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In this paper, we derive a fuzzy logic controller (FLC) for robotic systems. 
The approach implements fuzzy partition to the state variables based on 
Lyapunov synthesis. The resulting control law is stable and able to exploit 
the dynamic variables of the system in a linguistic manner. The presented 
methodology enables the designer to systematically derive the rule base of 
the control. We further simplify the procedure leading to a 
computationally efficient FLC. The methodology is model free approach 
and does not require any information about the system nonlinearities, 
uncertainties, time varying parameters, etc. Here, we present 
experimental results of the following controllers: the conventional PD 
controller and the proposed FLC. The two controllers are tested and 
compared with respect to ease of design, implementation, and 
performance of the closed loop system.  
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1. INTRODUCTION 
Robots are familiar examples of trajectory-following mechanical systems. Their 
nonlinearities and strong coupling of the robot dynamics present a challenging control 
problem, [1]. Conventional methods of controlling a nonlinear system are based on 
models, especially in the field of robot control. Many robotic control schemes can be 
considered as special cases of model-based control called computed torque, [2]. The 
basic concept of computed torque is to linearize a nonlinear system, and then to apply 
linear control theory. Practical implementation of the computed torque and other model 
based approaches can be found in [3] where the experimental results revealed that the 
simple PD controller has outperformed the other model based controllers. This is 
mainly due to the fact that in many dynamic systems the parameters may slowly 
change or cannot be exactly predicted in advance due to different operating conditions. 
This is particularly true if a manipulator changes its payload mass.  

Adaptive control has been studied for many decades to deal with constant or 
slowly changing unknown parameters. Applications include manipulators, ship 
steering, aircraft control and process control, [4]. Although the perfect knowledge of 
the inertia parameters can be relaxed via adaptive technique, its real practical 
usefulness is not really clear and the obtained controllers may be too complicated to be 
easily implemented, [5]. Nevertheless, some experiments have been presented in [6,7]. 
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Control engineers are now facing more and more complex systems, and 
mathematical models of these systems are difficult to obtain. Thus, model free 
approaches become important in control engineering. Conventional control has some 
model-free approaches, such as PD and PID control. Alternatively, fuzzy control is 
also a model free approach; that is, it does not require a mathematical model of the 
system under control. When compared with other nonlinear modeling and control 
techniques such as artificial neural networks [8-9], fuzzy systems have the important 
advantage of providing an insight on the linguistic relationship between the variables 
of the system, [10].  

Fuzzy controllers have demonstrated excellent robustness in both simulations 
and real-life applications, [11-13]. They are able to function well even when the 
controlled system differs from the system model used by the designer. A customary for 
this phenomenon is that fuzzy sets, with their gradual membership property, are less 
sensitive to errors than crisp sets. Another explanation is that a design based on the 
“computing with words” paradigm is inherently robust; the designer forsakes some 
mathematical rigor but gains a very general model which remains valid even when the 
system’s parameters and structure vary [10]. This is well-demonstrated by the method 
of fuzzy Lyapunov synthesis [11], which is followed in this paper.  

Otherwise, FLCs consist of a number of parameters that are needed to be 
selected and configured in prior, i.e. input membership functions, fuzzificztion method, 
output membership functions, rule base, premises connective, inference method and 
defuzzification. Optimal tuning of FLCs using genetic algorithms has attracted many 
authors, [14-17]. In these papers, however, there are too many parameters involved in 
the development of FLCs. Furthermore, genetic algorithms cannot be used in real time 
control applications. In another study similar to the presnt work, i.e. real-time 
trajectory tracking control of two link robot using fuzzy systems [18], the controller 
needs 26 parameters to be experimentally selected. Also, the FLC in [14] needs 45 
parameters to be tuned.This beside the huge number of calculations involved in the 
computation of the control signals.  

In this research paper, a simple and computationally efficient FLC is 
introduced. The algorithm has been presented in [19] by the second author. Here we re-
present it along with expermental verfication. The controller is stable in the sense of 
Lyapunov theory of stability and few parameters are needed to be tuned. The approach 
can be implemented to both tracking and stabilizing control problems. However, in this 
paper the emphasis is on the tracking control problem of robotic systems. The 
performance of the proposed controller is experimentally verified and compared with 
the conventional PD controller. As will be seen, the two controllers are model free 
approaches, so that a fair comparison is made. Robustness is examined in the presence 
of payload mass. 

