
Journal of Engineering Sciences, Assiut University, Vol. 38, No. 3, pp.749-761, May 2010.

749

 EFFICIENT PUBLIC KEY ENCRYPTION WITH
KEYWORD SEARCH

B. MORGAN
1
, M. HAMADA

2
, AND G. ABDEFADEL

3

1 Bassant.Morgan@live.com
2
 Assistance Professor, Communication and Electronics Department,

 Helwan University
3 Professor, Communication and Electronics Department, Helwan

 University

(Received November 12, 2009 Accepted March 9, 2010).

Public key encryption with key word search (PEKS) enables user Alice

to send a secret key to a server that will enable the server to locate all

encrypted messages containing the keyword, but learn nothing else. In

this paper, we propose a new scheme the Efficient Public Key

Encryption with Keyword Search (EPEKS). Firstly we explained the

construction of new scheme (EPEKS). (EPEKS) doesn’t base on Identity
Based Encryption or pairing which was used in the construction of the

(PEKS) that proposed in Boneh’s paper and other papers; it is based on
Public Key Cryptosystem. Secondly, we proposed provably secure

(EPEKS) scheme that refreshes keywords and processes multiple

keywords. Finally, we described the security of the new scheme by using

Cryptographic algorithm and Hash function.

KEYWORDS: Public key encryption, RSA, Encryption email, Hash

function, Mail server, Refreshing keywords.

1- INTRODUCTION

1.1 Basic concept
The Efficient Public Key Encryption with Keyword Search (EPEKS) realizes the

following scenario. Suppose Alice, who is a manager of a bank, is having a holiday and

away from work. She is equipped with a smart phone that can be used to check her

important emails, in case there is an urgent email that requires her attention. In this

scenario, Alice should be able to select her important emails to be read during her

holiday, but not all of them. Due to the importance of her email, all the emails sent to

her will be encrypted using her public key. This ensures that nobody else, other than

Alice, will be able to retrieve the emails directed to Alice. To enable Alice to select her

important emails, she must send a “hashed value” to the server, so that the server can
use this information to select the emails that Alice wants to read. For instance, assume

that the keyword W is known by both the sender “Bob” and the receiver “Alice”, and a
variable value r will be created by Bob. Both the keyword W and the variable value r

will be conjunct, hashed and sent by Bob. Bob would like to send an email to Alice, he

encrypts his email and the variable value r by using Alice’s Public Key,and appends
the hashed value to the resulting ciphertexts. The ciphertexts and the hashed value will

be saved in Alice’s mail server. When Alice wants to read any urgent emails, she will
send a request to the mail server regarding the new emails. The mail server will reply

http://www.tfhrc.gov/structur/hpc/hpc2/chap5.htm#5.1

B. MORGAN, M. HAMADA, AND G. ABDEFADEL

750

by sending the encrypted variable value r. Alice will decrypt the variable value r by

using her private key, conjunct both the known keyword W and the decrypted variable

value r, and hash them to get the hashed value that will be sent to the mail server to get

the appropriate email.

In short, EPEKS provides a mechanism that allows Alice to have the email

server to extract emails that contains a particular keyword by providing a hashed value

corresponding to the keyword, while the email server doesn’t learn anything else about

the email.

1.2 Related work and our Contributions

There are few papers directly related to PEKS. PEKS was first introduced in Boneh

[1], and later improved in Baek [2], Gu [3], and Khader[4]. All of these works depend

mainly on Pairing Based Cryptography, and Identity Based Encryption IBE.

In [1] the authors presented general scheme called PEKS where Alice gives

trapdoors for the words she wants the gateway to search for. The trapdoors come in the

form of some kind of data that is used to test the existence of keywords within an email

without revealing any other information. In practice, the system will be used over

many rounds. The server which received the trapdoor for a keyword W can store the

trapdoor and use it to learn all future emails with that category. One can assume that

the server cannot memorize trapdoors but this is a very restrictive assumption and not

easy to implement in practice. The paper does not specify what happens if the server

memorizes the trapdoor information related to the keyword sent by Alice, and the

protection against this situation is not discussed. In [1] the authors mentioned that some

search will be done by multiple keywords, but they didn't discussed how one can

formalize the concept of the multiple keywords search, and create the PEKS cipertexts

for multiple keywords. In [2] the authors pointed out two features that were not

covered in [1]. The first one was the ability to search for multiple keywords. The

second one was the requirement of secure channels, for sending trapdoors. However, in

