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One of the hot research topics nowadays is structural health monitoring.
The most useful damage location methods (based on dynamic testing) are
probably those using changes in resonant frequencies. This study is
concerned with parametric study of the effect of dead loads on the natural
frequencies of beams. The study includes two types of dead loads;
distributed and concentrated loads for different models. The first ten mode
frequencies are studied for each model. Based on the numerical results, it
is shown that both distributed and concentrated loads have considerable
influence on the lower frequencies of beams, especially the fundamental
one. Also, it is found that the influence of dead loads on beam frequencies
depends on cross- section moment of inertia and span-length.
Furthermore, it is found that the effect of dead loads decreases with the
increase of number of beam spans. Also, certain cases of loadings provide
high change of frequencies due to dead loads. On the other hand, the
percentage changes of frequencies due to dead loads with different values
of mass density and modulus of elasticity are the same.

KEYWORDS: Parametric study, dead loads, beam natural frequencies,
mass density, and modulus of elasticity.

1. INTRODUCTION

The basic concept in linear, vibration-based damage detection is that global modal
parameters (resonant frequencies, mode shapes, and modal damping) are functions of
the physical properties of the structure (mass, damping, and stiffness). Therefore,
changes in the physical properties will cause changes in the modal characteristics and
the measured response of the structure, [1]. Over the past few decades, major advances
have been realized in the fields of structural dynamics and experimental modal analysis.
Knowledge of structural dynamic characteristics allows one to diagnose vibration
problems, evaluate the effects of different loading conditions, examine the effects of
perturbations in structural properties, and to control the behaviour of the structure. So,
precise and detailed knowledge of the dynamic characteristics of structures has become
increasingly important in recent years [2]. Indeed, the most useful damage location
methods (based on dynamic testing) are probably those using changes in resonant
frequencies because frequency measurements can be quickly conducted and are often
reliable. Another advantage is the global nature that allows the measurement points to
be chosen to suit the test situation. Salawu [3] gave a literature review of the state of
the art of damage detection using changes in natural frequencies.
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In structural health monitoring using vibration-based damage detection
methods, data acquisition could take a significant amount of time. During that time,
changes in structural characteristics can occur due to environmental changes
(temperature, humidity, wind) and/or additional dead loads, which may cause large
variations in the vibration response at the same structural point. In contrast to live loads,
dead loads are stationary and produce initial stresses. The strain energy resulting from
these stresses should be considered in addition to the well-known strain energy
produced by live loads. The strain energy produced by initial stresses reduces the
displacements and internal forces produced by live loads. Actually, the beam is the
main component of most civil structures, e.g., buildings, bridges, cranes, etc. So, the
fundamental frequencies of a beam are of general significance.

Because little is known concerning its nature, the effect of dead loads on
natural frequencies of structures is currently ignored in most previous beam studies, for
example Chandrasekaran [4] and Thomson [5] ignored the effect of dead loads.
Takabatake [6] studied the effect of dead loads on the natural frequencies of beam and
proposed a closed-form approximate solution of the natural frequencies of simply
supported beams. Because of the difficulty of using Takabatake's solution methods for
complex structures, Zhou and Zhu [7] developed the conception and formulation of
load-induced stiffness matrix of a beam element for the finite element method.
Takabatake [8] extended the elementary plate theory and analyzed the effects of dead
loads in dynamic plates. However, it is difficult to use Takabatake's approaches for
complex plate or shell structures. Zhou [9] derived load-induced stiffness matrix of a
rectangular plate element which is more easily applied to practical structures subjected
to various support conditions. Cornil ef al. [10] investigated the natural frequencies of
cantilever beams and made a comparison between the natural frequencies of statically
deformed beams and the naturally curved beams that have the same initial shape. They
found that they have different frequencies and there is not any general relationship
between their frequencies. Unfortunately, a parametric study of the influence of dead
loads on natural frequencies of structures has been lacking.

