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Diesel particulate filters are good tools in gas emission reduction (and 
also particulate matters) in addition to noise reduction. In this paper the 
effect of soot layer on both transmission losses and noise reduction factor 
is studied. It is clear that for both hot and cold conditions the transmission 
losses  with the existence of soot layer are greater than those without soot 
layer  existence, since the soot layer is considered here as a new medium 
or a new component that increases sound absorption and consequently 
increases the sound  transmission losses.  
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NOMENCLATURE 
0BA             Area or cross sectional area [m2] 
C              speed of sound [m/s]  
D             diameter[m] 
Dp            effective particle  
                diameter[m] 
DPF         diesel particulate filter 
d              diameter of cavity[m] 
dB           decibel 
Hz            hertz 
ht              wall thickness[m] 
L              Length[m] 
Lp             sound pressure level [dB] 
Mj             Mach number 
P               pressure [Pa]                                  
P0              ambient pressure or reference  

pressure [Pa] 
PM           particulate matter. 
Q              volumetric flow rate   [m3/s]                               
Re             Reynold's number 
RH or Rh   hydraulic radius[m] 

Sp             surface area of the particle [m2] 
T                temperature[k] 
TL              transmission losses [dB] 
Vo             volume of enclosure [m3] 
Wi              incident sound power [W] 
Wt              transmitted sound power [W] 
w               frequency[1/s]                             
α               sound absorption  
                 coefficient.[ Sabins] 
ά               average sound absorption  
                 coefficient [Sabins] 
ΔP             pressure drop [Pa] 
ρ               density[kg/m3] 
μ               viscosity[Ns/m2] 
σ               permeability[ Darcy] or [m2] 
R1             viscous flow resistance  
                 [Ns/m3] 
R2             second order flow resistance  
                 [Ns2/m4] 
n              an odd integer 
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INTRODUCTION 
Diesel Particulate Filter (DPF) is a superior system in the reduction of particulate 
matters, because it can reduce about 70% of the particulate matters (PM). It contains a 
large number of thin tubes or cavities with a diameter of about (1-2 mm), and (0.15-0.5 
m) length, see Figure (1) (Appendix 1). There are many types of DPFs (see appendix 
(1)), such as: electric heater type, burner type (ceramic filter), and fuel additive type; 
the latter type is a honey-comb ceramic one. The honey-comb type constitutes an 
additive supply and an electronic system. In this type, Fe is used as an additive, 
whereby iron oxide is formed which reacts with carbon and is then converted to iron. 
When a certain temperature is reached, the O2 formed around the iron oxide reacts with 
the Particulate Matter (PM) so that these particles could be regenerated in the existence 
of O2 of the catalyst.  For many diesel engines, the exhaust gas temperature is 
insufficient to regenerate the filter.  

Diesel particulate filters are also very sensitive to exhaust gas temperatures and 
fuel sulfur content which affect the performance of the DPF system. Other factors 
affecting the DPF performance are its dimensions, soot layer thickness and heat losses. 
For most continuously regenerating catalyzed particulate filters to work properly, an 
engine should operate at around 300° C for 30 percent of the duty cycle or for 30 
minutes. Some other types of diesel particulate filters require an average exhaust 
temperature of at least 270° C for 40 percent of the engine duty cycle, (Washington 
State University extension in the energy program).   

Exhaust gas temperatures are highly application dependent. Excessive heat loss 
in the exhaust system can cause lower exhaust gas temperatures, which can over-size 
engines that are operated low on their torque/power curves. Although many diesel 
applications generate sufficient exhaust gas temperatures for successful DPF 
operations, device manufacturers and regulators recommend that certain vehicle 
applications are equipped with data loggers to continuously monitor exhaust back 
pressure and temperature. Once it is determined that sufficient exhaust gas 
temperatures exist for filter regeneration, the monitoring can be stopped.  Fuel sulfur 
content also affects the performance of passive DPFs [18], and (Washington State 
University extension in the energy program). 

DPF operation is affected by the existence of soot layer, because as the DPF 
works, a soot layer takes place inside the DPF.  

For clean filters without soot loading, DPFs' wall resistance, Rw, can be written 
as in [1]:  
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=                                                                                               (1) 

While with soot loading (not clean) of the DPF unit the wall resistance can be written 
as in [1]: 
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where  
σsoot = 1.5 × 10-14 (permeability with soot), h soot=1/10 ht , ht: is the wall thickness[2]. 
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Transmission losses (TL) 
Transmission losses are defined by the difference between the sound power incident on 
the DPF unit and that transmitted downstream into an anechoic termination. It can be 
given as in [1], and [9]: 

         TL=10log (Wi/Wt)                                                                                     (3) 

where:  Wi: is the incident power in watts, Wt: is the transmitted power in watts. 
For DPF unit transmission losses can be given as in [1]: 

          TL= 20 log (0.5 ׀TDPF׀)                                                                                    (4) 

where 
TDPF is the transformation matrix of the DPF unit. 
 

