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The finite element variational formulation of the impedance boundary
condition (IBC) is applied to solve two-dimensional eddy current
problems, especially at high frequencies in electrical machines. This
formulation is used to compute the ac resistance and the self inductance
per unit length of both a reverse ‘T’ slot-embedded conductors and a
simple slot-embedded conductor. The proposed IBC formulation is very
efficient, because it does not change the sparsity of the finite element
global matrix as well as it has minimized the computing cost such as
computer memory and central processing unit time. The obtained results
of both the finite element method (FEM) and the IBC formulation are
compared with published results.
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1. INTRODUCTION

The main problem when treating high frequency phenomena with the finite element
method (FEM) is predominant presence of skin and proximity effects. As a solution to
this problem, adaptive mesh generation has been propsed in [1]. But the use of this
technique is limited only to quite low frequencies. A successful technique for handling
this phenomenon then is the use of the surface impedance concept allowing the
extraction from the domain of study of conducting parts [2,3]. Thus the number of
nodes of the problem is reduced and the system to be solved becomes smaller.

For eddy current problems, the IBC formulation is attractive because of the
elimination of the computation within the conducting medium and because of the
avoidance of thin elements when the skin depth is small, such as in high frequency
problems. This topic has therefore been of considerable interest to many publishers [1-
16].

In [4], the IBC integral equation formulation was derived for solving the two-
dimensional (2D) eddy current problem of a conducting cylinder placed in a time-
harmonic field. The surface impedance method for 2D and 3D eddy current problems
was improved in [6] by using more accurate values of impedance based on the special
variation of fields on the surface of conducting regions. An economic three-
dimensional (3-D) method using the surface impedance technique [7] was used for
solving 3-D coupled electromagnetic and thermal problems. A 2-D finite element
formulation of the IBC, based on the variational approach for solving eddy current
problems, especially at high frequencies was developed by the author [9]. Based on
this formulation, a new boundary elemental matrix (IBC matrix) representing the
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general Neumann boundary condition was developed. This formulation was very
efficient, because it does not change the spasity of the finite element global matrix. In
addition it has greatly reduced the computing cost such as computer memory and
central processing unit time. In [11], the author has successfully applied the developed
IBC formulation [9] to compute the 2D eddy current in a solid circular conductor
carrying an alternating current. Moreover, the formulation has been used to compute
the parameters per unit length of shielded and multiconductor power cables.

In this paper, a two-dimensional of the finite element method (FEM) and the
developed FE- formulation of the impedance boundary condition (IBC) based on the
variational approach are applied to compute the ac resistance and the self inductance
per unit length of both a reverse ‘T’ slot-embedded conductors and a simple slot-
embedded conductor. The obtained results of the FEM are compared to published
results [14]. Therefore, the obtained IBC results are compared to the results of the
tested FEM.

2. THE FIELD EQUATIONS

In terms of the time-harmonic magnetic vector potential A, the differential equation
which governs the two-dimensional eddy current problem is given by

where Js is the unknown time harmonic source current density and |, o and o are the
permeability, angular frequency and conductivity respectively. The total current
density in the conductor is given by

J=J.+J,=J,— JooA (2)
Where J, is the eddy current density and both J; and A are unknowns and must be
found. For our own problem, the boundary conditions shown in Fig. 1, are defined as :

A= A(X,y) on C (3)
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Where » is the propagation constant and is defined as

¥ =4 Jouoc (6)

3. THE IBC CONCEPT

For a time- harmonic electromagnetic field incident on a conducting linear medium,
the tangential components of electric field E and the magnetic field H inside the
conductor and on its surface are related to each other [1], except at (or near) the
corners, by

N<xE =ZAx (A xH) @)
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Fig. 1 solution domain for 2D eddy current problem

where n is the unit vector out of the conductor and a time dependent is assumed. The
surface impedance, Z,, of an infinite conducting half space plane is given by

1+ ]
Zs = P ®
where s the electromagnetic penetration depth and is defined as
5= |2 ©)
U

After rearranging Egs. (7) through (8) , we obtain an equation similar to Eq.
(5). This means that the IBC approximation takes the same form of the general
Neumann boundary condition.