The rest of this paper is organized as follows. Section 2 presents the dynamic 
model, the parameters of the experimental manipulator utilized in this work and the 
control statement. The proposed control scheme is introduced in Section 3 and in 
Section 4 we derive the fuzzy controller for the tracking control problem. Section 5 
describes the experimental setup, the examined trajectories and the criteria used in the 
control performance evaluation. The experimental results are demonstrated and 
discussed in Section 6. Section 7 offers our concluding remarks.  
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2. ROBOT DYNAMICS AND THE CONTROL PROBLEM 
FORMULATION 

Consider the two-link planner robotic shown in Fig. 1. The vector of generalized 

coordinates is denoted by T] [ 21 θθθ =  where 1θ  and 2θ  are the joint angles, and the 

corresponding generalized forces (torques) vector is given by T][ 21τττ = . The 
standard Euler-Lagrange dynamic equations for an n-link rigid robot in the absence of 
gravity may be written as [20]:  

 

nn RRwithCM ∈∈=+ τθτθθθθθ ,),()( &&&&               (1) 
 

where nnRM ×∈)(θ  is the inertia matrix, and ,, θθ &  and θ&&  are the joint angles, 

velocities, and accelerations, respectively. The vector θθθ &&),(C  represents centrifugal 
and Coriolis terms, and τ  is the vector of applied torques.  
 

 
 

Figure 1 Schematic diagram of a two-link manipulator. 
 
The equations of motion of the arm are given by 
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where 1l  and 2l  are the links lengths; 1m  and 2m  are the masses of the links; 1cl  and 

2cl  are the location of the center of masses; 1I  and 2I  are the moment of inertia about 

the center of masses of the two links. The short hand notation )(sin 22 θ=s  and 

)(cos 22 θ=c  has been used. 
The physical properties of the links used in this study are given in Table 1. 

These inertial parameters have been calculated by simply measuring and weighting the 
mechanical elements of the arms.  
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Table 1 Parameters of the robot arm. 
 

Parameter Link 1 Link 2 
m    mass (kg)      0.471 0.096 
l     length (m) 0.154 0.205 

cl   position of c.g. (m) 0.154 0.1025 

2m
12

1
I l=   inertia around c.g. (kg.m2) 0.00093 0.00033 

 
The motion control problem of manipulators in joint space can be stated in the 

following terms. Assume that the joint position θ  and the joint velocity θ&  are 
available for measurement. Let the desired joint position dθ  be a differential vector 

function. We define a motion controller as a controller which determines the actuator 
torques u  in such a way that the following control aim be achieved:  

)()(lim tt d
t

θθ =
∞→

 

In this paper, we say that the control system is asymptotically stable if the 
control aim is guaranteed irrespective of the robot initial configuration, i.e. )0(θ  and 

)0(θ& . Throughout this work, we shall make the mild assumption that the desired 

trajectory )(tdθ  and its derivative (i.e. )(tdθ& ) are continuous and bounded. We also 

assume that )(tdθ  and its derivative are available for online control computation. In 

robot tracking tasks, the desired position history is generally planned ahead of time and 
its derivative can be easily obtained.  
 

3. THE PROPOSED FUZZY CONTROL SCHEME 
In this section we describe an approach for the fuzzy control design. We apply the 
fuzzy synthesis to the design of stable controllers. To this end, consider a class of 
nonlinear systems whose dynamic equations can be expressed as: 

 

)(),,()( xhyuxftx ==&                                                               (3) 
 

where ),( uxf  is an unknown continuous function, u  is the control input, y  is the 

output, and T
nxxxtx ],,,[)( 21 K=  is the state vector, where i

i
i x

dt

dx
x &==+1 , 

1,,2,1 −= ni K . We now seek a smooth Lyapunov function nn RRV →:  for the 

continuous feedback model (3) that is positive definite, i.e. 0)( >xV  when 0≠x  and 

0)( =xV  when 0=x , and grows to infinity: ∞→)(xV  as ∞→xxT . Obviously, 
this holds for the following quadratic form: 
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Differentiating (4) with respect to time gives 
 

nnxxxxxxtxV &LL& ++= 3221),(                                                            (5) 
 

The standard results in Lyapunov stability theory imply that the dynamic 

system (3) has a stable equilibrium exx =  if 0<V&  along the system trajectories. To 

achieve this, we have chosen the control )(xu  to be proportional tonx& . 