Noise Reduction Factor (NRF) 
Noise reduction factor is the difference in sound pressure levels LP at two arbitrary 
selected points in the exhaust pipe and in the tail pipe. It doesn’t need or require an 
anechoic termination because it uses the standing wave pressures, [19]. 
Depending on the noise reduction factor's definition it can be given as in[1], and [7]: 

1

2
12 log20

P
PLPLPNRF =−=                                                              (5) 

NRF is an efficient tool to distinguish different types of DPF and can be rewritten as in 
[1]:  

      )log(10
A

TLNRF α
+=                                                                              (6) 

where A:  is the area of the partition. (m2); TL: is the transmission loss; α: is the sound 
absorption factor. 
 

RESULTS AND DISCUSSION 
The effect of soot layer is significant on both sound transmission losses and noise 
reduction and as seen from results, TL and NRF increase with the existence of soot 
layer but the increase of this layer affects the DPF performance and hence a 
regenerating of the DPF unit is needed.  Figures (1) through (4) represent TL of 
different types of DPF unit with no soot layer, under the case of hot condition and time 
harmonic variation only. It can be noticed from these figures that there is a good 
agreement in the behavior of TL against the frequency between the two studies; the 
present study and that of Allam[1], but there is some improvement for the proposed 
study because it takes into account the effect of transverse velocity. Hence, it showed 
more acoustic transmission losses and consequently more noise reduction.   

Figure (1) represents the TL of different types of DPF against frequency with 
soot layer. It can be noticed that EX80:200/14 DPF type has a good property in terms 
of reducing transmission losses, but EX80:100/17 DPF type has less ability to do this. 
EX80: 200/14 has good properties and suitable dimensions compared with other DPF 



Suleiman Abu-Ein 

 

802 

types; including low channel width, low permeability, high wall thickness, low 
porosity, and making high pressure drop.  

Figure (2) shows the Noise Reduction Factor (NRF) against frequency for 
typical DPF unit, with soot layer and with no soot layer. It can be noticed from the 
figure that the noise reduction is proportional to frequency since it is proportional to 
transmission losses as shown in equation (6). From  figure (2) it can be noticed that the 
values of noise reduction factor in the case of soot layer are higher than those with no 
soot layer, because the soot layer represents a new absorber for sound waves and hence 
causes more transmission losses and noise reduction.     

Figures (3) through (8)  show the TL versus frequency for the typical DPF unit 
and other types  under hot conditions, time harmonic variation only  and  harmony in 
time and 2-D space cases; with soot layer and with no soot layer and  for M=0.02. 
From these figures, it can be noticed that the transmission losses with the existence of 
soot layer are higher than those with no soot layer for the above mentioned reasons. 
Figure (9) represents the transmission losses for different types of DPF unit against 
frequency, at T=1000 ̊C . From this figure it can be noticed that EX80:200/14 DPF 
type has the best property to make transmission losses, but EX80:100/17 DPF type has 
the lowest property to do this, because EX80:200/14 DPF unit has good specifications 
and dimensions (properties) which give it the ability to make more transmission losses 
and noise reduction. 

Figures (10) and (11) represent the relation between the noise reduction factor 
and the frequency under the case of hot conditions (T=500˚C and T=1000˚C), 
respectively, with soot layer and with no soot layer. From these figures it can be seen 
that noise reduction values for the case with soot layer are higher than those with no 
soot layer for the reasons mentioned above. 

Figure (12) illustrates values of transmission losses at two operating 
temperatures: 500 ̊ C and 1000 ˚C . It can be noticed that the temperature plays a 
significant role affecting the transmission loss and hence, the noise reduction. The 
figure shows that transmission losses are increasing as the temperature increases, since 
values of these two quantities (TL and NRF) are increased as the temperature becomes 
higher. The reason for this is that as the temperature increases the regeneration of the 
filter becomes fast and more efficient. As a new soot layer is loaded; therefore more 
transmission losses in sound waves and more noise reduction occurs. Figure (13) 
compares values of transmission losses of the present study and those of Allam [1]. It 
is clear that values of transmission losses of the present study are higher than those of 
Allam [1]. 