[2] the authors mentioned that there were open problems, such as the design of the

PEKS, and the way to find an efficient and convenient way to refresh keywords. In [3]

the authors presented PEKS based on pairing, and their paper provided a discussion on

removing the secure channels from PEKS, and presented secure channel free PEKS. In

[4] the author mentioned that the security of her new scheme was proved by showing

that the use of Identity Based Encryption IBE has a notion of key privacy, besides to

the modifications which were done to enable multiple keyword search, and remove the

need of the secure channels.

In [1-4] the authors mentioned that Public key encryption with keyword search

PEKS based on the pairing scheme. Constructing a PEKS is related to Identity Based

Encryption IBE, though PEKS seems harder to construct. They showed that PEKS

implies Identity Based Encryption, but the converse is currently an open problem.

In this paper, we discuss the following issues:

1- Construct new scheme EPEKS based on public key cryptosystem, instead of

the PEKS which based on IBE.

2- Give Alice the ability to search using multiple keywords.

3- Prevent the mail server to memorize the keywords by refreshing its database.

4- Neither secure channel nor pairing has been discussed in this paper.

EFFICIENT PUBLIC KEY ENCRYPTION WITH KEYWORD SEARCH… 751

2. PRELIMINARIES

In this section we will go through some definitions, such as cryptography algorithm

and hash function, which will be used further in this document. For more detail see, [7]

2.1 The cryptography algorithm

Public key algorithms rely on one key for encryption and a different but related key for

decryption. These algorithms have the following important characteristic: a) It is

computationally infeasible to determine the decryption key given only knowledge of

the cryptographic and the encryption key. In addition, some algorithms, such as RSA

also exhibit the following characteristic. b) Either of the two related keys can be used

for encryption, with the other used for decryption.

A Public key encryption scheme consists of the following items:

1- Plaintext: This is the readable message or data that is fed into the algorithm as

input.

2- Encryption algorithm: The encryption algorithm performs various

transformations on the plaintext.

3- Public and Private Key: This is a pair of keys that have been selected so that if

one is used for encryption, the other is used for decryption. The exact

transformations performed by the encryption algorithm depend on the public or

private key that is provided as input.

4- Ciphertext: This is the scrambled message produced as output. It depends on

the plaintext and the key. For a given, two different keys will produce two

different ciphertexts.

5- Decryption algorithm: this algorithm accepts the ciphertext and the matching

key and produces the original plaintext.

The essential steps are the following:

1- Each user generates a pair of key to be used for the encryption and decryption

of messages.

2- Each user places one of the two keys in a public register or other accessible

file. This is the public key. The combination key is kept private.

3- If Bob wishes to send a confidential message to Alice, Bob encrypts the

message using Alice's public key.

4- When Alice receives the message, she decrypts it using her private key. No

other recipient can decrypt the message because only Alice knows Alice's

private key.

Let us take a closer look at the essential elements of a public key encryption

scheme. See Fig.1. There is some source A that produces a message in plain text. X =

[X1,X2,…….,XM]. The M elements of X are letters in some finite alphabet. The message is

intended for destination B; B generates a related pair of keys: a public key, KUb, and a

private key KRb, KRb is known only to B, whereas KUb is publicly available and

therefore accessible by A.

With the message X and the encrypted key KUb as input, A forms the

ciphertext

Y = [Y1,Y2,…….YN]

 Y = EKUb (X) (1)

B. MORGAN, M. HAMADA, AND G. ABDEFADEL

752

The intended receiver, in possession of the matching private key, is able to

invert the transformation:

X = DKRb(Y) (2)

Fig.1 The essential elements of a public key encryption scheme

2.2 Hash Functions

A hash value h is generated by a function H of the form

 h = H (M), (3)

where M is a variable-length message and H (M) is the fixed-length hash value. The

hash code is a function of all the bits of message and provides an error-detection

capability: A change to any bit or bits in the message results in a change to the hash

code. The hash value is appended to the message at the source at a time when a

message is assumed or known to be correct. The receiver authenticates that message by

recomputing the hash value. See Fig.2

Fig.2 Compute hash code of message plus secret value

The above figure provides authentication as only A and B share S.