Next, our controller design is achieved if we determine a fuzzy control )(xu  so that: 
 

0)(),( 3221 ≤++= xuxxxxxtxV nαLL&                                              (6) 
 

where α  is a positive constant. The results of Wang [21-23] states that a fuzzy system 
that would approximate (6) exists. To this end, one would consider the state vector 

)(tx  to be an input to the fuzzy system. The output of the fuzzy system is the control 
u . A possible form of the control rules is: 

 

IF 1x  is (l v) and/or x2 is (l v) … and/or xn is (l v) THEN u is (l v) 
 
 

where (l v) are linguistic values (e.g. positive, negative). These rules constitute the rule 
base for a Mamdani-type FLC. 
In the above formulation, two basic assumptions have been made. They are: 
• The knowledge of the state vector. It is assumed to be available from 

measurements. 
• The control input u is proportional to nx& . This assumption can be justified for a 

large class of second order nonlinear mechanical systems, (Margaloit et al [11] and 
Wang [23]). For instance, here in robotics, it means that the acceleration of links is 
proportional to the input torque.  
These two assumptions represent the basic knowledge about the system which is 

needed to derive the FLC rules. Of course, the exact mathematical model is not needed. 
In the next section we derive a fuzzy logic controller for the tracking control problem 
of robotic systems.   

 

4. ROBOTIC FUZZY TRACKING CONTROL 
 

A robot manipulator is, in general, a highly nonlinear coupled dynamic system and, 
therefore, achieving high performance in trajectory tracking control is a very 
challenging task. In practice, the load may vary while performing different tasks, the 
friction coefficients may change in different configurations and some neglected 
nonlinearities as backlash may appear. Therefore, the control objective is to design a 
stable fuzzy controller so that the link movement follows the desired trajectory in spite 
of such effects.  

Consider a class of robots whose vector of generalized coordinates is donated 

by T
n ][ 21 θθθθ L=  where nii ,,1, L=θ  are the joint parameters. We consider the 

state variables of the robot as )(tθ  and )(tθ& , which are usually available as feedback 

signals. Define the tracking error vectors )(tep  and )(tev  as: 
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)()()( ttte dp θθ −= , and )()()( ttte dv θθ && −=                                       (7) 

where )(tdθ  and )(tdθ&  are vectors of the desired joint position and velocity 

respectively.  
We now apply the approach presented in the previous section in order to find a 

fuzzy controller that would achieve tracking to the robotic system under consideration. 
To this end, let us choose the following Lyapunov function candidate  

)(
2

1 22
vp eeV +=                                                                                         (8) 

Differentiating with respect to time gives 

vivivipii eeeetV && +=)(  

where ],,1[ ni L∈  denotes the joint number. To enforce asymptotic stability, it is 
required to find u so that 

0)( <+= vivivipii eeeetV &&                                                                          (9) 

in some neighborhood of equilibrium of eqn (8). Taking the control u to be 
proportional to ve& , eqn (9) can be rewritten as: 

0)( <+= ivivipii ueeetV α&                                                                    (10) 

where α  is a positive constant, ni ,,2,1 K= . Sufficient  conditions for (10) to hold 
can be stated as follows: 

(a) if, for each ],,1[ ni L∈  pie  and vie  have opposite signs and iu  is zero, 

inequality (10) holds; 
(b) if pie  and vie  are both positive, then (10) will hold if iu  is negative; and 

(c) if pie  and vie  are both negative, then (10) will hold if iu  is positive.  

Using these observations, one can easily obtain the rules listed below in Table 2. 
 

Table 2 Fuzzy rules for the tracking controller.  
 

 

 P N 

P uN uZ 

N uZ uP 
 

In this table, P, N, denote respectively positive, negative errors; uP , uN , and uZ 
are respectively positive, negative and zero control inputs. These rules are simply the 
fuzzy partitions of pe , ve  and u which follow directly from the stabilizing conditions 

of Lyapunov function (8). 
In concluding words, the presented approach transforms classical Lyapunov 

synthesis from the world of exact mathematical quantities to the world of words [10]. 

vie

pie
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This combination provides us with a solid analytical basis from which the rules are 
obtained and justified. 

