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One of the hot research topics nowadays is structural health monitoring. 

The most useful damage location methods (based on dynamic testing) are 

probably those using changes in resonant frequencies. This study is 

concerned with parametric study of the effect of dead loads on the natural 

frequencies of beams. The study includes two types of dead loads; 

distributed and concentrated loads for different models. The first ten mode 

frequencies are studied for each model. Based on the numerical results, it 

is shown that both distributed and concentrated loads have considerable 

influence on the lower frequencies of beams, especially the fundamental 

one. Also, it is found that the influence of dead loads on beam frequencies 

depends on cross- section moment of inertia and span-length. 

Furthermore, it is found that the effect of dead loads decreases with the 

increase of number of beam spans. Also, certain cases of loadings provide 

high change of frequencies due to dead loads. On the other hand, the 

percentage changes of frequencies due to dead loads with different values 

of mass density and modulus of elasticity are the same.  
 

KEYWORDS: Parametric study, dead loads, beam natural frequencies, 

mass density, and modulus of elasticity.  

 

1.  INTRODUCTION 

The basic concept in linear, vibration-based damage detection is that global modal 

parameters (resonant frequencies, mode shapes, and modal damping) are functions of 

the physical properties of the structure (mass, damping, and stiffness). Therefore, 

changes in the physical properties will cause changes in the modal characteristics and 

the measured response of the structure, [1]. Over the past few decades, major advances 

have been realized in the fields of structural dynamics and experimental modal analysis. 

Knowledge of structural dynamic characteristics allows one to diagnose vibration 

problems, evaluate the effects of different loading conditions, examine the effects of 

perturbations in structural properties, and to control the behaviour of the structure. So, 

precise and detailed knowledge of the dynamic characteristics of structures has become 

increasingly important in recent years [2]. Indeed, the most useful damage location 

methods (based on dynamic testing) are probably those using changes in resonant 

frequencies because frequency measurements can be quickly conducted and are often 

reliable. Another advantage is the global nature that allows the measurement points to 

be chosen to suit the test situation. Salawu [3] gave a literature review of the state of 

the art of damage detection using changes in natural frequencies. 
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In structural health monitoring using vibration-based damage detection 

methods, data acquisition could take a significant amount of time. During that time, 

changes in structural characteristics can occur due to environmental changes 

(temperature, humidity, wind) and/or additional dead loads, which may cause large 

variations in the vibration response at the same structural point. In contrast to live loads, 

dead loads are stationary and produce initial stresses. The strain energy resulting from 

these stresses should be considered in addition to the well-known strain energy 

produced by live loads. The strain energy produced by initial stresses reduces the 

displacements and internal forces produced by live loads. Actually, the beam is the 

main component of most civil structures, e.g., buildings, bridges, cranes, etc. So, the 

fundamental frequencies of a beam are of general significance.  

Because little is known concerning its nature, the effect of dead loads on 

natural frequencies of structures is currently ignored in most previous beam studies, for 

example Chandrasekaran [4] and Thomson [5] ignored the effect of dead loads. 

Takabatake [6] studied the effect of dead loads on the natural frequencies of beam and 

proposed a closed-form approximate solution of the natural frequencies of simply 

supported beams. Because of the difficulty of using Takabatake's solution methods for 

complex structures, Zhou and Zhu [7] developed the conception and formulation of 

load-induced stiffness matrix of a beam element for the finite element method. 

Takabatake [8] extended the elementary plate theory and analyzed the effects of dead 

loads in dynamic plates. However, it is difficult to use Takabatake's approaches for 

complex plate or shell  structures. Zhou [9] derived load-induced stiffness matrix of a 

rectangular plate element which is more easily applied to practical structures subjected 

to various support conditions. Cornil et al. [10] investigated the natural frequencies of 

cantilever beams and made a comparison between the natural frequencies of statically 

deformed beams and the naturally curved beams that have the same initial shape. They 

found that they have different frequencies and there is not any general relationship 

between their frequencies. Unfortunately, a parametric study of the influence of dead 

loads on natural frequencies of structures has been lacking. 

The objective of this paper is to investigate the influence of different major 

parameters of dead loads on beam natural frequencies. Indeed, a better understanding 

of dead load effect will lead to a more accurate estimate of the effects of live loads; 

thus truly safe structural designs will be possible. A careful numerical study is carried 

out by using the finite element method. The parametric study includes the effect of 

uniform distributed and concentrated dead loads on frequencies of simply supported 

beam with varying moment of inertia, mass density, modulus of elasticity, and span 

length. Also, the frequencies of continuous-equal-span beams with different cases of 

loadings of dead loads are thoroughly studied.  