 

CONCLUSIONS 
- Both transmission losses and noise reduction factor for the diesel particulate 

filters are increasing as frequency increases. 
- Transmission losses at the case of existing soot layer are higher than those with 

no soot layer. 
- EX80:200/14 DPF unit type has the best capability of transmission losses, while 

EX80:100/17 DPF type has the lowest capability. 
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- There is a good agreement between theoretical values of TL of the present study 
with those available in the literature and also with experimental one. 

- The temperature has a significant effect on both transmission losses and noise 
reduction factor, as the temperature increase both of these quantities are increase.  
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Figure (1): Transmission losses against frequency, for RC: 200/12, -.-.-.for EX80: 

200/14, -----for EX80:100/17, and…..for RC: 200/20 DPF unit type under the case of 
hot conditions (T=500˚ C), (With soot layer), and Mach=0.02. 
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Figure (2): NRF against frequency for typical DPF under the case of hot conditions 
(T=500˚C),  ……… (With soot layer), and ----- with no soot layer, and at Mach=0.02. 
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Figure (3): Transmission losses against frequency under the case of hot conditions 
(T=1000˚ C),and Mach=0.02. 
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Transmission losses vs. Frequency
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Figure (4): Transmission losses against frequency under the case of hot conditions 

(T=500 ˚C) for typical filter, Mach=0.02, and harmonic in 
 time and 2-D space case. 
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Figure (5): Transmission losses against frequency under the case of hot conditions 

((T=500 ˚C) for RC 200/12 filter type, ----- is for with soot  
layer, is for the case of no soot layer, Mach=0.02, and harmonic in  

time and 2-D space case. 
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Figure (6): Transmission losses against frequency under the case of hot conditions for 

RC 200/20 filter type, ----- for the case  with soot layer is  
for the case of no soot layer, Mach=0.02, and harmonic in time  

and 2-D space case, (T=500˚ C). 
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Figure (7): Transmission losses against frequency under the case of hot conditions for 

EX: 100/17 filter type, ----- for the case with soot layer, is  
for the case of no soot layer, Mach=0.02, and harmonic in  

time and 2-D space case, (T=500 ˚C). 
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Figure (8): Transmission losses against frequency under the case of hot conditions for 

EX: 200/14 filter type, ----- for the case with soot layer, is  
for the case of no soot layer, Mach=0.02, and harmonic in  

time and 2-D space case, (T=500˚ C). 
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Figure (9): Transmission losses against frequency for different DPF unit types under 
the case of hot conditions T=1000 ˚C, (With soot layer), and Mach=0.02. 
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Noise Reduction Factor  vs. Frequency
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Figure (10): NRF against frequency for typical DPF under the case of hot conditions 

(T=500 ˚C), Mach=0.02, under the case of harmonic in  
time and 2-D space. 
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Figure (11): Noise reduction factor against frequency for typical DPF under the case of 

hot conditions (T=1000 ˚C),  Mach=0.02. 
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TL vs. W at different Temperatures
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Figure (12): Transmission losses against frequency for typical DPF under the case of 

hot conditions (T=500˚C), with soot layer, and Mach=0.02. 
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Figure (13) Comparing values of transmission losses of the present study with Allam 
[1] for EX80:200/14 DPF unit type at hot condition (T=500 ˚C),  

with soot layer. 
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Appendix 1 
Figure (1) Diesel Particulate Filter 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table (1) Numerical values for different types of DPF units 
 

 
Filter name    channels/m2   channels width  wall thickness   wall perme-    R1                                                        
                         n x 10-5          dh x 103m        ht x 104m            ability σw  x 
              1013 m2                 
 
RC: 200/12          3.87             1.5                  3.04                     25              87.   RC: 
200/20                2.48               1.3                 5.04                     25              233.3 
EX80: 100/17    1.55               2.11                4.3                       2.5            199.8 
 EX80: 200/14   3.10               1.44               3.55                     2.5             184.1 
                                                                                                

 
 
*Source: Dokumaci (2001), Allam (2002), Allam (2005), and Allam (2006). 
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) على مقدار الفقدان في الازعاج و SOOT LAYERدراسة تاثير طبقة السنج (

) DPFتطبيق ذلك على فلتر ديزل  حبيبي (
 

 TRANSMISSIONفي هذا البحث تم التعرض لتاثير طبقة السنج على مقدار الفقدان في الازعاج (

LOSSES) و معامل فقدان الازعاج ((NRF الصادر عن المحركات عبر الفلتر. حيث تم مقارنة قيم 
هذه المعاملات بوجود طبقة السنج و بعدم وجودها وتم الاستنتاج ان مقدار الفقدان في الازعاج اعلى في 

 حالة وجود تلك الطبقة عنه مع عدم وجودها لانها تعتبر سطحا جديدا يمتص مزيدا من الصوت.
 


	A              Area or cross sectional area [m2]