To complete the design, we must specify the membership functions defining 
the linguistic terms in the rule base. Here, we use the Gaussian membership functions 

2)();()( zax
zpositive eaxGx −−==µ  

);()( znegative axGx −=µ  

)0;()( xGxzero =µ  

where 0>za  and z stands for control variable, the product for "and" and center of 
gravity inferencing [21]. The above four rules can be represented by the following 
equation: 
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This yields the FLC controller 
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In (11), the inputs are the error in position pie  and the error in velocity vie  and 

the output is the control input. So that it may be called fuzzy PD controller. Simplicity 
is evident, since equation (11) contains the Gaussian membership functions, the fuzzy 
rules, fuzzification and defuzzification which implies easy implementation, i.e. the 
FLC is computationally effective. The following remarks are in order: 

• Only three parameters per each degree of freedom (DOF) need to be tuned, 
namely, they are 

iua , 
iepa  and 

ieva . This greatly simplifies the implementation.  

• This controller is inherently bounded since 1)tanh( ≤x . 

• Despite the nonlinearity and coupling effects, only four rules constitute the rule 
base for each joint. 

• It should be noted that this controller is decoupled, i.e. each joint has 
independent control input. 

• Finally, the FLC (11) does not depend on the equations of motion. 
A schematic diagram for the closed-loop control is shown in Fig. 2.  
 

 
 

Figure 2 Configuration of the robotic fuzzy control structure. 
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5. THE EXPERIMENTAL SETUP 

5.1 System Description 

The experimental set-up consists of a geared-drive horizontal robot arm with 2 DOF 
whose rigid links are joined with revolute joints; Fig. 3. The robot has been built at the 
Mechatronics lab, Faculty of Engineering, Assiut University. It is equipped with joint 
position sensors, motor drivers, ADDA interface card, and a host computer. Both links, 
made of aluminum, are actuated by brushed dc motors with gear reduction controlled 
via simple H-bridge drive circuit. The motors operate at rated 24 volt, 2rpm, and 1.5 
Nm. Position information is obtained from analogue angular potentiometers for both 
angles. The potentiometers are one turn (300 degrees) and 1 kΩ. Each potentiometer is 
coupled to the joint motor. Both potentiometers are supplied by± 5 V, so that each one 
has a resolution of 0.033 volt/degree. The velocity of each link is obtained by using the 
position signal and utilizing first order backward differencing technique.  

The feedback signals from the potentiometers and the control signals to the 
motor drives are sent to/from the computer via PCI-DAS6014 ADDA interface card. 
The card has a minimum 200 kS/s conversion rate and has an absolute accuracy of 
8.984 mV when operates at the range ± 10 V. The control program is written in C++ 
and executed at 1 ms sampling rate. Figure 4 shows the closed loop control system.  

 

 
 

Figure 3 Experimental two-link planar arm 
 

 
 

Figure 4 Block diagram of the experimental setup. 
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5.2 The Reference Trajectories  

In order to compare the performance of the two controllers (i.e. PD and FLC) on the 
two-link manipulator we picked three joint space trajectories. The joint space reference 
trajectories for each joint were computed as follows: 
  

1) Linear trajectory with parabolic bends  

The parabolic blend segments are given by [24]: 
2

210)( tctcctb
d ++=θ                                                                              (12) 

The linear segment is given by 

tcctd 43)( +=θ                                                                                      (13) 
 

where )(tb
dθ  and )(tdθ  are the desired angular position at any time t of the parabolic 

segments and linear segment respectively, 3210 ,,, cccc  and 4c  are constants 

determined according to the trajectory constraints.  
 

2) Cubic polynomial trajectory 

   3
3

2
210)( tctctcctd +++=θ                                                                    (14) 

where 210 ,, ccc  and 3c  are constants determined upon the trajectory constraints.  
 

3) Sinusoidal trajectory 

   )sin()( tAtd ωθ =                                                                                    (15) 

where A  and ω  are the amplitude and frequency of motion, respectively.  
 
 

5.3 Performance Evaluation (Error Criteria) 

In order to compare the performance of the various control algorithms quantitatively 
we used two error measures. We computed the 2L  norm of the tracking error of each 
joint in the joint space. These errors are presented in table form in the coming section 
along with plots of the errors themselves.  

