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The finite element variational formulation of the impedance boundary 

condition (IBC) is applied to solve two-dimensional eddy current 

problems, especially at high frequencies in electrical machines. This 

formulation is used to compute the ac resistance and the self inductance 

per unit length of both a reverse ‘T’ slot-embedded conductors and a 

simple slot-embedded conductor.  The proposed IBC formulation is very 

efficient, because it does not change the sparsity of the finite element 

global matrix as well as it has minimized the computing cost such as 

computer memory and central processing unit time. The obtained results 

of both the finite element method (FEM) and the IBC formulation are 

compared with published results. 

KEYWORDS: eddy currents, FE-formulation, IBC formulation, slot-

embedded conductor 

 

1. INTRODUCTION 

The main problem when treating high frequency phenomena with the finite element 

method (FEM) is predominant presence of skin and proximity effects. As a solution to 

this problem, adaptive mesh generation has been propsed in [1]. But the use of this 

technique is limited only to quite low frequencies.  A successful technique for handling 

this phenomenon then is the use of the surface impedance concept allowing the 

extraction from the domain of study of conducting parts [2,3]. Thus the number of 

nodes of the problem is reduced and the system to be solved becomes smaller. 

For eddy current problems, the IBC formulation is attractive because of the 

elimination of the computation within the conducting medium and because of the 

avoidance of thin elements when the skin depth is small, such as in high frequency 

problems. This topic has therefore been of considerable interest to many publishers [1-

16]. 

In [4], the IBC integral equation formulation was derived for solving the two-

dimensional (2D) eddy current problem of a conducting cylinder placed in a time-

harmonic field. The surface impedance method for 2D and 3D eddy current problems 

was improved in [6] by using more accurate values of impedance based on the special 

variation of fields on the surface of conducting regions. An economic three-

dimensional (3-D) method using the surface impedance technique [7] was used for 

solving 3-D coupled electromagnetic and thermal problems. A 2-D finite element 

formulation of the IBC, based on the variational approach for solving   eddy current 

problems, especially at high frequencies was developed by the author [9]. Based on 

this formulation, a new boundary elemental matrix (IBC matrix) representing the 
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general Neumann boundary condition was developed. This formulation was very 

efficient, because it does not change the spasity of the finite element global matrix. In 

addition it has greatly reduced the computing cost such as computer memory and 

central processing unit time. In [11], the author has successfully applied the developed 

IBC formulation [9] to compute the 2D eddy current in a solid circular conductor 

carrying an alternating current. Moreover, the formulation has been used to compute 

the parameters per unit length of shielded and multiconductor power cables. 

In this paper, a two-dimensional of the finite element method (FEM) and the 

developed FE- formulation of the impedance boundary condition (IBC) based on the 

variational approach are applied to compute the ac resistance and the self inductance 

per unit length of both a reverse ‘T’ slot-embedded conductors and a simple slot-

embedded conductor. The obtained results of the FEM are compared to published 

results [14]. Therefore, the obtained IBC results are compared to the results of the 

tested FEM. 
 

2. THE FIELD EQUATIONS 

In terms of the time-harmonic magnetic vector potential A, the differential equation 

which governs the two-dimensional eddy current problem is given by 

AjJA s 


 )(
1 2

                                                                               )1( 

where  Js is the unknown time harmonic source current density and µ, ω and σ are the 

permeability, angular frequency and conductivity respectively. The total current 

density in the conductor is given by 

AjJJJJ ses                                                                                  ) 2 (                                           

Where eJ  is the eddy current density and both  Js  and A are unknowns and must be 

found. For our own problem, the boundary conditions shown in Fig. 1, are defined as :  
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Where     is   the propagation constant and is defined as  

 j                                                                                                    (6) 

 

3. THE IBC CONCEPT 

For  a time- harmonic  electromagnetic field incident on a conducting linear medium, 

the tangential components of  electric field E and the magnetic field  H inside the 

conductor and on its surface are related to each other [1], except at (or near) the 

corners, by 
 

)(ˆ HnnZEn s                                                                        (7( 
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Fig. 1 solution domain for 2D eddy current problem 

 

where n is the unit vector out of the conductor and a time dependent is assumed. The 

surface impedance, sZ , of an infinite conducting half space plane is given by 



j
Zs




1
                                                                                   (8(       

where  is the electromagnetic penetration depth and is defined as 




2
                                                                                                 )9(                                                                                  

After rearranging Eqs. (7) through (8) , we obtain an equation similar to Eq. 