3. EFFICIENT PUBLIC KEY ENCRYPTION WITH KEYWORD
SEARCH

An encrypted email is sent from Bob to Alice. The gateway wants to check whether a

certain keyword exists in an email or not. Nevertheless Alice doesn’t want the email to

EFFICIENT PUBLIC KEY ENCRYPTION WITH KEYWORD SEARCH… 753

be decrypted by anyone except her, not even the gateway. This is a scenario where

efficient public key encryption with keyword search EPEKS is needed.

3.1 Definitions of EPEKS

In our new scheme, three parties called "sender", "receiver", and "server" are involved.

The sender “Bob” is a party that creates and sends encrypted message and variable
value which we call "ciphertext". The server “mail server” is a party that receives the
encrypted message and variable value "ciphertext", stores them in its database, and

performs search upon receiving the request “check for new mail” from the receiver.
The receiver “Alice” is a party that sends the requests “check for new emails” to the
server to get the required data. The below diagram describes the process in a simple

steps. See Fig.3.

Fig.3 The parties of the new scheme EPEKS

A: The encrypted message “email” is sent by Bob.
B: The request “Check for new Emails” is sent by Alice.
C: The required data “new emails” is sent by the mail server.

 3.1.1 The sender party has the following elements:

1- The encrypted message (M).

2- Sender's public key (Alice's public key KUa)

3- The chosen keyword (W), the keyword is known for both the sender and the receiver.

4- Hash function (H).

5- Variable value (r).

 3.1.2 The mail server

Contains a database which consists of the encrypted email Ekua(M), the hashed value

H(W||r), and the encrypted variable value Ekua(r).

 3.1.3 The receiver party has the following elements:

1- Receiver's Private Key (Alice's private key KRa).

2- Hash function (H).

3- The chosen keyword (W).

B. MORGAN, M. HAMADA, AND G. ABDEFADEL

754

3.2 Construction of EPEKS

The below section describes the construction of EPEKS by using both RSA as

cryptography algorithm, and hash function as authentication function. The below

section explain the EPEKS scheme in two stages. The first stage is the encryption

process, and the second stage is the decryption process.

 3.2.1 The Encryption Process

The encryption is the first stage in our scheme, and it is done by the sender “Bob”
under the receiver’s “Alice” public key.
A) The Sender Party
Assumptions:

1- The keyword W is known by both the sender “Bob”, and the receiver “Alice”.
2- By using RSA algorithm, public key KU and private key KR are known by

Bob and Alice.

3- The variable secret value r is chosen and known by “Bob”.
Consider Bob sends an encrypted message to Alice, using her public key KUa.

Let the keyword W. This keyword will be added to the variable value r. Assume r is a

number, such as 10. The variable value r plus the keyword will be hashed by the hash

function.

It is important to hide r from the mail server and from anyone wants to reach

Bob's encrypted message, however Alice must know this variable value so as to get

Bob's encrypted message.

To solve this problem, Bob encrypts r under Alice's public key. Therefore,

Alice will be the only one who can decrypt r and reaches Bob's encrypted message.

Therefore, the three outputs from the encryption stage are: the encrypted

message Ekua(M), the encrypted variable value Ekua(r), and the hashed value H(W||10).

The outputs will act as inputs to Alice’s mail server as shown in Fig.4. Note that r

could be either a number or a word. In this document, r has chosen as number in

section 4, and 5.

So to send a message with keyword W, Bob sends

x1 = EKUa [M]

x2 = H [W || r]

x3 = EKUa [r]

X = x1||x2||x3

X = EKUa [M] || H [W || r] || EKUa [r] (5)

Fig.4 Sender Party

EFFICIENT PUBLIC KEY ENCRYPTION WITH KEYWORD SEARCH… 755

B) Mail Server Party

The mail server receives Eq.5 as input. Assume that the mail server database divided

into four columns: sender column, the encrypted message column, the hashed value

column, and the encrypted variable column. Each value will be directed and located in

its appropriate column (this behavior is done by the mail server itself, and it hasn’t
been discussed in this document). We assumed in this section that the database has

only one data value (one email) related to “Bob” as shown in table 1. In this document
we ignored the mail server application type.