Recall that the L2 norm of the tracking error of joint i is  

∫ −=
ft

t

diii dttte
0

2))()((: θθ                                                                    (16) 

where }2,1{∈i  is the joint number. Since data are only sent back at discrete time 

intervals, ktt L1  with constant sampling period nn ttT −=∆ −1  for all n; we discretize 

(16) as 
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where )( jiθ  denotes )()( Tjt iji ∆= θθ . Because T∆  is constant we can include it 

on the left side which yields our definition of the joint space error criteria 
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The maximal error in joint space is given by 

maxerrori )()(max
1

jj dii
kj

θθ −=
≤≤

                                                          (18) 

The above two measures have been also adopted in [25].  
 

6. EXPERIMENTAL RESULTS AND DISCUSSION 
 

In this section, the experiments conducted in this study will be presented. The 
experimental results include all the three trajectories with and without payload mass. 
For the sake of comparison, we ran each controller with the same initial conditions to 
analyze the strength and weakness of each design. To show robustness, the two 
controllers have been initiated with initial position error equal to 10o, i.e. 

Too ]1010[)0( −=θ  and the robot is at rest, i.e. T]00[)0( =θ& .  
The control torque for the proportional-plus-derivative (PD) controller is 

defined by 

)()()( teKteKtu vDpP +=                                                                       (19) 

where PK  and DK  are 22×  positive definite diagonal matrices called the 
proportional and the derivative gain matrices of the controller respectively. A 
traditional problem associated with PD control is that we can not increase the 
controller gains, as much as we want, to improve the controller's performance. When 
the values of the gains exceed their critical values, the system becomes unstable. Thus 
the performance of the PD controller is restricted with the values of these gains.  
In the experiments, the proportional feedback gains of the PD controller were set to 

401 =PK , 302 =PK  and the derivative gains were chosen to be 01.01 =DK , 

005.02 =DK  for the base and elbow links, respectively. They have been selected as 
high as possible without violating the stability of the overall system.  

With respect to the proposed FLC, the control gains were set to 521 == uu aa  

thus ensuring that the control signals computed according to (11) remain in the range 
of ± 10 V which is a hardware requirement. The other control parameters were picked 
as 101 =epa  92 =epa  and 05.01 =eva , 045.02 =eva . We chose these parameters 

experimentally after few trials.  
With the above mentioned gains, the performance of the two controllers has 

been also examined in the presence of payload mass whose weight is 205 grams. For 
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reasons of space, figures related to experiments done in the presence of payload have 
been omitted. The performance criteria i.e. 2L  norm (17) of the tracking error and the 
maximal error (18) for all experiments are tabulated in order. These two criteria are 
accounted for after 2 seconds in order to avoid the transient period and to give more 
insight on the performance at the steady state. In all of the tables to follow, the lower 
value in each column is identified in bold to facilitate comparison.  
 

A. Linear trajectory with parabolic bends  

In this section we present results for a linear trajectory with parabolic blends. The 
desired motion is from zero to 45o with the following constraints: 
Lower parabolic blend segment:  

οο θθ 15,0 == b
i  and sec/0 radi =θ& , where iθ  is the initial angular 

position and bθ  is end-angle of the blend. The desired trajectory according to (12) 
becomes: 

sec42.30,t28.1)( 2 ≤≤= ttb
dθ                                                    (20) 

Higher parabolic blend segment:  
οο θθ 45,30 == f

h  and sec/0 radf =θ&  

where hθ  is the initial angular position of the higher parabolic blend segment, fθ  is 

the final angular position. The desired trajectory according to (12) becomes: 

sec1058.6,t28.1t6.52-83)( 2 ≤≤−+= tth
dθ                           (21) 

Linear segment:  
οθ 15)42.3( ==tb   

The desired trajectory according to (13) will be: 
58.642.3,75.4245.1-)( ≤≤+= tttdθ                                        (22) 

 

The first implemented control algorithm was the PD. The tracking performance for the 
base (joint 1) and elbow link (joint 2) is shown in Fig. 5, 6 and 7. Results of the FLC 
are shown in Fig. 8, 9 and 10. As it can be noticed, faster convergence (lower transient 
period) has been achieved by the FLC. Table 3 summarizes the error criteria mentioned 
in Section 5. Better tracking has been realized by the FLC as it can be noticed.  
 

