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In the present study a mixing index was proposeatdier to characterize
mixing processes of non Newtonian fluids. The appawiscosity in a
mixing tank equipped with helical ribbon impelleasvcomputed using a
CFD package. The symmetry plane of the mixing taa& divided into

sixteen zones where an average apparent dimensnescosity was
calculated to each of these zones from which angnixidex was evaluated.
The mixing index showed to increase with impelletational speed,
impeller/tank diameter ratio and showed to be daéfddy the rheological
parameters of the agitated fluid. The computed ddtéhe mixing index
were correlated as a function of impeller/tank déer ratio, impeller

rotational speed and rheological parameters. Thepmsed correlation
deviated from computed data by a maximum deviatiagrb0%.

INTRODUCTION

Mixing of fluids contributes a large extent in thprocesses including chemical
industry. The fluid may be either Newtonian or néewtonian according to the
process characteristics. Extensive works had beee tb study and nearly reach a
complete characterization of mixing of Newtonianids while comparably scarce
work was carried out regarding non-Newtonian fluids

The main parameters studied for characterizatiomiging processes were the
effect of impeller type, direction of impeller raan, ratio of impeller diameter to tank
diameter and impeller rotational speed on the ngixirocesses [1- 3], also the effect of
rheological properties and flow conditions on thixing process was considered by
[4-7].

Using numerical solution of the governing equati@®<.2] carried out their
work to find the velocity distribution in the mixgntank and tried to reach a solution
for the power consumed and the quality of mixinghia tank.

Another approach was proposed by following thedflparticles inside the tank either
visually [13] or by tracing radio active particld4] and then by measuring the
trajectory of the followed particle estimating tipeality of mixing.

A mixing index was proposed [15] to asses mixingcpsses for Newtonian
and non-Newtonian fluids based on velocity measergsnfrom LDV. The main
problem was that the data yielded same index fterdnt processes indicating that the
index was a function of impeller characteristicd ant a function of fluid properties.

Therefore, from the previous survey it is found ttithere were no
investigations that studied mixing performance of#Newtonian fluids based on the
fluid properties of such complex fluids.
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The present study discusses the performance ofhguigf non-Newtonian
fluids using a mixing index based on the apparéstosity of the fluid at different
regions in the mixing tank and then calculatingiratex that represents the mixing
performance as a function of impeller/tank diamedéip, impeller rotational speed and
rheological properties of the fluid being mixed.

MATHEMATICAL FORMULATION

Governing Equations

The basic equations solved in a mixing calculatoa those describing the flow of
fluids, namely, conservation of mass, momentum anergy. Since mixing usually
involves liquids, the fluid can be considered inpoessible. The flow is governed by
the simplified set of continuity and Navier-Stolezgiations:

Continuity:

duy

(1)

e
Momentum:
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Here uis the velocity in the ith directiop,is the density, p is the pressure and
v is the kienematic viscosity of the fluid.

The previous equations are supplemented with datigd equations in order
to account for the non-Newtonian character of thelf The equations were solved
assuming laminar flow conditions.

REPRESENTATION OF THE IMPELLER

The mixing system used in the present work is shiowig (1). The mixing vessel is a
flat-bottomed cylindrical tank with a diameter (T) m and the fluid height in the tank
(H) was equal to the tank diameter. Helical ribbompellers with diameters (D) of
0.33, 0.42, 0.50 and 0.60 m were centrally postiibfor each run. The blade width of
the impeller was 0.08 m, blade thickness was 0.00Bme number of blades of the
impeller were two blades. The off-bottom cleararatio (C/T) was set to a value of
0.33 where C is the off-bottom clearance. The sha# rotating with speeds from 100
rpm to 700 rpm.
In the present work, non-Newtonian liquid (Carboxghyl cellulose (CMC))

is used and described by the power law moﬂglk(j_;}”, having density of 1000 kg/

m°where k and n are the rheological fluid parameters.

The multiple reference frames (MRF) model [16], wasd in the simulations.
A rotating frame is used for the region containthg rotating components while a
stationary frame is used for regions that areataty. In the rotating frame containing
the impeller, the impeller is at rest. In the statiry frame containing the tank walls,
the walls are at rest.
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Fig. (1). Grid used for computations.

The steady-state 3D flow field generated by théchktibbon impeller in the
laminar flow regime was found by solving the cormaéipn of mass and momentum
equations. Also a pre-processor (Gambit 2.0, Fllen) built-in MIXSIM (software
for the simulations) was used to discretize thevfttomain with a tetrahedral mesh as
shown in Fig. (1). In general, the density of céllsa computational grid needs to be
fine enough to capture the flow details, so in otdecapture the boundary layer flow
details, a very refined mesh density was used enetitire tank wall and the rotating
impeller.
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SOLUTION OF THE GOVERNING EQUATIONS

In a CFD solution, the flow domain is broken upoirg number of contiguous non

overlapping cells enveloping the whole domain &g fvariables are sought at the

centers of each of these cells. The governing angtre therefore discritized and

linearized resulting in a set of coupled linearealgic equations which are then solved
using iterative schemes.