The mail server stores these inputs in its database and gets ready to perform

search upon receiving the request (check for new emails) from the receiver to send her

the encrypted variable value as shown in Figure 5.

Table 1 Mail Server Database

Encrypted Variable

Value

Hashed Values Encrypted

Message

Sender

EKUa [r] H [W || r] EKUa [M] Bob

Fig.5 The communication between the Mail Server and the Receiver

 3.2.2 The Decryption Process

A) The Receiver Party
Alice sends a request to check for her new emails, the mail server replies by sending

the encrypted variable value EKUa [r]. Alice decrypts the r by using her private key DKRa

[r]. She adds the variable value to the known keyword and hashes them by using the

hash function to get the hashed value H [W || r]. Alice sends the hashed value to the

mail server to be compared with the one which was sent by the “Bob” and stored in the
mail server database as shown in Fig.6

B. MORGAN, M. HAMADA, AND G. ABDEFADEL

756

Fig.6 The Decryption Process at the Receiver Party

B) Mail Server Party

The hashed value received by the mail server. The main role for the mail server is

searching for any matching in its database regarding the hashed value. If the server

found the exact hashed value which Alice asked for, the server would send the

encrypted message to Alice, otherwise the mail server would send a message asking

Alice to try again as shown in Fig.7.

Fig.7 Matching process in the Mail Server

Due to the first assumption that the mail server database contains only one data

value (one email), then Alice will receive Bob’s email, and won’t get “Try again”. In
section 4, Fig.7 is more instance than this section.

4- REFRESHING KEYWORDS

Bob wants to send Alice a message with keywords. Bob encrypts the message using

Alice’s public key. He then appends to the resulting ciphertext a list of PEKS
ciphertext of each keyword. This kind of encrypted message may be stored in a server.

Alice can give the server a certain trapdoor that enables the server to test whether one

of the keywords associated with the message is equal to the word of Alice’s choice. As

EFFICIENT PUBLIC KEY ENCRYPTION WITH KEYWORD SEARCH… 757

a natural (not artificial) example, assume that there are three words, say “high priority”,
“normal”, and “less priority” that are frequently used in the system. Now assume that

whenever Alice sends a trapdoor, the server stores it in its memory. Then, at the same

point, the server gets trapdoors for all the keywords used within the system and can

decide which PEKS ciphertext encrypts which keyword without receiving trapdoors

from Alice. Since the storage capacity of the computers are increasing rapidly these

days, even if more keywords are used, say 100, the server can store all trapdoors

generated by the receiver and conduct search by itself.

In [1], the paper didn’t specify what happens if the server memorizes the

trapdoor information related to the keyword sent by Alice, and the protection against

this situation is not discussed. In [2] the authors mentioned a solution is to refresh the

frequently-used keywords by attaching time period information to them. For example,

a keyword W = Urgent now becomes W´ = Urgent || 01/07/04, where 01/07/04 denotes

“1 July 2004”. In the above example, once the receiver releases a trapdoor, the server
can search PEKS ciphertexts that correspond to W´ without receiving a trapdoor for it

until the end of the “day”. In our point of view, the above solution is not efficient and
convenient way to refresh frequently-used keywords.

Imagine that the attacker is the administrator of the mail server which stores all

trapdoors in it. A “day” is a convenient duration for the administrator to keep trying to
get the trapdoors.

Nevertheless, one possible solution for the above problem is to refresh

keywords by adding a variable secret value r to the keyword, and hashed them by using

hash function, besides each message will has its own variable secret value. For

instance, find the below examples.

Example 1: Bob would like to send Alice a message M

a. Assume Bob and Alice have chosen a keyword W = Urgent.

b. Bob encrypts M under Alice’s public key EKUa[M].

c. Bob chooses and encrypts variable secret value r under Alice’s public key
EKUa[r].

d. r and W will be hashed by hash function at Bob’s end H [W ||r].

e. Assume that the attacker is the administrator of the mail server.

The three values EKUa[M], EKUa[r], and H [W ||r] will be sent from Bob to the

mail server and saved into its database as mentioned before in table 1.