The objective of this paper is to investigate the influence of different major
parameters of dead loads on beam natural frequencies. Indeed, a better understanding
of dead load effect will lead to a more accurate estimate of the effects of live loads;
thus truly safe structural designs will be possible. A careful numerical study is carried
out by using the finite element method. The parametric study includes the effect of
uniform distributed and concentrated dead loads on frequencies of simply supported
beam with varying moment of inertia, mass density, modulus of elasticity, and span
length. Also, the frequencies of continuous-equal-span beams with different cases of
loadings of dead loads are thoroughly studied.

2. THEORETICAL BACKGROUND

For simplicity, assume a beam shown in Fig. 1 with a Cartesian coordinate system: the
x-axis passes through the centroidal axis of the beam, and the y- and z-axes are the
principal axes of cross section for the beam. The following assumptions are used: the
beam is straight without initial imperfections; the external loads acting on the beam are

transverse loads; and axial forces are absent. Also, the static transverse deflection vp, is
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produced by a dead load per unit length wp. This deformed state is defined as the
reference state of the beam. A dynamic live load per unit length w;, acting on this
reference state produces a dynamic deflection v, where v, is measured from the

reference state. The deflections vp and v, and transverse loads wp and w; are
considered positive when they point in the positive direction of the y-axis.

Reference state

Figure 1: Coordinates and dead load distribution of beam.

The strain energy, U of the beam element can be expressed as follows [6]:
U = UD + UL . (1)

where U, is the strain energy produced by live loads w; and Up, is the additional strain
energy resulting from the conservative initial bending stresses produced by dead loads
Wwp. For the strain energy U}, the linear strain-displacement relation is used. However,
the nonlinear strain-displacement relation is used to introduce the effect of dead load.
The dynamic equation for beam elements is obtained as follows:

F=M& (K,+K,-K)5-F,, (2a)
or

F=M& K5-F (2b)

eq

in which & is the element nodal displacement vector, F is the element nodal force
vector, M is the consistent mass matrix, K, is the elastic stiffness matrix, K is the dead
load-induced stiffness matrix, K, is the geometric stiffness matrix, F.,, is the element
equivalent concentrated force vector due to live load, and K is the element stiffness
matrix including the effects of dead loads and axial compressive forces, and is given as
follows:

K=K, +K,—-K,, 3)
From Eq.(3) it can be seen that the dead loads increase the bending stiffness of

the beam. However, the axial compressive forces decrease the bending stiffness of the
beam.
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3. FINITE ELEMENT ANALYSIS

The finite-element modeling in the present study was carried out using the
MARC/Mentat package [11], [12]. The basic model is a simply supported steel beam.
The beam is assumed to have uniform cross sectional area and 30 [m] span length. The
cross sectional area of the beam and the moments of inertia are, A=0.07 [m?*], and 1=
0.040 [rn4], I,=0.001 [m4], respectively. The mechanical properties of the steel beam
are, modulus of elasticity, E=210 [GPa], Poisson's ratio, v=0.3, and the density,
p=7,850 [kg/m’]. Two-node beam element (element 52) with six degrees of freedom
per node is used. The natural frequencies of the beam are calculated numerically for
the first ten modes. This example is quoted from a simulated study by Abdo [13].

To verify the accuracy of the numerical simulation, three different meshes are
studied for the steel beam; 10, 20, and 30 beam elements. Two types of dead loads are
studied; a uniform distributed load and a concentrated load at mid span. The numerical
results obtained for the frequencies of the steel models are compared with those
obtained by other researchers. Indeed, the obtained results agree well with the
reference results for all meshes. However, the results of the third mesh provides
difference less than 0.1% of the results obtained by Takabatake [8]. Therefore, finite
element analysis based on 30 equal elements for each span of the beam model is
satisfactory for numerical investigation of natural frequencies.

4. PARAMETRIC STUDY

The present investigation considers the effect of a number of design variables on the
natural frequencies of simply-supported and continuous beams including uniform
distributed dead load, concentrated dead load with varying moment of inertia, mass
density, modulus of elasticity, and span length. Also, the frequencies of two, three, four,
and five continuous spans are investigated. Furthermore, the effect of different cases of
loadings of dead load on the frequency of multi-span beams are thoroughly studied.