The Mixing Index:

CFD computations were carried out on a circulak taindiameter 1 m and the height
of the fluid in the tank was equal to the tank deédéen. The agitation of the fluid was
maintained by a helical ribbon impeller. The diagnedf the impeller was varied to
cover D/T ratios of 0.33, 0.42, 0.5, and 0.6. Tieotogical parameters of the fluid i.e.
k and n values used are shown in table (1):

Table 1: Valuesof k and n used in the present work

k N

0.3 0.5
0.3 0.65
0.3 0.8
0.5 0.5
0.5 0.65
0.5 0.8

After computations were initiated and steady stets reached (indicated by
errors in velocities computed to be <*J@alculations for the mixing index proposed
as follows:

The symmetry plane showing the apparent viscosgtrildution was divided

into a grid of 16 cells, (I, II, I, ..... , m=163s shown in Fig. (2):
1 2 3 4 5
I Il 1l
6 7 8 9 10
m

Fig.(2). Grid at the symmetry plane.
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The average dimensionless apparent viscogi}yfdr cell | was calculated by:

g = [':.u._—p.:}:+':Xp.:f—#,-}:ﬂgh—#E}:+':ga5—#._}::| 3)
(A gy _#minf}]

Where pmax and pyin are the maximum and minimum values of the dimernegs

apparent viscosity at the nodes of each cell. Therghe mixing index for the whole

grid was calculated from:

I =

: L)t 4
:I }] (4)

(16 LEgrid max ~Mgrid min

Where grig max and pgrig min @re the maximum and minimum valuesyofor the whole
grid, n is the flow behavior index of the fluid.

The number of cells was increased up to 128 celisthe result showed that
only the values of the index changed but all tleads were the same. Therefore the
grid in the present work has 16 cells, Since thkies of the index do not by
themselves have a physical interpretation for thenm phenomenon, all the work was
carried out using the 16 cell grid for simplicityrposes.

Results and Discussions:

In a mixing process the main duty of an impelletoigransfer the kienetic energy to
the fluid in order to create a velocity field thatable to move the fluid in a manner
that agitates the fluid in the mixing tank. Thefpenance of agitation is dependent on
the fluid properties (rheological properties in e&ead non-Newtonian fluids) and the
design of the impeller. The helical ribbon impelethe most popular in case of fluids
with shear thinning properties or high viscositywtienian fluids. For this reason this
study will focus on studying the performance ofi¢adlribbon impeller agitating non-
Newtonian fluid where the impeller diameter anddiproperties were varied.

Figure (3a) shows the velocity distribution in aximg tank in which the fluid
being agitated by an impeller of D/T ratio = 0.8% rotating speed was 300 rpm and
the fluid having k = 0.3 and n = 0.5. From thisufig it can be seen that high fluid
velocities exist near the impeller along the tartklevpoor mixing zones exist away
from impeller in other regions in the tank. Thethigpward circulation in the impeller
region due to the rotation of the impeller is cawetl by a poor downward circulation
in the region near the walls which indicates higdsigpation of the kienetic energy in
the zone between the impeller and the walls.

Figure (3b) shows the apparent viscosity distriyutior the same conditions
existing in Fig. (3a). Fig. (3b) reflects the finds from Fig.(3a) where it shows a
lower viscosity region around the impeller and higgcosity region in the middle of
the tank where a slightly lower viscosity regionséx near the walls of the mixing tank
which indicates that the fluid in the middle regiogtween the impeller and the walls
moves as a bulk in some manner.
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Fig(3). Distribution of velocity (a) and apparemaosity (b) in the mixing tank, D/T =

0.33, N=300rpm, k=0.3and n =0.5.
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Fig(4). Distribution of velocity (a) and appareimaosity (b) in the mixing tank, D/T =
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Figures (4a and 4b) show the velocity distributimmd apparent viscosity
distribution respectively for the same fluid prajes and impeller diameter as in Fig.
(3) but the rotational speed was increased to pA0 Fig. (4) shows the same velocity
and viscosity pattern as in Fig. (3) but the ddfere between the two figures is the
velocity and viscosity values. Due to the increab¢he rotational speed it is shown
that the velocities in the moving parts are incedawhile the viscosity for the same
regions was decreased.

Figures (5a and 5b) show the velocity distributimmd apparent viscosity
distribution respectively for the same fluid prajes and rotational speed of Fig. (4)
but the D/T was approximately doubled to have aealf 0.6. Fig. (5a) shows that the
velocities in the mixing tank is well distributenl the region between the impeller and
tank walls while a poor velocity distribution regi@xists at the core of the helical
ribbon impeller. Examining Fig. (5a) shows thatetarcirculation loops exist in the
mixing tank, one at the bottom, another at the ieiddhd the third at the top of the
impeller. This indicates that the fluid is agitatul the fluid does not move as a bulk
in this region.
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Fig(5). Distribution of velocity (a) and apparemaosity (b) in the mixing tank, D/T =
0.6, N =500 rpm, k=0.3and n=0.5.