 

2. THEORETICAL BACKGROUND  

For simplicity, assume a beam shown in Fig. 1 with a Cartesian coordinate system: the 

x-axis passes through the centroidal axis of the beam, and the y- and z-axes are the 

principal axes of cross section for the beam. The following assumptions are used: the 

beam is straight without initial imperfections; the external loads acting on the beam are 

transverse loads; and axial forces are absent. Also, the static transverse deflection vD. is 
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produced by a dead load per unit length wD. This deformed state is defined as the 

reference state of the beam. A dynamic live load per unit length wL acting on this 

reference state produces a dynamic deflection vL where vL is measured from the 

reference state. The deflections vD and vL and transverse loads wD and wL are 

considered positive when they point in the positive direction of the y-axis.   
 

 
 

Figure 1: Coordinates and dead load distribution of beam. 

 

The strain energy, U of the beam element can be expressed as follows [6]:  

U = UD + UL ,                                                              (1) 

where UL  is the strain energy produced by live loads wL and UD is the additional strain 

energy resulting from the conservative initial bending stresses produced by dead loads 

wD. For the strain energy UL, the linear strain-displacement relation is used. However, 

the nonlinear strain-displacement relation is used to introduce the effect of dead load. 

The dynamic equation for beam elements is obtained as follows: 

eqgDe FKKKMF   )( ,                                          (2a) 

or 

eqFKMF   ,                                                        (2b) 

in which δ is the element nodal displacement vector, F is the element nodal force 

vector, M is the consistent mass matrix, Ke is the elastic stiffness matrix, KD is the dead 

load-induced stiffness matrix, Kg is the geometric stiffness matrix, Feq is the element 

equivalent concentrated force vector due to live load, and K is the element stiffness 

matrix including the effects of dead loads and axial compressive forces, and is given as 

follows:  

gDe KKKK  ,                                                        (3) 

From Eq.(3) it can be seen that the dead loads increase the bending stiffness of 

the beam. However, the axial compressive forces decrease the bending stiffness of the 

beam. 
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3. FINITE ELEMENT ANALYSIS 

The finite-element modeling in the present study was carried out using the 

MARC/Mentat package [11], [12]. The basic model is a simply supported steel beam. 

The beam is assumed to have uniform cross sectional area and 30 [m] span length. The 

cross sectional area of the beam and the moments of inertia are, A=0.07 [m
2
], and Iz= 

0.040 [m
4
], Iy= 0.001 [m

4
], respectively. The mechanical properties of the steel beam 

are, modulus of elasticity, E=210 [GPa], Poisson's ratio, =0.3, and the density, 

=7,850 [kg/m
3
]. Two-node beam element (element 52) with six degrees of freedom 

per node is used. The natural frequencies of the beam are calculated numerically for 

the first ten modes. This example is quoted from a simulated study by Abdo [13]. 

To verify the accuracy of the numerical simulation, three different meshes are 

studied for the steel beam; 10, 20, and 30 beam elements. Two types of dead loads are 

studied; a uniform distributed load and a concentrated load at mid span. The numerical 

results obtained for the frequencies of the steel models are compared with those 

obtained by other researchers. Indeed, the obtained results agree well with the 

reference results for all meshes. However, the results of the third mesh provides 

difference less than 0.1% of the results obtained by Takabatake [8]. Therefore, finite 

element analysis based on 30 equal elements for each span of the beam model is 

satisfactory for numerical investigation of natural frequencies. 
 

4. PARAMETRIC STUDY  

The present investigation considers the effect of a number of design variables on the 

natural frequencies of simply-supported and continuous beams including uniform 

distributed dead load, concentrated dead load with varying moment of inertia, mass 

density, modulus of elasticity, and span length. Also, the frequencies of two, three, four, 

and five continuous spans are investigated. Furthermore, the effect of different cases of 

loadings of dead load on the frequency of multi-span beams are thoroughly studied.  