Formally, we define security against an active attacker using the following

game between EPEKS and the attacker:

1- If the administrator would like to get r, he needs either Alice’s private key or
he needs to break the hashed value.

2- If the administrator would like to get M, he needs Alice’s private key.
3- If the administrator would like to get W, he needs to break the hashed value.

M, W, r, and the hashed value are unknown values for the administrator. The

administrator will not be able to decrypt r because he doesn’t know Alice’s private
key, besides he doesn’t have the keyword to be added to r to get the hashed value.

Therefore, the administrator will learn nothing about M, W, r, and the hashed

value. Even if he reach one of them, it will be difficult to get the rest.

From the above, we can get that the security of EPEKS system depends on

number of variables. It is too difficult for any attacker to get all the variables at the

same time to reach the encrypted message. One can decide that there is no need for the

B. MORGAN, M. HAMADA, AND G. ABDEFADEL

758

refreshing keywords process, because all the variables are unknown. Despite of the

unknown variables, we would like to get the highest level in security by refreshing the

keywords.

Refreshing keywords has been proved in this document through the below

example.

Example 2: Bob would like to send Alice two messages M1,M2 by using the

same keyword.(The below is the second game between EPEKS and the attacker).

If we assumed that W = Urgent , and r = 10, Bob will send the message normally as

shown in example 1, but if Bob decided to use the same keyword W in the second

message, he will create a new r and this is the trick. Therefore the second hashed value

will be different from the previous one which was mentioned in example 1. (Regarding

the differences in the hash codes, return back to the definition of the Hash Function

Section 2.2).

a. Let W = Urgent, and W is known by Bob and Alice.

b. Bob encrypts M under Alice’s public key EKUa[M].

c. Assume each M has its own r. [r1 = 10 and r2 = 20 for M1 and M2

respectively].

d. Bob chooses and encrypts two variable secret values r1, and r2 under Alice’s
public key EKUa[r1], and EKUa[r2].

e. r1, and r2 will be added to W and hashed by hash function at Bob’s end.
H1 [Urgent ||10], and H2 [Urgent ||20].

f. Assume that the attacker is the administrator of the mail server.

 Bob sent messages to the same receiver Alice, using the same public key,

using the same hash function, and using the same keyword in both messages. If the

administrator would like to get to W, it will be impossible because he doesn’t know
either r1 or r2 to reach the hashed values. In case if he gets either r1 or r2, still W is

unknown to get the hashed value. Due to H1 [Urgent ||10] is not equal to H2 [Urgent

||20], it will be difficult for the administrator to reach the encrypted messages.

Based on the above, Bob can use W as a keyword several time without effecting the

security of the EPEKS scheme. Even if the mail server has the ability to store large

number of hashed values, it won’t be able to memorize the hashed value because they
are not equal to each other due to the variable r. hence the security method of EPEKS

scheme is easy to implement, and difficult to break.

5- HANDLING MULTIPLE KEYWORDS

Multiple Keyword search in the EPEKS is the capability of searching for more than

one word in the mail server database. In [4], the author mentioned that multiple

keyword search in a PEKS is the capability of searching for more than one word either

disjunctively or conjunctively. She continued that in [1] the only way to do this is to

search for each word separately and then do the disjunctive or conjunctive operations

on the result testing algorithm. In her point of view, this technique is impractical when

it comes to a large number of keywords on one conjunctive search request, because

every email is searched for every single keyword. She suggested a new scheme for

conjunctive search called PECK. This scheme substitutes the PEKS algorithm with

PECK algorithm that encrypts a query of keywords. The testing is done with a trapdoor

for each query instead of each word. She said that the scheme is secure against a

EFFICIENT PUBLIC KEY ENCRYPTION WITH KEYWORD SEARCH… 759

chosen keyword search attack (CKA) if an adversary has a low advantage in guessing

the right query of keywords being encrypted.

We presented the above opinion for the related works regarding multiple

keyword search, however, in this document we proposed different mechanism which is

not related to the previous works. The below example explains the multiple keyword

search process.