4. THE FE-IBC FORMULATIONS

4.1 The Fe-Variational Formulation

The formulation and solution of eddy current problems has been traditionally regarded
as one of the more difficult areas of electromagnetic. Using the integro-differential
approach [14], both the magnetic vector potential (m.v.p.) A and the source current
density Js are treated as unknowns and the classical diffusion Eq. (1) is complemented
with Eq. (2)

=1 +1, :”Jsds— jonAds (10)

where 1, I, and I, are the total current, the total source current and the total eddy
current respectively. Hence Js can be expressed as

| jwo
J.=—+ Ads 11
~+——]f 1)
Substituting Eq. (11) into Eq. (1), we can obtain

1, 9 . . O |
;(V A)—ja)oA+ ngIIAdS——E (12)
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The only unknown in Eq. (12) is magnetic vector potential (m.v.p.) A. It can
be shown that the m.v.p., A that satisfies Egs. (2), (3) and (12), also minimizes the
functional F(A) as

F(A)= IRI [%{g_/:jz : (%/;Jz}

. ) Jjoo
+i5 A _(a ; === [[ Ads) Aldxdy

The variational principle on which we can base the derivation of the elemental
equations is

oF
—_— =0 (14)
[aAm Jmi,j,k

The solution region R, is shown in Fig. 1, is subdivided into triangular
elements. After minimization of the functional F(A) (Eq.13), we can finally obtain the
following set elemental matrix as

e e e e (e) ) e e
[SI"[A”+[TT[AI"- [T [CI AT =[1T° (15
where the elemental matrices [S]®, [T]® and [1]® are given in the Appendix. The
elemental matrix [C]® consists of identical rows made up of Newton-cotes quadrature
weight [18]. The elemental matrix [Tp]® is obtained in [11] and is given in the
Appendix. By extending Eq. (15) to each of the triangular subdivisions shown in Fig.
1, the final global matrix equations are obtained in the form

[STEAL+[TI[AT-[To] [CHAT =[] (16)

4.2 The Ibc Formulation

It can be shown that the m.v.p., A that satisfies Eqgs. (2) through (4) and Eq. (12), also
minimizes the functional F(A) as

F(a) = H[ﬂ%f {%ﬂ

+I —)/Azd%
R 2
Substituting from Eq. (12) by the current density Js into Eq. (17), we obtain

1)(16A)" (oAY
"=l [y{(yaxj {3) }
+j“2”’A2—(a ";’“ﬂ Ads)AJdxdy (18)

1 a2
+jR57A dC,
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The variational principle on which we can base the derivation of the elemental
equations is

(ij =0 (19)
aAm m=i, j k

After minimization, the functional F(A) (Eq. 18), the following set of the
elemental equations can be finally obtained as :

SI'(AT (T (AT Tl T (AT 1] (AT 01 @

The matrix [TB ](e) is the IBC matrix which is obtained by the author [9] as

11
3 %

[TB] =lijyjg 3 O (21)
0 0 (0]

Where ljj is the boundary segment length as shown in Fig. 1. By extending Eq.

(20) to each of the triangular subdivisions shown in Fig. 1, the final global matrix
equations are obtained in the form

[SIAT-[TTTAT -[To] [CI[A] +[Te] [A] =[1] (22)

5. PARAMETERS COMPUTATION

The electrical parameters, i.e. the ac resistance and the self inductance per unit length
for slot-embedded conductors can be obtained using the following methods:

5.1 The Energy Method

The energy-related quantities such as loss density and stored magnetic energy are used
to compute the ac resistance and the self inductance per unit length. The loss density
for a conductor is given by the function u(x, y) as