A large number of finite element models were constructed, and normalizing 

techniques were used to help generalize the results. For all models, the first ten natural 

frequencies of the system are calculated with the physical and mechanical properties 

mentioned above. When investigating the influence of one parameter on beam 

frequencies, other parameters are kept constant to isolate which parameters are 

significant in the design sense. In the following discussion, the normalized distributed 

load, Dw and normalized concentrated load, DP  are estimated as follows: 

IE

lw
w D

D
 

 3

 ,                                                          (4) 

IE

lP
P D

D
 

 2

 ,                                                         (5)  

where wD  = distributed dead load, PD = concentrated dead load at mid span, l = span 

length, E = modulus of elasticity, and I = cross sectional moment of inertia about the 

major axis, z. The normalized dead load is varied from 0.0 to 1.0. Also, the percentage 

change in frequency is calculated as follows: 
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nnD
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ff
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where fnD  = the nth natural frequency including the effect of dead load and fn0 = the nth 

natural frequency excluding the effect of dead load. 

 

5. RESULTS AND DISCUSSIONS 

The following description summarizes the effects that the parameters mentioned 

previously have on beam frequencies. 
 

5.1. Uniform Distributed and Concentrated Dead Loads 

Figure 2 shows the relationship between the normalized distributed load and the 

change in natural frequencies of simply supported beam for the first five modes. The 

normalized distributed load and the percentage increase in frequency is calculated as 

stated in Eq.(4) and Eq.(6), respectively. It is shown that the natural frequency 

increases with the increase of distributed dead load. This is expected because the dead 

load increases the stiffness of the beam as mentioned in Eq. (3). Also, it is shown that 

the percentage increase of frequency is high for fundamental frequency and less for 

frequencies of higher modes. Moreover, it can be seen that the effect of uniform dead 

load is very small and may be neglected for frequencies higher than the first five 

natural frequencies.  

To show the effect of concentrated dead load on beam frequencies, the 

relationship between the normalized concentrated dead load and the change in natural 

frequencies of simply supported beam for the first five modes are shown in Figure 3. 

The concentrated dead load is assumed to act at mid span of the beam and its value is 

assumed to provide the same bending moment on the beam obtained by the uniform 

distributed dead load. The normalized concentrated load and the percentage increase in 

frequency is calculated as mentioned in Eq.(5) and Eq.(6), respectively. Indeed, the 

effect of concentrated dead load is similar to that of uniform distributed load. Thus, the 

natural frequency increases with the increase of concentrated dead load and the 

percentage increase of frequency are high for fundamental frequency. Moreover, it can 

be seen that the effect of concentrated dead load is small for higher modes and may be 

neglected for frequencies higher than the first five natural frequencies.  

From Fig. 2 and Fig. 3 it can be easily seen that both distributed and 

concentrated loads increase the beam frequencies due to the increase in the stiffness of 

the beam. This effect is apparent in beam fundamental frequency. Though the value of 

the concentrated load at mid span of the beam provides the same bending moment as 

that resulted under the uniform distributed dead load, the effect of uniform distributed 

load on the percentage increase of beam frequencies is higher. Only the effect of dead 

loads on the beam fundamental frequency will be considered in the following 

discussions.  
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Figure 2: Relationship between distributed dead load and change in beam 

frequencies for different modes. 
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Figure 3: Relationship between concentrated dead load and change in beam 

frequencies for different modes. 
 

5.2. Span Length  

To determine the effect of dead loads on beam frequencies taking into account the span 

length, models were created with varying span lengths; 1.25 l, 1.0 l, and 0.75 l, where l 

= 30 [m].  The relationship between the normalized distributed dead load and the 

change in fundamental frequency of simply supported beam for different spans are 

shown in Figure 4. The results show that for all span lengths the beam frequencies 

increase with the increase of dead loads. Also, as the span length increases the change 

in beam fundamental frequency increases. So, the longer the span the more effect of 

dead load on beam frequencies. Indeed, it is important to mention that as the span 

length increases the beam frequencies decrease since the beam stiffness is decreased. 

However, the change in beam frequencies increases with the increase of span length. 

Similar results are obtained for beams subjected to concentrated dead loads.  



Parametric Study of the Effect of Dead Loads  

 

1077 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0 0.2 0.4 0.6 0.8 1.0

Normalized distributed load

%
 i
n

c
re

a
s
e

 i
n

 f
re

q
u

e
n

c
y 1.25 L

1.00 L

0.75 L

 
    Figure 4: Relationship between distributed dead load and change in beam 

fundamental frequency for different span lengths. 
 