Example 3: Bob would like to send Alice a message M with two keywords W1, and W2

a. Assume Bob and Alice have chosen two keywords W1 = Urgent W2 =

Important.

b. Bob encrypts M under Alice’s public key EKUa[M].

c. Bob chooses and encrypts variable secret value (r) under Alice’s public key
EKUa[r].[assume r = 10]

d. Each (W) will be added to (r) and hashed by the hash function at Bob’s end. H

[W1 ||r1], and H [W2 ||r1], then the hashed values are H [Urgent ||10], and H [

Important ||10].

 EKUa[M], H [Urgent ||10], H [Important ||10], and EKUa[10] will be saved in

the mail server database. Alice will send a request asking for new emails. The mail

server will reply by sending EKUa[10] to be decrypted under Alice’s Private key at
Alice’s end. Alice will add [10] to [Urgent and Important], and hashed them. If we

assumed that the mail server contains 100 encrypted emails from Bob to Alice, and

Alice would like to search for an important email in a short time. She will send the

hashed values H [Urgent ||10], and H [Important ||10] to reach the encrypted message

quickly.

 Based on the above example, we can prove that EPEKS is convenient to

handle multiple keywords search, besides the keywords could be increased depending

on the known keywords which were assumed between Bob and Alice.

6- SECURITY RELATED TO EPEKS

The Efficient Public Key Encryption with Keyword Search EPEKS scheme based on

variable values which are EKUa[M], EKUa[r], and H [W ||r]. In example 1, and 2 while

presenting the refreshing keywords process, EPEKS proved its security. The proposed

game between EPEKS and the attacker clarified that it is too difficult to break the

system without learning the variable values which were changing each time.

Each encrypted message has its own variable value (r). we can complicate the

system more, to reach high level of security, by asking Bob to change the keywords for

each message. Therefore, each encrypted message will have its own keywords, and

variable (r).

In addition to the above, EPEKS system based on public key cryptosystem,

and hash function. Firstly, public key encryption scheme is vulnerable to a brute force

attack. Public key systems depend on the use of some sort of invertible mathematical

function. The complexity of calculating these functions may not scale linearly with the

number of bits in the key grows more rapidly than that. Thus, the key size must be

large enough to make brute force attack impractical but small enough for practical

encryption and decryption. Another form of attack is to find some way to compute the

private key given the public key. To date, it has not been mathematically proven that

this form of attack is infeasible for a particular public key algorithm. Secondly, the

B. MORGAN, M. HAMADA, AND G. ABDEFADEL

760

hash function, which is one way function, for any given code h, it is computationally

infeasible to find x such that H(x) = h. The strength of a hash function against brute

force attacks depends solely on the length of the hash code produced by the algorithm.

Based on the above, EPEKS scheme depends on the keyword W, the variable r,

hashed value H [W||r], and Alice’s private key. If the attacker would like to reach the
encrypted email, all the values must be known by the intruder, which is impossible to

get all the values at the same time to break the scheme.

7- COMPUTATIONS AND COMPLEXITY

Assume that the public key algorithm is RSA, and hash algorithm is SHA-512. In [5],

test is performed on Pentium III machine. The time required to encrypt the message

approximately is 0.054 seconds, and the hashed value that is related to [6], could be

obtained after 40.2 cycles/byte if we assumed that 1 block = 128 bytes. These

calculations are done at Bob’s side, the encryption stage. At Alice’s side, the time
required for sending the request could be negligible, also at the mail server side, the

time required to send the total encrypted r values could be negligible. Alice receives

the total r to obtain the hashed value; it could be similar to the first hashed value. The

time required to search for the hashed value in the mail server database, depends on the

size of the mail server, and the speed of the processor to execute one instruction, and it

changes due to the processor model. Alice decrypts the message under her private key

in 0.903 seconds.

8- CONCLUSIONS

In this paper we defined EPEKS the Efficient Public Key Encryption with Keyword

Search mechanism. We explained the construction of the EPEKS. Constructing the

EPEKS is related to public key cryptosystem, not Identity Based Encryption IBE

which was used in the rest of PEKS papers. EPEKS is easier to be constructed than

PEKS because any public key encryption algorithm can be used to construct EPEKS.

We discussed the refreshing keywords process, and the multiple keywords search

process. We described the security of the new scheme by using cryptographic

algorithm and hash function.