(5). This means that the IBC approximation takes the same form of the general 

Neumann boundary condition. 

 

4. THE FE-IBC FORMULATIONS 

4.1 The Fe-Variational Formulation  

The formulation and solution of eddy current problems has been traditionally regarded 

as one of the more difficult areas of electromagnetic.  Using the integro-differential 

approach [14], both the magnetic vector potential (m.v.p.) A and the source current 

density Js are treated as unknowns and the classical diffusion Eq. (1) is complemented 

with Eq. (2) 

  AdsjdsJIII ses          )                                                                  10(                

where I, Is, and Ie are the total current, the total source current and the total eddy 

current respectively. Hence Js can be expressed as     

 Ads
a

j

a

I
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                                                                                      )11 (               

Substituting  Eq. (11) into Eq. (1),  we can obtain 
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The only unknown in Eq. (12) is magnetic vector potential (m.v.p.) A. It can 

be shown that the m.v.p., A that satisfies Eqs. (2), (3) and (12), also minimizes the 

functional F(A) as 

dxdyAAds
a
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The variational principle on which we can base the derivation of the elemental 

equations is   

0
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The solution region R, is shown in Fig. 1, is subdivided into triangular 

elements. After minimization of the functional F(A) (Eq.13), we can finally obtain the 

following set elemental matrix as  
 

][][][][][][][][
)()()()()()()(

IACTATAS
eeeeeeee
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where the elemental matrices [S]
(e)

, [T]
(e)

 and  [I]
(e) 

are given in the Appendix. The 

elemental matrix [C]
(e)

 consists of identical rows made up of Newton-cotes quadrature 

weight [18]. The elemental matrix [TD]
(e)

 is obtained in [11] and is given in the 

Appendix. By extending Eq. (15) to each of the triangular subdivisions shown in Fig. 

1, the final global matrix equations are obtained in the form  
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4.2 The Ibc Formulation  

It can be shown that the m.v.p., A that satisfies Eqs. (2) through (4) and Eq. (12), also 

minimizes the functional F(A) as 

 

3
2

2

22

2

1

]
2

1
[)(

dCA

dxdyAJAj

y

A

x

A
AF

R

s

R


























































                                                                         ) 17(                      

Substituting from Eq. (12) by the current density Js into Eq. (17),  we obtain 
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The variational principle on which we can base the derivation of the elemental 

equations is   

  0
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After minimization, the functional F(A) (Eq. 18), the following set of the 

elemental equations can be finally obtained as :  
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Where ijl is the boundary segment length as shown in Fig. 1. By extending Eq. 

(20) to each of the triangular subdivisions shown in Fig. 1, the final global matrix 

equations are obtained in the form  
 

][][][][][][][][][][ IATACTATAS BD
       (22)   

 

5. PARAMETERS COMPUTATION 

The electrical parameters, i.e. the ac resistance and the self inductance per unit length 

for   slot-embedded conductors can be obtained using the following methods: 
 

5.1 The Energy Method 

The energy-related quantities such as loss density and stored magnetic energy are used 

to compute the ac resistance and the self inductance per unit length. The loss density 

for a conductor is given by the function u(x, y) as 



2
),(

),(
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yxu                                                                                )23 (                                                                     

where the total current density may be obtained as 

),(),(),( yxAj
a

I
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The total losses per unit length are obtained as 

 dxdyyxuU ),(                                                                                     ( 25(                                                                  

The ac-dc loss ratio can be computed as 

dcU

U
ratiolossdcac                                                                        ) 26(  

where the dc losses per unit length of the conductor are given by 
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a

I
RIU dcdc



2

2
                                                                                    ) 27(                                                                           

where a is the conductor area. The ac losses per unit length of the conductor are given 

by 

RIU
2

                                                                                                      )28 (                                                                                            

Where R is the ac resistance per unit length. The self inductance of a conductor per 

unit length can be obtained from 

2

2

1
ILW                                                                                                  )29 (  

where W is the magnetic stored energy which it can be obtained per unit length of a 

conductor as 
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Using Eqns. (24), (29) and (30) , the self inductance  per unit length can be obtained as 

]),(Re[
1 *
2  dxdyyxAJ
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5.2 The Voltage Drop  

The source current density for each conductor can be obtained as 

a

I
J s

s                                                                                                               ) 32(                               

where a is the cross-sectional area of the conductor, and the current density Js is 

obtained from Eq. (1). The voltage drop per unit length of the conductor is obtained as 


sJ

V                                                                                                                )33(  

The impedance per unit length of the conductor can be computed as 

I

V
Z                                             )                                                                      34 (                                                                                         

The real part of  Z is the ac resistance per unit length and the imaginary part is the 

reactance   per unit length 
            

6. NUMERICAL RESULTS 

In this paper, both the FE-formulation and the IBC formulation are applied to compute 

the electrical parameters, i.e. the ac resistanc and the self inductance  per unit length for 

both a reverse ‘T’ slot-embedded conductor and a simple slot-embedded conductor. 
 