A large number of finite element models were constructed, and normalizing
techniques were used to help generalize the results. For all models, the first ten natural
frequencies of the system are calculated with the physical and mechanical properties
mentioned above. When investigating the influence of one parameter on beam
frequencies, other parameters are kept constant to isolate which parameters are
significant in the design sense. In the following discussion, the normalized distributed

load, w,, and normalized concentrated load, ISD are estimated as follows:

_ ow,
w, = , 4
PEl @
— P
P =-2" 5
D="pg (5)

where wp = distributed dead load, Pp = concentrated dead load at mid span, [ = span
length, E = modulus of elasticity, and / = cross sectional moment of inertia about the
major axis, z. The normalized dead load is varied from 0.0 to 1.0. Also, the percentage
change in frequency is calculated as follows:
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Percentage increase in frequency = (Mj x100, (6)
n0
where f,p = the nth natural frequency including the effect of dead load and f;, = the nth
natural frequency excluding the effect of dead load.

5. RESULTS AND DISCUSSIONS

The following description summarizes the effects that the parameters mentioned
previously have on beam frequencies.

5.1. Uniform Distributed and Concentrated Dead Loads

Figure 2 shows the relationship between the normalized distributed load and the
change in natural frequencies of simply supported beam for the first five modes. The
normalized distributed load and the percentage increase in frequency is calculated as
stated in Eq.(4) and Eq.(6), respectively. It is shown that the natural frequency
increases with the increase of distributed dead load. This is expected because the dead
load increases the stiffness of the beam as mentioned in Eq. (3). Also, it is shown that
the percentage increase of frequency is high for fundamental frequency and less for
frequencies of higher modes. Moreover, it can be seen that the effect of uniform dead
load is very small and may be neglected for frequencies higher than the first five
natural frequencies.

To show the effect of concentrated dead load on beam frequencies, the
relationship between the normalized concentrated dead load and the change in natural
frequencies of simply supported beam for the first five modes are shown in Figure 3.
The concentrated dead load is assumed to act at mid span of the beam and its value is
assumed to provide the same bending moment on the beam obtained by the uniform
distributed dead load. The normalized concentrated load and the percentage increase in
frequency is calculated as mentioned in Eq.(5) and Eq.(6), respectively. Indeed, the
effect of concentrated dead load is similar to that of uniform distributed load. Thus, the
natural frequency increases with the increase of concentrated dead load and the
percentage increase of frequency are high for fundamental frequency. Moreover, it can
be seen that the effect of concentrated dead load is small for higher modes and may be
neglected for frequencies higher than the first five natural frequencies.

From Fig. 2 and Fig. 3 it can be easily seen that both distributed and
concentrated loads increase the beam frequencies due to the increase in the stiffness of
the beam. This effect is apparent in beam fundamental frequency. Though the value of
the concentrated load at mid span of the beam provides the same bending moment as
that resulted under the uniform distributed dead load, the effect of uniform distributed
load on the percentage increase of beam frequencies is higher. Only the effect of dead
loads on the beam fundamental frequency will be considered in the following
discussions.
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Figure 2: Relationship between distributed dead load and change in beam
frequencies for different modes.
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Figure 3: Relationship between concentrated dead load and change in beam
frequencies for different modes.

5.2. Span Length

To determine the effect of dead loads on beam frequencies taking into account the span
length, models were created with varying span lengths; 1.25 /, 1.0 /, and 0.75 [, where [
= 30 [m]. The relationship between the normalized distributed dead load and the
change in fundamental frequency of simply supported beam for different spans are
shown in Figure 4. The results show that for all span lengths the beam frequencies
increase with the increase of dead loads. Also, as the span length increases the change
in beam fundamental frequency increases. So, the longer the span the more effect of
dead load on beam frequencies. Indeed, it is important to mention that as the span
length increases the beam frequencies decrease since the beam stiffness is decreased.
However, the change in beam frequencies increases with the increase of span length.
Similar results are obtained for beams subjected to concentrated dead loads.
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Figure 4: Relationship between distributed dead load and change in beam
fundamental frequency for different span lengths.