J (X%, 2
u(x, y) = M (23)
O

where the total current density may be obtained as

..
J(X,y)=Js+Je(X,y)=§—JwA(X,y) (24)
The total losses per unit length are obtained as
U= Hu(x, y)dxdy (25)
The ac-dc loss ratio can be computed as

i U
ac—dclossratio= — (26)

dc

where the dc losses per unit length of the conductor are given by
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2
Uy, = 1R, =L (27)
C C Ga
where a is the conductor area. The ac losses per unit length of the conductor are given
by
2
Uu = | | | R (28)

Where R is the ac resistance per unit length. The self inductance of a conductor per
unit length can be obtained from

1 2
W—§L|I| (29)

where W is the magnetic stored energy which it can be obtained per unit length of a
conductor as

W =Rl {] A )~ 3,1 y)ouy] @

Using Eqgns. (24), (29) and (30) , the self inductance per unit length can be obtained as

- # Re[Js j A(x, y)dxdy] (31)

5.2 The Voltage Drop

The source current density for each conductor can be obtained as

J. =-=
- = (32)

where a is the cross-sectional area of the conductor, and the current density Js is
obtained from Eq. (1). The voltage drop per unit length of the conductor is obtained as

VvV — Jg (33)
O

The impedance per unit length of the conductor can be computed as

Z = v (34)

1
The real part of Z is the ac resistance per unit length and the imaginary part is the
reactance per unit length

6. NUMERICAL RESULTS

In this paper, both the FE-formulation and the IBC formulation are applied to compute
the electrical parameters, i.e. the ac resistanc and the self inductance per unit length for
both a reverse ‘T’ slot-embedded conductor and a simple slot-embedded conductor.

6.1 THE REVERSE ‘T’ SLOT-EMBEDDED CONDUCTOR

In this paper, the results of the ac resistance in a reverse ‘T’ slot-embedded conductor
is computed using the developed FE program based on the FE-variational formulation
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and is tested by the published results [14]. The FE formulation gives accurate results
specially at low frequencies. Then, the results of the present IBC formulation for this
model are compared to the results of the tested FE-formulation. This FE-model is
discretized into 216 triangular elements and 135 nodes and the boundary conditions
(Egs. (3) and (4)) are also considered as shown in Fig. 2. The FE program solved 128
m.v.p. unknowns for this model. The obtained results of the ratio Rac/Rpc are plotted
against Dwight’s parameter D, and compared to the published results [14]. These
results are found to be in good agreement with the published results as shown in Fig. 3.

Therefore, the present results of the IBC model are compared to the results of
the tested FE-program based on the FE-variational formulation. The IBC model shown
in Fig. 4 is discretized into 100 triangular elements and 87 nodes and the boundary
conditions (Egs. (3) - (5)) are also considerd as shown in Fig.4..The discretization of
this model is limited to only one layer inside the conductor besides layers that represent
the free space external region. The developed IBC computer program solved 49 m.v.p.
unknowns for this model. The results of the ac resistance, R and the self inductance L
per meter which are obtained using the developed IBC formulation were found to be in
good agreement with the FE results especially at high frequencies as shown in Table 1
and Table 2. A comparison of computational requirements for the present IBC
formulation and the FE-formulation are shown in Table 3. The obtained results are
carried out with the total current | equal to 1 A.
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Fig. 2. Reverse ‘T’ Slot-embedded conductor (FEM model)
(geometry and dimensions are in millimeters)
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Fig. 3 AC-DC resistance ratio versus Dwight’s parameter D for reverse ‘T’ Slot-
embedded conductor. ( Rpc = 0.731108 x 10“Q/m, b= ;“_f )
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Fig. 4. Reverse ‘T’ Slot-embedded conductor (IBC model)
(geometry and dimensions are in millimeters)