 

5.3. Moment Of Inertia  

To determine the effect of dead load on beam frequencies taking into account the cross 

sectional moment of inertia Iz, models were created with varying moment of inertia; 

0.5I, 1.0I, and 2.0I, where I = 0.040 [m
4
]. The relationship between the normalized 

distributed dead load and the change in fundamental frequencies of simply supported 

beam with different moments of inertia is shown in Figure 5. It is easily seen that the 

beam frequencies increase with the increase of dead loads for all moments of inertia. 

Also, the change in beam frequencies increases with low cross sectional moment of 

inertia. So, the higher the moment of inertia the lesser the effect of dead load on beam 

frequencies. Indeed, it is important to mention the fact that beams with higher cross 

sectional inertia have higher stiffness and consequently have higher natural frequencies.   
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    Figure 5: Relationship between distributed dead load and change in beam 

fundamental frequency for different cross sectional moments of inertia. 
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5.4. Modulus of Elasticity and Mass Density  

To investigate the effect of dead load on beam frequencies taking into account the 

properties of material, models of simply supported beams were created with varying 

modulus of elasticity, E and mass density, . The beam frequencies are estimated for 

E=210 [GPa] and E=21 [GPa]. Also, the beam frequencies are estimated for =7,850 

[kg/m
3
] and =2,500 [kg/m

3
]. Table 1 and Table 2 show the effect of distributed dead 

load on the first five beam frequencies for different values of modulus of elasticity, E 

and mass density, , respectively. The beam frequencies are estimated under 

normalized distributed load =1.0.  

From Table 1 it is easily seen that different values of modulus of elasticity E, 

give different values of beam frequencies for both cases of including or excluding the 

effect of dead loads. Of course, an increase in modulus of elasticity leads to an increase 

in beam frequencies and vice versa. However, the ratios fnD / fn0 are the same for 

different values of E and the change is higher for low frequency modes. Also, Table 2 

shows that different values of mass density, give different values of beam frequencies 

for both cases of including or excluding the effect of dead loads. Moreover, an increase 

in the mass density results in a decrease in beam frequencies and vice versa. However, 

and similar to Table 1, the ratios fnD / fn0 are the same for different values of . Thus, the 

percentage change in beam frequencies due to specific dead load does not depend on 

value of modulus of elasticity or mass density.  
 

Table 1:  Effect of dead load on the frequencies of a simply supported beam for 

normalized distributed load = 1.0 for different values of modulus of elasticity, E. 
 

Modulus 
of elasticity 

E [GPa] 
Frequency 

Mode number 

1 2 3 4 5 

210 

fn0 

fnD 

fnD / fn0 

6.82391 
7.79079 
1.1417 

27.2957 
27.9798 
1.0251 

61.4156 
62.0945 
1.0111 

109.185 
109.861 
1.0062 

170.607 
171.278 
1.0039 

21 

fn0 

fnD 

fnD / fn0 

2.15791 
2.46366 
1.1417 

8.6317 
8.8480 
1.0251 

19.4213 
19.6360 
1.0111 

34.5273 
34.7410 
1.0062 

53.9505 
54.1627 
1.0039 

 

 
Table 2:  Effect of dead load on the frequencies of a simply supported beam for 

normalized distributed load = 1.0 for different values of mass density, ρ. 
 

Density, ρ 

[kg/m
3
] 

Frequency 
Mode number 

1 2 3 4 5 

7850 

fn0 

fnD 

fnD / fn0 

6.82391 
7.79079 
1.1417 

27.2957 
27.9798 
1.0251 

61.4156 
62.0945 
1.0111 

109.185 
109.861 
1.0062 

170.607 
171.278 
1.0039 

2500 

fn0 

fnD 

fnD / fn0 

12.0920 
13.8053 
1.1417 

48.3680 
49.5803 
1.0251 

108.8290 
110.0320 

1.0111 

193.476 
194.674 
1.0062 

302.316 
303.505 
1.0039 
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5.5. Number of Spans 

To show the effect of dead load on fundamental beam frequencies taking into account 

the number of spans, a series of models were developed with one, two, three, four, and 

five equal spans. Each span is assumed to be 30 [m] length. Figure 6 shows the 

relationship between the normalized distributed dead load and the change in 

fundamental frequencies of beams with different number of spans. It is assumed that 

the distributed dead load acts on all spans for multi-span beams. It is shown that the 

beam frequencies increase with the increase of dead loads for all spans. Also, the 

change in beam frequencies is higher for single span and the change in frequencies 

decreases significantly as the number of spans increases. Thus, it is seen that the 

change in frequency for single span is nearly six times that of the multi-span beams. 