6.1 THE REVERSE ‘T’ SLOT-EMBEDDED CONDUCTOR 

In this paper, the results of the ac resistance in a reverse ‘T’ slot-embedded conductor 

is computed using the developed FE program based on the FE-variational formulation 
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and is tested by the published results [14]. The FE formulation gives accurate results 

specially at low frequencies. Then, the results of the present IBC formulation for this 

model are compared to the results of the tested FE-formulation. This FE-model is 

discretized into 216 triangular elements and 135 nodes and the boundary conditions 

(Eqs. (3) and (4)) are also considered as shown in Fig. 2. The FE program solved 128 

m.v.p. unknowns for this model. The obtained results of the ratio RAC/RDC  are plotted 

against Dwight’s parameter D, and compared to the published results [14]. These 

results are found to be in good agreement with the published results as shown in Fig. 3.  

Therefore, the present results of the IBC model are compared to the results of 

the tested FE-program based on the FE-variational formulation. The IBC model shown 

in Fig. 4 is discretized into 100 triangular elements and 87 nodes and the boundary 

conditions (Eqs. (3) - (5)) are also considerd as shown in Fig.4..The discretization of 

this model is limited to only one layer inside the conductor besides layers that represent 

the free space external region. The developed IBC computer program solved 49 m.v.p. 

unknowns for this model. The results of the ac resistance, R and the self inductance L 

per meter which are obtained using the developed IBC formulation were found to be in 

good agreement with the FE results especially at high frequencies as shown in Table 1 

and Table 2. A comparison of computational requirements for the present IBC 

formulation and the FE-formulation are shown in Table 3. The obtained results are 

carried out with the total current I equal to 1 A.    

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Reverse ‘T’ Slot-embedded conductor (FEM model) 

(geometry and dimensions are in millimeters)  
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Fig. 4. Reverse ‘T’ Slot-embedded conductor (IBC model) 

(geometry and dimensions are in millimeters)  

 

 

A
n

A





 

IRON 

AIR 

 
Fig. 3 AC-DC resistance ratio versus Dwight’s parameter D for reverse ‘T’ Slot-
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Table 1 Results of R (Ω /m) for the reverse ‘T’ slot-embedded conductor 

      f (c/s) 60 100 200 300 

      FEM 1.78X10
-4

 1.8X10
-4

 1.81X10
-4

 2.414X10
-4

 

Present IBC 1.95X10
-4

 1.98X10
-4

 2.11X10
-4

 2.32X10
-4
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Table 2 Results of L (H /m) for the reverse ‘T’ slot-embedded conductor 

f (c/s) 60 100 200 300 

      FEM 3.16X10
-8

 1.28x10
-8

 3.82x10
-9

 3.09x10
-9

 

Present IBC 2.5X10
-8

 1.53X10
-8

 3.25X10
-9

 2.91x10
-9

 

 

Table 3 Computational requirements for the present IBC formulation  for the 

reverse ‘T’ slot-embedded conductor 

 No. of elements No. of nodes No. of unknouns 
.      FEM            216            135               128 

    Present IBC            100             87             49 

 

6.2 A Simple Slot-Embedded Conductor 

The FEM model is discretized into 180 triangular elements and 112 nodes and the 

boundary conditions (Eqns. (3) and (4)) are also considered as shown in Fig.5a. The FE 

program solved 105 m.v.p. unknowns for this model. The present IBC results for the 

IBC model shown in Fig. 5b are compared to the results of the tested FE-program 

based on the FE-formulation.  

The IBC model shown in Fig. 5b is discretized into  104 triangular 

elements and 86 nodes and the boundary conditions (Eqs (3) -(5)) are also 

considered (Fig.5b).The discretization of this model is limited to only one layer 

inside the conductor besides layers that represent the free space external region. 

The developed IBC computer program solved 52 m.v.p. unknowns for this model. 