Figure (5b) shows that the viscosity is lower @& blottom and at the top of the
impeller. Examining Fig. (5a) indicates that thp &md the bottom circulation is more
efficient than the circulation in the middle regiohthe impeller. Also the viscosity
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distribution shows the existence of high viscoségion at the core of the impeller and
at the corners of the mixing tank which indicatesnxirculation in these regions.

The previous figures showed the effect of changfregimpeller diameter and
the rotational speed on the agitation of the finidhe mixing tank. In order to show
the effect of fluid properties on the agitation.eT$éame geometry and rotational speed
as those of Fig. (5) were used but the fluid pripemwere changed to k = 0.5 and n =
0.5. The results of velocity and apparent viscodiggributions are shown respectively
in Figs (6a) and (6b).
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Fig(6). Distribution of velocity (a) and apparemaosity (b) in the mixing tank, D/T =
0.6, N=500rpm, k=0.5and n=0.5.

Figure (6a) shows the velocity distribution whichsithe same pattern as that
in Fig. (5a) yet the values of velocities are lovwelFig.(6a) compared to that in Fig.
(5a) and the poor mixing region in the core of impeller is extended to include
regions close to the impeller blades. The viscogityes in Fig.(6b) are nearly double
the values in Fig.(5b) which explains the spreagair velocity regions found in Fig.
(6a).

From the previous it is found that increasing tlational speed of the
impeller increases the magnitude of the velocitythe pattern of agitation is the same.
To extend the range of mixing in a mixing tanksthequires the increase of impeller
diameter to export kienetic energy to wider regionghe mixing tank. Also it was
found that increasing the apparent viscosity of flaed by altering its rheological
parameters reflects more strongly on the velocigyribution pattern rather than the
viscosity distribution pattern.

The previous results showed qualitative judgmentagitation of a non-
Newtonian fluid which can be accepted from a redegvoint of view but not
practically applicable.
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Therefore it is required to find a figure that eefis the performance of any
agitation process by means of simple method olutation. The method was explained
earlier and the results will be shown in the folilogvcontext.

Wide range of operating conditions were examinedemal fluid rheological
parameters were considered and different D/T ratiese used to examine the
effectiveness of using the proposed apparent \itydoslex.

Figure (7) shows the mixing index calculated fdiugd of k = 0.3 and n = 0.5
at different impeller diameters and rotational sisedhe figure shows that the mixing
index increases by increasing the rotational sjreedlinear fashion. Also at the same
rotational speed the mixing index is increased figraasing the impeller diameter
which is in accordance with previous qualitativedings from Figs. (3-5).
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Fig(7). Mixing index at different rotating speedslampeller diameters.

Figure (8) shows the mixing index for a fluid hayik = 0.5 and n = 0.5 at
different rotational speeds and impeller diameténge same trend was found as in Fig.
(7) but when comparing the values of the indexs itlear that increasing the k value
(which indicates the increase of the apparent gisgdor the same n value) decreases
the value of the mixing index which agrees withlgatve findings from Figs. (5, 6).

Furthermore an empirical correlation based on athdalculated to relate the
mixing index with operating conditions was propogethe form:

mn

I =[0.045(0.5N)%/T + 0.4]"? (5)

It must be noted that the above correlation isiagple for the present design
conditions as (C/T), no of blades, blade width bladle thickness.

This correlation was compared to the calculatedcesland the results are
shown in Fig.(9). From Fig. (9) it is shown thaketleorrelation agrees with the
calculated values of the mixing index with maximdaviation of +50%.
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Fig(8). Mixing index at different rotating speedsldampeller diameters.
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CONCLUSIONS

Based on the present work it is found that it isgtlale to use CFD to obtain qualitative
and quantitative judgment on mixing processes. Jimmntitative data in the form of

mixing index is more useful when comparing betwdlem mixing performance of

different impeller speeds, different impeller tonkadiameters or different fluid’s

rheological properties. Also it was possible togo®e an empirical correlation in order
to calculate the mixing index as a function of ilgreto tank diameter ratio and

impeller speed for design or comparison purposks, dorrelation predicts the

computed values of the mixing index with maximurwidgon of £50%.



APPARENT VISCOSITY MIXING INDEX USING CFD ... 837

NOMENCLATURE
C: Off bottom clearanc [m]
D: Impeller diamete [m]
H: Water height in the tai [m]
I: Mixing index [-]
k: Consistenc [Pa.
N: Impeller rotating spe [roml
n: Flow behavior inde [-]
p: Pressur [Pa.s
t: Time [s]
T: Tank diamete [m]
u: Velocity [m/s]
X: Distanct [m]
GREEK SYMBOLS
VI Viscosity [Pa.s
U Average dimensionless apparent visce [Pa.s
v Kienematic viscosil Im2.sY
0 Density [kg.m|
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