Thus, for distributed dead load over all spans, continuous beams have small changes in 

frequencies. Indeed, it is important to mention that the fundamental frequencies of all 

these beams are the same. So, the effect of dead load is maximum for single span and 

is much smaller for multi spans with all spans loaded. Similar results are obtained for 

beams subjected to concentrated dead loads at their mid spans.   
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Figure 6: Relationship between distributed dead load and change in beam 

fundamental frequency for different number of spans. 
 

 

 

In practice, multi-span beams may be subjected to dead loads which are not 

acting on all spans. So, the effect of dead load on natural frequencies of beams with 

different cases of loadings is investigated. Different cases of loadings of distributed 

loads are investigated for multi-equal-span beams. Figure 7 illustrates six cases of 

uniform dead loadings on five-equal-span beam from Case I to Case VI. Indeed, these 

six cases represent distributed loads on one, two, three or five spans which may be 

adjacent or alternative. 
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Figure 7: Cases of loadings for five-equal-span beam. 

 

 

The relationship between the normalized distributed dead load and the change 

in natural frequencies of five-equal-span beam with different cases of loadings is 

plotted in Figure 8. It is clear that the beam frequencies increase with the increase of 

dead loads for all cases of loadings. Also, it is shown that the effect of dead load on 

beam frequencies depends on cases of loadings. While Case I gives the maximum 

increase in beam fundamental frequency, Case VI gives the minimum increase in 

frequency. Also, Case III, which represents dead loads on all spans, does not give the 

maximum change in beam fundamental frequency. Indeed, from Fig. 8 it can be 

inferred that the case of loading which provides maximum positive bending moment 

between supports leads to maximum change in beam frequencies, such as Case I and 

Case II. However, loading adjacent spans diminish the effect of dead load on beam 

frequencies. Thus, the case of loading which provides maximum negative bending 

moment at supports leads to minimum change in frequencies, such as Case V and Case 

VI. 
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Figure 8: Relationship between distributed dead load and change in fundamental 

frequency of five-equal-span beam for different cases of loadings. 
 

  

6.  CONCLUSIONS 

This study is concerned with parametric study of the effect of dead loads on the natural 

frequencies of beams. A careful numerical study is carried out by using the finite 

element technique. The study includes two types of dead loads; distributed and 

concentrated loads. The first ten mode frequencies are studied for each model. Based 

on the numerical results, the following conclusions can be drawn: 

(1) Both distributed and concentrated loads have considerable influence on the 

lower frequencies of beams, especially the fundamental one and this effect 

increases with the increase of dead load. However, the effect of dead load may 

be neglected for frequencies higher than the first five natural frequencies. 

(2) The longer the span the more effect of dead load on beam frequencies although 

the beam frequencies decrease with the increase of beam length.  

(3) The higher the cross sectional moment of inertia the lesser the effect of dead 

load on change of beam frequencies. However, beams with higher cross 

sectional inertia have higher stiffness and consequently have higher 

frequencies. 

(4) The percentage change in beam frequencies due to specific dead load does not 

depend on values of modulus of elasticity or mass density. 

(5) The effect of dead load is maximum for single span beam and is smaller for 

multi-equal-span beams with all spans loaded with the same load value.  

(6) In multi-equal-span beams, the case of loading which provides maximum 

positive bending moment between beam supports leads to maximum change in 

frequencies. However, loading adjacent spans diminish the effect of dead load 

on beam frequencies and consequently, the case of loading which provides 

maximum negative bending moment at supports leads to minimum change in 

frequencies. 
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Indeed, although dead loads increase the induced stresses in beams, they 

enhance their dynamic behaviour due to their stiffening effect. So, dead loads should 

be taken into account for beams with less stiffness, especially in vibration-based 

damage detection methods using resonant frequencies. 
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  مال اƃميتة على اƃترددات اƃطبيعية ƃلƂمراتƃتأثير اأح ةبارا متريدراسة 
 

اƅخواص اƅديناميƄيةة  فياƅتغيرات  باستخداماƅتلفيات  اƄتشافاآونة اأخيرة اƅعديد من اƅطرق  فيظهرت 
نشة  (؛ وذƅة  ƅلووةوف ىلةا ةاƅةة اƅمااهتةااا، معةامتت خخمةاد  ااهتةااا، شةƄ  اƅطبيعةيƅلمنشةتت ااƅتةردد 
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اƅعوامة   فةياƅتغيةر تة يير  ااىتبةار فةيخةذ  ت وأماƄن اƅتلفيات. Ƅƅن ƅوةظ ىمومةا  أن معظةم هةذل اƅطةرق ا
ىلةةا اƅخةةواص اأةمةةا  اƅميتةةة ايةةةافية وƄةةذƅ  اƅجويةةة ادرجةةات اƅةةةرارة، نسةةبة اƅرطوبةةة، سةةرىة اƅريةةا ( 