In short, EPEKS provides high efficiently where any public key algorithm can

be used widely in this scheme, high security where it is forbidden to either the mail

server or any intruder to reach the keywords due to the refreshing process, and the

multiple keywords, and high privacy, because it gives Alice the ability to be the only

one who could search for her encrypted emails by using encrypted keywords.

REFERENCES

1. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, Public Key Encryption

with Keyword Search, IN Eurocrypt 2004, LNCS 3027, pages 506-522, Springer -

Verlag, 2004.

2. J. Baek, R. Naini, and W. Susilo. Public key encryption with keyword search

revisited. Cryptology ePrint Archive, Report 2005/191, 2005.

http://eprint.iacr.org/.

EFFICIENT PUBLIC KEY ENCRYPTION WITH KEYWORD SEARCH… 761

3. C. Gu, Y. Zhu, and Y. Zhang. Efficient Public Key Encryption with Keyword

Search Schemes for pairings. Cryptology ePrint Archive, Report 2006/108, 2006.

http://eprint.iacr.org/.

4. D. Khader. Public Key Encryption with Keyword Search based on K-Resilient

IBE. Cryptology ePrint Archive, Report 2006/358, 2006. http://eprint.iacr.org/.

5. R. Biswas S. Bandyopadhyay, A. Banerjee. A fast implementation of the RSA

algorithm using the GNU MP library. Research 2003. Available:

http://www.cs.ucr.edu/~anirban/index.swf

6. A. Hartikainen, T. Toivanen, and H. Kiljunen. Whirlpool hashing function,

Lappeenranta University of Technology.2006. Available:

http://www.it.lut.fi/kurssit/05-06/Ti5318800/assign/Whirlpool

7. William Stallings, “Cryptography and Network Security”, Principles and Practices,
Third Edition, Prentice Hall, 2003.

اƃتشفير اƂƃفء باƃمفتاح اƃعام وƂلمه اƃبحث

اƅهدف اƅرئيسي من اƅبحث هو بƊاء Ɗظاما Ƅفء ƅلبحث عن Ƅلمات مشفرة داخل اƅرساƅة ااƄƅتروƊية
ƅمثال إذا أراد اƅعام. فعلى سبيل اƅمفتاح اƅظام تشفير باƊ ثر منƄباستخدام أ ƋاءƊن بƄظام يمƊƅمشفرة. ا

) أƅيس (، وأرادت)أƅيس(بدورها اƅمرسل) بوب (إرسال رساƅة مشفرة باستخدام اƅمفتاح اƅعام ƅلمستقبل
ƅة اƅمشفرة مع عدم معرفة أي معلومة أن تعطي اأوƅوية ƅخادم اƅبريد ƅيختبر وجود Ƅلمة " مهم " في اƅرسا

عن محتويات اƅرساƅة. فباستخدام اƊƅظام اƄƅفء ƅتشفير باƅمفتاح اƅعام Ɗستطيع أن Ɗصل إƅى هذا
رض، فاƊƅظام يحتوي على Ɗظام حماية عال وƄفء ƅحماية خصوصيات اƅمستقبل ورسائله من أن اƅغ

تسرق أو تزيف فا يستطيع اƅمتطفل أن يعلم محتوي اƅرساƅة وا اƄƅلمات اƅتي تم استعماƅها من قبل
ƅاء هذا اƊيفية بƄ ىƅبحث إƅا في بداية هذا اƊقد تطرقƅ ة.أواƅرساƅى اƅلوصول إƅ مستقبلƅظام باستخدام اƊ

Ɗظرية اƅمفتاح اƅعام وƅم يتم بƊاءƋ بطريقة اأبحاث اأخرى. فطريقة بƊاء هذا اƊƅظام مختلفة تمام
ااختاف عن باقي اأبحاث.ثاƊيا ƅقد عرضƊا بطريقة أمƊة Ƅيفية تجديد اƄƅلمات اƅمراد اƅبحث عƊها و

أسلوب اأمان اƅمتبع باستخدام Ƅل من Ƅيفية استخدام أƄثر من Ƅلمة في اƅبحث. و أخيرا ƅقد تم شرح
 Ɗظرية اƅمفتاح اƅعام وداƅة اƅمزج.

http://www.cs.ucr.edu/~anirban/index.swf
http://www.it.lut.fi/kurssit/05-06/Ti5318800/assign/Whirlpool