5.3. Moment Of Inertia

To determine the effect of dead load on beam frequencies taking into account the cross
sectional moment of inertia I,, models were created with varying moment of inertia;
0.51, 1.01, and 2.0/, where I = 0.040 [m4]. The relationship between the normalized
distributed dead load and the change in fundamental frequencies of simply supported
beam with different moments of inertia is shown in Figure 5. It is easily seen that the
beam frequencies increase with the increase of dead loads for all moments of inertia.
Also, the change in beam frequencies increases with low cross sectional moment of
inertia. So, the higher the moment of inertia the lesser the effect of dead load on beam
frequencies. Indeed, it is important to mention the fact that beams with higher cross
sectional inertia have higher stiffness and consequently have higher natural frequencies.
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Figure 5: Relationship between distributed dead load and change in beam
fundamental frequency for different cross sectional moments of inertia.
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5.4. Modulus of Elasticity and Mass Density

To investigate the effect of dead load on beam frequencies taking into account the
properties of material, models of simply supported beams were created with varying
modulus of elasticity, £ and mass density, p. The beam frequencies are estimated for
E=210 [GPa] and E=21 [GPa]. Also, the beam frequencies are estimated for p=7,850
[kg/m3] and p=2,500 [kg/rn3]. Table 1 and Table 2 show the effect of distributed dead
load on the first five beam frequencies for different values of modulus of elasticity, E
and mass density, p, respectively. The beam frequencies are estimated under
normalized distributed load =1.0.

From Table 1 it is easily seen that different values of modulus of elasticity E,
give different values of beam frequencies for both cases of including or excluding the
effect of dead loads. Of course, an increase in modulus of elasticity leads to an increase
in beam frequencies and vice versa. However, the ratios f,p / f,o are the same for
different values of E and the change is higher for low frequency modes. Also, Table 2
shows that different values of mass densityp, give different values of beam frequencies
for both cases of including or excluding the effect of dead loads. Moreover, an increase
in the mass density results in a decrease in beam frequencies and vice versa. However,
and similar to Table 1, the ratios f,/ f,o are the same for different values of p. Thus, the
percentage change in beam frequencies due to specific dead load does not depend on
value of modulus of elasticity or mass density.

Table 1: Effect of dead load on the frequencies of a simply supported beam for
normalized distributed load = 1.0 for different values of modulus of elasticity, E.

Modulus Mode number
of elasticity | Frequency

E [GPa] 1 2 3 4 5
Jno 6.82391 | 27.2957 | 61.4156 | 109.185 | 170.607
210 fip 7.79079 | 27.9798 | 62.0945 | 109.861 | 171.278
Fun! fuo 1.1417 | 1.0251 1.0111 1.0062 | 1.0039
Jno 2.15791 | 8.6317 | 19.4213 | 34.5273 | 53.9505
21 fop 2.46366 | 8.8480 | 19.6360 | 34.7410 | 54.1627
Jon! fuo 1.1417 | 1.0251 1.0111 1.0062 | 1.0039

Table 2: Effect of dead load on the frequencies of a simply supported beam for
normalized distributed load = 1.0 for different values of mass density, p.

Densi Mode number
ensity, o Frequency
3
[ke/m’] 1 2 3 4 5
oo 6.82391 | 27.2957 | 61.4156 | 109.185 | 170.607
7850 fop 7.79079 | 27.9798 | 62.0945 | 109.861 | 171.278
Jun! fro 1.1417 1.0251 1.0111 1.0062 1.0039
o 12.0920 | 48.3680 | 108.8290 | 193.476 | 302.316
2500 fop 13.8053 | 49.5803 | 110.0320 | 194.674 | 303.505
fun/ fao 1.1417 1.0251 1.0111 1.0062 1.0039
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5.5. Number of Spans