ƅلمنشة  واƅناتجةة اƅتةرددات اƅطبيعيةة  فياƅواوع  فإن اƅتغيرات  في. اƅتردد اƅطبيعيوأهمها  اƅديناميƄية ƅلمنش 
ونظةرا  اƅمنشة .  فةيود يƄون ƅها ت يير مماي  أو أƄبةر مةن تلة  اƅناتجةة مةن وجةود تلفيةات  ،اƅعوام هذل من 

ة ƅتة يير بارامتريةيعرض هةذا اƅبةةد دراسةة أن ت يير اأةما  اƅميتة يختلف ىن ت يير اأةما  اƅةية، ƅذا 
 ما يلي: وود وجد من اƅنتائج ت اƅطبيعية ƅلƄمرات.ما  اƅميتة ىلا اƅترددااأة

  مواىةƅميتة ااƅاة( اأةما  اƄمرƅا أو اƅطبيعية اأساسية تؤدي خƅترددات اƅايادة معتبرة في ا
أما ت يير اƅةم  اƅمؤير.  ويمة بايادةويايد هذا اƅت يير بسيطة اارتƄاا واƅمستمرة  ƅلƄمرات

 .ةاƅخامسرتبة من اƅفيق  بايادة اƅرتبة ويمƄن خهماƅه ƅلترددات اأىلا اأةما  اƅميتة 

  ميتة يايد بايادةƅر و بةت يير اأةما  اƅمر اƄرغم من نقص اتƅتردد باƅطبيعية اأساسية اƅات ا
 .اهر و بة ƅلƄمرات بايادة

  ميتةƅمرة يقل  من ت يير اأةما  اƄƅمقطع اƅ ذاتيƅقصور اƅترددات ايادة ىام اƅطبيعيةىلا اƅا 
 وباƅتاƅي تردداتها ىاƅية. Ƅبيرةƅها Ƅاااة اƄƅمرات هذل باƅرغم من أن  ƅهذل اƄƅمرات

  مراتƄلƅ طبيعيةƅترددات اƅتغير في اƅويمة معاير ىلا ا يعتمد ةم  ميت معين تةت ت يير ا
 Ƅيافة مادة اينشاء.أو اƅمرونة 

 ميتةƅبة ت يير اأةما  اƅمرة ذات اƄلƅ نƄبر ما يمƄون أƄواةديƅمراتىدد ايادة يق  بو  ر اƄƅبةور ا 
 .اƅةم  اƅميتبنفس ويمة  جميعا  اƅمةملة و  متساوية اƅبةور اƅمستمرة

  ميتةƅترددت يير اأةما  اƅطبيعي اتىلا اƅل ةاƅ مرƄبةور اتƅمستمرة متساوية اƅة  اƅيتووف ىلا ةا
ؤدي خƅا تƅدىامات أوصا ىام انةناء موجب بين ا عطياƅتي تةاƅة اƅتةمي  Ƅما أن  اƅتةمي .

أوصا تعطي في اƅترددات اƅطبيعية ƅلƄمرات اƅمستمرة، بينما ةاƅة اƅتةمي  اƅتي أƄبر تغيير 
 .Ƅƅمراتƅهذل اتغيير في اƅترددات اƅطبيعية  و ؤدي خƅا أتىام انةناء ساƅب فوق اƅدىامات 

تةسن من اƅسلو   خا أنهامن ايجهادات اƅداخلية ƅلƄمرات، تايد  اأةما  اƅميتة باƅرغم من أن
اƄƅمرة. ƅذا يجب أخذ ت يير اأةما  اƅميتة ىلا اƄƅمرات اƅتي ƅها Ƅاااة أنها تايد من اƅديناميƄي ƅها 

 اƅطبيعية.  هاباستخدام اƅتغيرات في ترددات اƅمنشتت طرق اƄتشاف تلفياتفي ةعيفة خصوصا  Ƅاااة 
 


	دراسة بارا مترية لتأثير الأحمال الميتة على الترددات الطبيعية للكمرات