The results of the resistance, R and the self inductance L per meter which are 

obtained using the developed IBC formulation were found to be in close agreement 

with the FE results especially at high frequencies as shown in Table 4 and Table 5. 

A comparison of computational requirements for the present IBC formulation and 

the FE-formulation are shown in Table 6. The obtained results are carried out with 

the total current I equal to 1 A.  
 

Table 4 Results of R (Ω /m) for a simple slot-embedded conductor 

f (c/s) 60 100 200 300 

       FEM 2.34x10
-4

 2.4x10
-4

 2.46x10
-4

 2.486x10
-4

 

Present IBC 2.53x10
-4

 2.63x10
-4

 2.71x10
-4

 2.82x10
-4

 

 

Table 5 Results of L (H /m) for a simple slot-embedded conductor 

f (c/s) 60 100 200 300 

       FEM 7.48x10
-8

 3.41x10
-8

 1.21x10
-8

 6.536x10
-9

 

Present IBC 7.92x10
-8

 3.77x10
-8

 1.83x10
-8

 6.21x10
-9

 

 
Table 6 Computational requirements for the present IBC formulation for a 

simple slot-embedded conductor 

 No. of elements No. of nodes No. of unknouns 

      FEM             180            112            105 

   Present IBC             104             86             52 
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7. CONCLUSIONS 

The present work proposes an application of the finite element variational formulation 

of the impedance boundary condition (IBC) for solving two-dimensional eddy current 

problems, especially at high frequencies in electrical machines. Both the finite element 

method (FEM) and the IBC formulation are used to compute the ac resistance and the 

self inductance per unit length of both a reverse ‘T’ slot-embedded conductors and a 

simple slot-embedded conductor.  The main advantage of this IBC formulation is that 

the FE-global matrix is still banded and symmetric. Moreover, this formulation has 

greatly reduced the number of unknowns of the problem. So, the formulation has 

minimized the computing cost such as computer memory and central processing unit 

time, since it has greatly reduced the number of nodes and the number of unknowns of 

the problem.  The obtained results of both the finite element method (FEM) and IBC 

formulation are compared to published results. 
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9. Appendix 

The previously published elemental matrices [S]
(e)

 , [T]
(e)

, [I]
(e)

 are given in [15] as   

 

























)()()(

)()()(

)()()(

4

1)(

kkkkjkjkikik

kjkjjjjjijij

kikijijiiiii
e

ddbbddbbddbb

ddbbddbbddbb

ddbbddbbddbb

S


                                                                            

Where 

      )(,)( jkikji xxdyyb   

and so on. where ∆ is the area of the triangular element, (e) shown in Fig. 1, the 

remaining constants of matrix [S]
(e)

 are given in [15]. The remaining matrices are given 

as : 




















211

121

112

12
][

)( j
T

e

 

and 

 



















1

1

1

3

)( J
I

e  

The elemental matrix [TD] is given in [11], where a is the conductor area. 

 

 

حساب عناصر الموصلات المغموسة في مجرة الآلات الكهربية باستخدام طريقة 
 العناصر المحدودة مع الممانعة الحدودية

 أحمد محمد الصاوي محمد

 مصر -جامعة المنيا  –كلية الهندسة 

(   IBCن و ذلك بتمثيل الممانعة الحدودية )ي بعديـيعرض البحث تطبيقا لطريقة العناصر المحدودة ف  -ملخص 
كدالة في متجه الجهد المغناطيسي على سطح موصل يحمل تيار كهربي متردد و ذلك لحل مسائل التيارات 
الدوامية فى الآلات الكهربية خاصة في الترددات العالية. و قد أمكن استخدام هذه الطريقة في حساب المقاومات و 

للموصلات المغموسة في مجرة الآلات الكهربية ذات التيار    ( Inductive reactanceالمفاعلات الحثية )
المتردد. و قد أثبتت الطريقة كفاءتها خاصة عند الترددات العالية و ذلك بمقارنة النتائج المحسوبة بها بنتائج 

يل للمسألة المطلوب حلها منشورة في أبحاث سابقة. و تتميز هذه  الطريقة بأنها تخفض بدرجة كبيرة عدد المجاه
بالإضافة إلى ان المصفوفة العامة تظل فى حالة تماثل مما ادى الى تخفيض كبير فى زمن الحساب و كذلك فى 

 (.  FEMسعة الحاسب  اذا ما قورنت بطريقة العناصر المحدودة التقليدية ) 

 