Table 1 Results of R (Q /m) for the reverse ‘T’ slot-embedded conductor

f(cls) 60 100 200 300

FEM 1.78X10* 1.8X10* 1.81X10* 2.414X10™

Present IBC 1.95X10* 1.98X10™ 2.11X10* 2.32X10*
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Table 2 Results of L (H /m) for the reverse ‘T’ slot-embedded conductor

f (c/s) 60 100 200 300
FEM 3.16X10° 1.28x10° 3.82x10° 3.09x10°
Present IBC 2.5X10°® 1.53X10° 3.25X10° 2.91x10°

Table 3 Computational requirements for the present IBC formulation for the
reverse ‘T’ slot-embedded conductor

No. of elements | No. of nodes No. of unknouns
FEM 216 135 128
Present IBC 100 87 49

6.2 A Simple Slot-Embedded Conductor

The FEM model is discretized into 180 triangular elements and 112 nodes and the
boundary conditions (Eqgns. (3) and (4)) are also considered as shown in Fig.5a. The FE
program solved 105 m.v.p. unknowns for this model. The present IBC results for the
IBC model shown in Fig. 5b are compared to the results of the tested FE-program
based on the FE-formulation.

The IBC model shown in Fig. 5b is discretized into 104 triangular
elements and 86 nodes and the boundary conditions (Eqgs (3) -(5)) are also
considered (Fig.5b).The discretization of this model is limited to only one layer
inside the conductor besides layers that represent the free space external region.
The developed IBC computer program solved 52 m.v.p. unknowns for this model.
The results of the resistance, R and the self inductance L per meter which are
obtained using the developed IBC formulation were found to be in close agreement
with the FE results especially at high frequencies as shown in Table 4 and Table 5.
A comparison of computational requirements for the present IBC formulation and
the FE-formulation are shown in Table 6. The obtained results are carried out with
the total current | equal to 1 A.

Table 4 Results of R (2 /m) for a simple slot-embedded conductor

f (c/s) 60 100 200 300
FEM 2.34x10* 2.4x10* 2.46x10* 2.486x10*
Present IBC 2.53x10* 2.63x10* 2.71x10* 2.82x10™

Table 5 Results of L (H /m) for a simple slot-embedded conductor

f (c/s) 60 100 200 300
FEM 7.48x10° 3.41x10°8 1.21x10°% 6.536x10°
Present IBC 7.92x10°8 3.77x10°% 1.83x10° 6.21x10°

Table 6 Computational requirements for the present IBC formulation for a
simple slot-embedded conductor

No. of elements No. of nodes No. of unknouns
FEM 180 112 105
Present IBC 104 86 52
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Fig. 5 Simple slot-embedded conductor
(aeometry and dimensions are in millimeters)

7. CONCLUSIONS

The present work proposes an application of the finite element variational formulation
of the impedance boundary condition (IBC) for solving two-dimensional eddy current
problems, especially at high frequencies in electrical machines. Both the finite element
method (FEM) and the IBC formulation are used to compute the ac resistance and the
self inductance per unit length of both a reverse ‘T’ slot-embedded conductors and a
simple slot-embedded conductor. The main advantage of this IBC formulation is that
the FE-global matrix is still banded and symmetric. Moreover, this formulation has
greatly reduced the number of unknowns of the problem. So, the formulation has
minimized the computing cost such as computer memory and central processing unit
time, since it has greatly reduced the number of nodes and the number of unknowns of
the problem. The obtained results of both the finite element method (FEM) and IBC
formulation are compared to published results.
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9. Appendix

The previously published elemental matrices [S]® , [T]®, [I]® are given in [15] as

01 (bb +dd;) (bb;+dd;) (bb +dd,)
5] -l b +dd) bp+dd) b +dd)

(b +dd;) (bb;+dd;) (b +d.d,)

Where

bi :(yj _yk) ) di :(Xk _Xj)
and so on. where A is the area of the triangular element, (¢) shown in Fig. 1, the
remaining constants of matrix [S]® are given in [15]. The remaining matrices are given
as :

©  jooh

[T] 15

e = )
S R
N PR

and

-2

The elemental matrix [Tp] is given in [11], where a is the conductor area.
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