• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Issue No 6
Issue No 4
Issue No 3
Issue No 2
Issue No 1
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Mohamed, M., Hashem, A., AbdelSamea, M. (2010). DATA MINING TECHNIQUES FOR MISSING VALUE IMPUTATION. JES. Journal of Engineering Sciences, 38(No 4), 1001-1012. doi: 10.21608/jesaun.2010.125559
Marghny H. Mohamed; Abdel-Rahiem A. Hashem; M. M. AbdelSamea. "DATA MINING TECHNIQUES FOR MISSING VALUE IMPUTATION". JES. Journal of Engineering Sciences, 38, No 4, 2010, 1001-1012. doi: 10.21608/jesaun.2010.125559
Mohamed, M., Hashem, A., AbdelSamea, M. (2010). 'DATA MINING TECHNIQUES FOR MISSING VALUE IMPUTATION', JES. Journal of Engineering Sciences, 38(No 4), pp. 1001-1012. doi: 10.21608/jesaun.2010.125559
Mohamed, M., Hashem, A., AbdelSamea, M. DATA MINING TECHNIQUES FOR MISSING VALUE IMPUTATION. JES. Journal of Engineering Sciences, 2010; 38(No 4): 1001-1012. doi: 10.21608/jesaun.2010.125559

DATA MINING TECHNIQUES FOR MISSING VALUE IMPUTATION

Article 9, Volume 38, No 4, July and August 2010, Page 1001-1012  XML PDF (668.38 K)
Document Type: Research Paper
DOI: 10.21608/jesaun.2010.125559
View on SCiNiTO View on SCiNiTO
Authors
Marghny H. Mohamed1; Abdel-Rahiem A. Hashem2; M. M. AbdelSamea2
1Faculty of computers and Information, Assiut University, Egypt
2Faculty of Science Assiut University, Egypt
Abstract
Imputation is a class of procedures that aims to fill the values which are missed with estimated ones. These methods involve replacing missing values with estimated ones based on some information available in the data set. K-means has been successful in finding missing values for several data sets available such as Bupa, Breast Cancer, Pima, etc. In this paper, we introduce an efficient imputation methods based K-means to treat missing data. Our proposed methods give higher accuracy than the one on given by classical K-means. Experimental results hold on a variety class of data sets.
Keywords
Imputation; Clustering; K-mean
Main Subjects
Electrical Engineering, Computer Engineering and Electrical power and machines engineering.
Statistics
Article View: 130
PDF Download: 446
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.