B. Cubic polynomial trajectory 

In this section we present experimental results for a reference cubic polynomial 
trajectory. The desired motion is from zero to 45o with the following constraints: 

0,45)10(  ,0)0( ===== ifi tt θθθ ο &  and 0=fθ& . 

The desired trajectory according to (14) will be: 
100,09.035.1)( 32 ≤≤−= ttttdθ                                                       (23) 

 

The tracking performance of the PD controller is shown in Fig. 11, 12 and 13. 
Results of the FLC are depicted in Fig. 14, 15 and 16. Faster convergence has been 
realized by the FLC. Table 4 summarizes the tracking performance of the two 
controllers. The FLC exhibits low tracking errors as it can be noticed from Table 4.  
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Figure 5. The actual and desired trajectories (PD controller). 
 

 
 

Figure 6. The phase plots (PD controller). 
 

 
 

Figure 7. The tracking errors (PD controller). 
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Figure 8. The actual and desired trajectories (FLC). 

 
 

Figure 9. The phase plots (FLC). 
 

 
 

Figure 10. The tracking errors (FLC). 

Table 3. Linear trajectory with parabolic blends (after 2 seconds).  
 

Algorithm 

 

1error  maxerror1 
(rad) 

2error  maxerror2 
(rad) 

PD 0.0170 0.0281 0.0269 0.0435 

Fuzzy 0.0124 0.0220 0.0166 0.0368 
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Figure 11. The actual and desired trajectories (PD controller). 

 
 

Figure 12. The phase plots (PD controller). 
 

 
 

Figure 13. The tracking errors (PD controller).  
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Figure 14. The actual and desired trajectories (FLC). 
 

 

Figure 15. The phase plots (FLC). 

 
 

Figure 16. The tracking errors (FLC). 
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Table 4. Cubic polynomial trajectory (after 2 seconds) 
 

Algorithm 

 

1error  maxerror1 
(rad) 

2error  maxerror2 
(rad) 

PD 0.0170 0.0279 0.0272 0.0500 

Fuzzy 0.0123 0.0266 0.0156 0.0373 

 

C. Sinusoidal trajectory 
In this section we present experimental results of the sinusoidal trajectory. The desired 
motion for angle 1 and angle 2 has the following constraints:  
Amplitude1 = 20o, frequency1 = 0.05 rad/sec, and trajectory period = 20 sec 
Amplitude2 = 30o, frequency2 = 0.1 rad/sec, and trajectory period = 20 sec 
Thus, the desired trajectory according to (15) is: 

)205.0(sin9/)(1 ttd ××= ππθ ,                                                           (24) 

)21.0(sin6/)(2 ttd ××= ππθ                                                               (25) 

The tracking performance is shown in Fig. 17, 18 and 19 for the PD controller. The 
figures show very good tracking performance. Figures 20, 21 and 22 show the results 
of the proposed FLC. As it can be noticed, lower transient period has been achieved by 
the FLC. The error criteria tabulated in Table 5 also show that lower tracking errors 
have been realized by the FLC.  
 

 
 

Figure 17. The actual and desired trajectories (PD controller). 
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Figure 18. The phase plots (PD controller).  
 

 
 

Figure 19. The tracking errors (PD controller).  
 

 
 

Figure 20. The actual and desired trajectories (FLC).  
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Figure 21. The phase plots (FLC).  
 
 

 

 
 

Figure 22. The tracking errors (FLC).  
 

Table 5. Sinusoidal Trajectory (after 2 seconds). 
 

Algorithm 

 

1error  maxerror1 
(rad) 

2error  maxerror2 
(rad) 

PD 0.0234 0.0301 0.0402 0.0508 

Fuzzy 0.0182 0.0293 0.0338 0.0470 
 

D. Experiments with payload mass 

This section demonstrates the experimental results of adding a payload mass of 205 
gram at the tip of the elbow link. The two controllers have been examined by 
implementing the three trajectories in the presence of the payload mass. Results are 
tabulated in Table 6, 7 and 8. They show that trajectory tracking has been achieved by 
the two controllers. Better tracking performance has been achieved by the FLC. Also, 
the transient period in case of the FLC is lower than that of the PD controller in all the 
three trajectories (the related figures are not presented here to save space).  
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Table 6. Linear trajectory with parabolic blends (after 2 seconds). 
 