To show the effect of dead load on fundamental beam frequencies taking into account
the number of spans, a series of models were developed with one, two, three, four, and
five equal spans. Each span is assumed to be 30 [m] length. Figure 6 shows the
relationship between the normalized distributed dead load and the change in
fundamental frequencies of beams with different number of spans. It is assumed that
the distributed dead load acts on all spans for multi-span beams. It is shown that the
beam frequencies increase with the increase of dead loads for all spans. Also, the
change in beam frequencies is higher for single span and the change in frequencies
decreases significantly as the number of spans increases. Thus, it is seen that the
change in frequency for single span is nearly six times that of the multi-span beams.
Thus, for distributed dead load over all spans, continuous beams have small changes in
frequencies. Indeed, it is important to mention that the fundamental frequencies of all
these beams are the same. So, the effect of dead load is maximum for single span and
is much smaller for multi spans with all spans loaded. Similar results are obtained for
beams subjected to concentrated dead loads at their mid spans.
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Figure 6: Relationship between distributed dead load and change in beam
fundamental frequency for different number of spans.

In practice, multi-span beams may be subjected to dead loads which are not
acting on all spans. So, the effect of dead load on natural frequencies of beams with
different cases of loadings is investigated. Different cases of loadings of distributed
loads are investigated for multi-equal-span beams. Figure 7 illustrates six cases of
uniform dead loadings on five-equal-span beam from Case I to Case VI. Indeed, these
six cases represent distributed loads on one, two, three or five spans which may be
adjacent or alternative.
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Figure 7: Cases of loadings for five-equal-span beam.

The relationship between the normalized distributed dead load and the change
in natural frequencies of five-equal-span beam with different cases of loadings is
plotted in Figure 8. It is clear that the beam frequencies increase with the increase of
dead loads for all cases of loadings. Also, it is shown that the effect of dead load on
beam frequencies depends on cases of loadings. While Case I gives the maximum
increase in beam fundamental frequency, Case VI gives the minimum increase in
frequency. Also, Case III, which represents dead loads on all spans, does not give the
maximum change in beam fundamental frequency. Indeed, from Fig. 8 it can be
inferred that the case of loading which provides maximum positive bending moment
between supports leads to maximum change in beam frequencies, such as Case I and
Case II. However, loading adjacent spans diminish the effect of dead load on beam
frequencies. Thus, the case of loading which provides maximum negative bending

moment at supports leads to minimum change in frequencies, such as Case V and Case
VL
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Figure 8: Relationship between distributed dead load and change in fundamental
frequency of five-equal-span beam for different cases of loadings.

6. CONCLUSIONS

This study is concerned with parametric study of the effect of dead loads on the natural
frequencies of beams. A careful numerical study is carried out by using the finite
element technique. The study includes two types of dead loads; distributed and
concentrated loads. The first ten mode frequencies are studied for each model. Based
on the numerical results, the following conclusions can be drawn:

(1) Both distributed and concentrated loads have considerable influence on the
lower frequencies of beams, especially the fundamental one and this effect
increases with the increase of dead load. However, the effect of dead load may
be neglected for frequencies higher than the first five natural frequencies.

(2) The longer the span the more effect of dead load on beam frequencies although
the beam frequencies decrease with the increase of beam length.

(3) The higher the cross sectional moment of inertia the lesser the effect of dead
load on change of beam frequencies. However, beams with higher cross
sectional inertia have higher stiffness and consequently have higher
frequencies.

(4) The percentage change in beam frequencies due to specific dead load does not
depend on values of modulus of elasticity or mass density.

(5) The effect of dead load is maximum for single span beam and is smaller for
multi-equal-span beams with all spans loaded with the same load value.

(6) In multi-equal-span beams, the case of loading which provides maximum
positive bending moment between beam supports leads to maximum change in
frequencies. However, loading adjacent spans diminish the effect of dead load
on beam frequencies and consequently, the case of loading which provides
maximum negative bending moment at supports leads to minimum change in
frequencies.
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Indeed, although dead loads increase the induced stresses in beams, they

enhance their dynamic behaviour due to their stiffening effect. So, dead loads should
be taken into account for beams with less stiffness, especially in vibration-based
damage detection methods using resonant frequencies.
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