkages in the

synchronous reference frame, igs and i:r are the quadrature axis stator and rotor

currents in the synchronous reference frame, igs and igr are the direct axis stator and

rotor currents in the synchronous reference frame, wg and w, are the synchronous
and rotor speeds (rad/sec), wp is the base electrical angular velocity (rad/sec) and

p= % is the time derivative.

The stator and rotor flux linkages of the quadrature and direct axis can be
related to d-g currents in the synchronous reference frame as :
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Where XM is the magnetizing reactance and
X =X +X

ss M Is (4)
X =X, . +X

rr M Ir

It is assumed that all rotor variables are referred to the stator by the

appropriate turn ratio. If the stator currents are considered as inputs and rotor
windings are short circuited, the dynamic equations may be expressed as:
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Where ®, = @,- @, is the slip frequency.
The electromagnetic torque can be expressed as:
i€
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If the currents are selected as independent variables, the voltage equation in d-
g model becomes:
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Where: o is the reference frame speed.
The balance equation of motion is given by:
do r
T =T, +J 8
e L dt ®)

Where: TL is the load torque and J is the moment of inertia of the drive system.
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3- FIELD ORIENTED CONTROL

In the Field Oriented Control Strategy, the indirect method of control, 6.= 0 is selected
such that LIJ(e“. is identically zero [5-7]. Then we get:
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The electromagnetic torque can be expressed as:

2
T =KX|\/| i€ je (11)
e xrr gs ds

The command of magnetization current is ig* , which is normally constant and
s

the control of the torque component is achieved by je*. The three-phase reference
gs
currents i* : i* and i* are supplied to the inverter control system. The d-axis
as bs cs

current is set to a constant value, which produces rated torque at rated stator flux. The
corresponding slip is calculated in accordance with this condition. After extensive
manipulation, the value of the d-axis current which yields rated torque at rated stator
flux can be calculated by :
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4- CONTROL STRATEGIES

In the following proposed strategies, it is convenient to select T, ®, and s as
independent variables. All other variables, such as stator or rotor flux amplitude,
efficiency or power factor, can be expressed in terms of the selected independent
variables.

When defining the alternative operating strategies, it is assumed that the
torque and speed are given whereupon the slip frequency is adjusted so as to achieve
certain characteristics. These characteristics include the maximization of power factor,
minimization of stator current, maximization of efficiency, ... etc.

Therefore, it is convenient to relate the slip speed versus the air gap flux as
shown in Fig. (1) to Fig.(3). The following sections show the details about the
proposed control strategies based on the loss model controller.
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Fig. (1): Air gap flux versus slip speed at various load powers.
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Fig. (2): Power losses versus slip speed of induction motor at various levels of
load power.
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Fig. (3): Input power versus slip frequency of induction motor at various levels of
load power.

STATOR CURRENT STRATEGY

In the Minimum Stator Current Strategy, the slip frequency is adjusted so that the
stator current of the induction motor presented is minimized. The air gap flux or the
slip frequency is controlled so that the minimum stator current is obtained.

The required point can be noticed in this figure. It is obvious that at a certain
load power, there is a certain value of slip frequency at which the minimum stator
current occurs.The task of proposed controller is to find that value of flux or slip
frequency at which the minimum stator current occurs. At certain load torque and rotor
speed, the proposed controller determines the slip frequency s at which the minimum
stator current occurs. The stator current and the input power are minimized almost
simultaneously. Therefore, in practice, the stator current can be used as the controlled
variable in the loss minimization procedure.

So, in the remaining part of this dessertation (see figures 4,5,6), the maximum
efficiency and power factor will be cosidered as the main objective functions.

5- SIMULATION RESULTS OF STRATEGIES

The simulation is carried out on a three-phase induction motor, 380 Volt, 1 Hp, 50 Hz
and with 4 poles as follows [4]:

Rs,Rr =0.0598,0.0403,

Xs,X;=0.0364, 0.0546

Ky =0.0380, C4 = 0.0150,

Cw =0.0093,5, =1.07, S, =-0.69,5;=0.77

Fig.(4) to Fig.(6) show the efficiency of the selected machine for all operating
conditions at rated flux and using the proposed controller, respectively.
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Fig.(4): The efficiency at rated speed=100 rad/sec.
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Fig.(5): The efficiency at rated speed=300 rad/sec.
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Fig.(6): The efficiency at rated speed=400 rad/sec.

From the figures, it is obvious that the efficiency decreases substantially when
either the torque or rotor speed is small, the power factor increases at low values of
rotor speed and the stator current is almost the same at a certain value of load torque
with different values of rotor speed.

6- CONCLUSIONS

This paper deals with the applicability of the proposed controller to loss minimization
control in induction motors. The proposed controller adaptively adjusts the slip
frequency such that the drive is operated at the minimum loss.Simulation results show
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that a considerable energy saving is achieved in comparison with the conventional
method of operating under the condition of constant voltage to frequency ratio.
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