Algorithm 

 

1error  maxerror1 
(rad) 

2error  maxerror2 
(rad) 

PD 0.0166 0.0327 0.0265 0.0496 

Fuzzy 0.0121 0.0246 0.0152 0.0385 
 

Table 7. Cubic trajectory (after 2 seconds).  
 

Algorithm 

 

1error  maxerror1 
(rad) 

2error  maxerror2 
(rad) 

PD 0.0158 0.0276 0.0254 0.0396 

Fuzzy 0.0121 0.0277 0.0161 0.0373 

 
Table 8. Sinusoidal trajectory (after 2 seconds) 

 

Algorithm 

 

1error  maxerror1 
(rad) 

2error  maxerror2 
(rad) 

PD 0.0226 0.0311 0.0416 0.0447 

Fuzzy 0.0171 0.0303 0.0308 0.0460 

 
From the previous figures and tables, the following remarks are in order: 

• It is shown from tables 3, 4, 5, 6, 7, 8 that the overall tracking performance 
with the fuzzy controller is better than that of the PD.  

• When applying initial position error, it has been noticed that the fuzzy 
controller converge faster than the PD controller.  

Summarizing, it can be said that the PD controller provides high performance in 
trajectory tracking and therefore proposed new solutions have necessarily to be 
compared with this form of PID controllers in order to show their effectiveness. The 
proposed FLC surely represents a very valuable approach in this context, taking into 
account the easiness of the implementation. 
  

7. CONCLUSIONS 
Since extracting knowledge from experts in many cases is a tedious task, one would 
assume basic physical information about the system. We have implemented the 
Lyapunov second method to get such basic information and designed a fuzzy control 
law so that the system is stable in the sense of Lyapunov. Thus, greatly simplifies the 
extraction of the fuzzy rules. The important feature of the study is that it has transferred 
the proposed fuzzy PD controller into a closed form relation (hyperbolic tangential 
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function) between the inputs and the output. Relative to other works in this area, the 
number of parameters needs to be tuned is quite small which has greatly facilitated the  
implementation. Unlike the PD controller, the proposed FLC is inherently bounded and 
the upper bound can be selected by suitably adjust its parameters.  

The presented approach provides a systematic step by step procedure for the 
design of fuzzy based feedback controllers for a wide class of second order nonlinear 
systems. The methodology has been applied to the control of a two-link robot. It can 
also be extended to n  number of link robots. Experimental results show that the design 
procedure has been successful in representing the nonlinear dynamics in the control 
context and resulted in a stable closed-loop system. Higher tracking performance and 
faster convergence of errors have been achieved by the proposed FLC relative to the 
conventional PD controller.  
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 تتبع المسار باستخدام التحكم الفازي لذراع آلي ذو درجتين حرية

  أبو المكارم أحمد خليل .د.أ –شرقاوي عبد البديع  .د – محمود محمد عثمان. م

  

وقد تم عمل دراسة مقارنة عملية على  ،هذا البحث يقوم بدراسة تتبع المسار لذراع آلي ذو درجتين حرية

، وقد تم تطبيق طريقة (FLC) والتحكم الفازي (PD)تناسبي التفاضلي نوعين من التحكم هما التحكم ال

، وقد تم اختبار هذين النوعين لتتبع مسار الذراع للتحكم الفازي تعتمد علي تقليل الحسابات بشكل فعال

مسار الخط المستقيم الذي يبدأ وينتهي بمعادلة من الدرجة الثانية : الآلي علي ثلاثة مسارات مختلفة وهي

  .التكعيبية كثيرة الحدود ومسار دالة الجيبالدالة سار وم

وبمقارنة النتائج وجد أن المتحكم الفازي يتميز بنسبة خطأ أقل من المتحكم التناسبي التفاضلي على طول 

أقل من المتحكم  لديه المسار بينما يتميز المتحكم التناسبي التفاضلي بأن أكبر خطأ في تتبع المسار

   .الفازي

ولزيادة التأكد من مدى فاعلية نظام التحكم الفازى المقترح فى هذه الدراسة قمنا بعمل مجموعة من 

وقد أظهرت النتائج . التجارب العملية تم خلالها وضع حمل أضافى على النهاية الطرفية للذراع الآلى

  . الذين شملتهما الدراسة (PD & FLC)حكمين تتقاربا بين الم


