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A technique combining the plane wave spectrum method and the T-matrix
method is used to calculate the internal and scattered electric field
intensities of a homogeneous dielectric spheroidal object illuminated with
a polarized shaped beam. This technique is modified and used here for
spheroidal objects of size parameter and elongation larger than those
previously demonstrated in the literature. The beam is modeled using an
angular spectrum of plane waves. The beam is physically realizable,
satisfies Maxwell's equations and arbitrarily focused. Also the beam can
be shifted far a away from the surface of the object. Scattered and internal
intensities are calculated using the T-matrix method. The behavior of the
internal and scattered field intensities of different spheroidal objects
shows that a near resonant mode(s) can be excited in a spheroid
illuminated with a focused and shifted beam that propagates in a direction
perpendicular to the elongation direction of the spheroid. The axial ratio
(ratio of the radii of the spheroid) is a more critical parameter for the
internal and scattered field distributions in the case of an oblate spheroid
as compared with a prolate case. This technique can be used to calculate
the internal and scattered fields of an inhomogeneous layered spheroid
illuminated with an arbitrary shaped electromagnetic beam.

[. INTRODUCTION

Small particles in nature such as soil particles, rain droplets, ice crystals, red blood
cells and aerosols in the atmosphere, have irregular nonspherical shapes. Such particles
can be approximated by spheroids [1]. Light scattering by spheroids is important in
areas such as particle characterization [2], combustion, modeling nonlinear optical
processes in droplets [3], aerosol detection in the atmosphere and environment [4], and
biological diagnostics [5]. Other applications in nondestructive optical measurements
on blood, human dermis, and soil particles need to record the light reflected from, or
transmitted through those substances [2], [5]. In such cases scattering of a spheroidal
object by a shaped electromagnetic beam, such as Gaussian beam is encountered.

The scattering of either an electromagnetic plane wave or a shaped
electromagnetic beam by a spheroidal object is investigated by many researchers.
Asano and Yamamoto [1] used the spheroidal expansion method to calculate the
scattered intensity of a homogeneous spheroid (prolate or oblate) of small elongation
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and size parameter (size parameter is the ratio of the circumference of the object to the
wavelength) illuminated with a plane wave. Barton et al. [6, 7] investigated the
scattering of an electromagnetic Gaussian beam by a small size parameter (< 15) and
slightly elongated oblate spheroid. They used spheroidal expansion of the scalar
potential of the incident fields along with the boundary matching method. They used
up to fifth order correction to model the beam. Their technique gives an ill-conditioned
system of equations in case of modeling a focused shifted beam scattered by a large
size parameter spheroid. Although their mathematical model of the Gaussian beam
does not satisfy Maxwell's equations good results were obtained because the minimum
spot size of the beam was much larger than the incident wavelength and the axial ratio
of the spheroid was close to 1. Xu et al. [8] provided an approach to express the beam-
shape coefficients of an on-axis Gaussian beam in spheroidal coordinates. Han and Wu
[9, 10] used the separation of variables method to obtain the angular scattering
intensities of a homogeneous spheroidal particle illuminated with a Gaussian beam.
Their method is limited to spheroids of size parameter < 30.

Barber and Hill [11] employed the T-matrix method to compute the scattered
and internal intensities of axisymmetric particles such as cylinders, spheroids, and
spheres of small size parameters illuminated by a plane wave. Mishchenko et al. [12]
modified the convergence condition of the T-matrix method to enhance the calculation
processes for spheroids of larger size parameters illuminated with a plane wave. They
calculated only the scattered intensities. Doicu and Wriedt [13] used the plane wave
spectrum method with the extended boundary condition method to calculate the
angular scattering of the far field of a tightly focused Gaussian beam scattered by a
spheroid of a small size parameter (= 20). They employed the vector potential with
higher-order corrections of the equivalent electromagnetic field. They obtained the
beam shape coefficients with some errors.

The method we present here uses the angular spectrum of plane waves[14] to
model a lowest order (TEM,) Gaussian beam, and the T-matrix method [11, 15-18] to
compute the electric fields inside and outside the scatterer. This combination technique
was used previously [16, 17] to calculate only the far-field scattered by a small size
parameter spheroidal object illuminated with an on-axis Gaussian beam. Also they
computed the far fields for a shifted small size parameter spheroid immersed in the
beam's waist. Their manipulation included re-formulation and re-orientation processes
which led to complicated computations. Here we extent and reformulate the
combination technique to calculate the internal and scattered intensities of a
homogeneous spheroidal object (either a prolate or an oblate) of size parameter and
elongation larger than those illustrated in the literature. The spheroid is illuminated
with an arbitrarily on- or off-axis polarized and physically realizable Gaussian beam.
The vector nature of the beam that satisfies Maxwell’s equations is considered. The
beam can be focused into a small spot size (= a wavelength) shifted to a larger
distances outside the object. The method can be used to model any beams including
those beams having shapes deviated from their analytical representation such as those
generated in laboratories (e.g. most Gaussian beams which generated experimentally
have reducing oscillating tails). Moreover our technique is separable (irrelevant to the
other formulation of the T-matrix [15-18]) which means that the formulation of the T-
matrix of the scatterer is manipulated separately from the incident field modeling. The
advantage of our separable technique is that: first, it deals with any physically
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realizable shaped beams, second for any particular object the elements of the T-matrix
are calculated only once and then it can be used for different illuminations. The
extension of the technique includes many parameters such as size parameter,
orientation and axial ratio of the spheroid, and the shift and focusing of the beam.
These parameters and their effects on the field distributions are considered. The
convergence criteria are investigated for each computed case. The combination
technique of the plane wave spectrum and the T-matrix method is applicable to a
variety of objects of different shapes such as layered spheroids illuminated with an
arbitrary electromagnetic beam.

Mathematical and numerical analysis are given in section Il. Numerical results
are presented in section I1l. Conclusions are outlined in section IV.

II. NUMERICAL MODELS AND MATHEMATICAL ANALYSIS

A homogeneous spheroidal object centered at the origin of a Cartesian coordinate
system (x,y,z) is considered. The radius of the spheroid along the x-axis is b whereas
that along the z-axis is a. The spheroid is oriented with respect to the coordinate system
such that its semimajor axis dimension is along the x-axis (oblate case) or along the z-
axis (prolate case). The axial ratio is p=a/b (p < I for oblate case and p > I for prolate
case). The object is illuminated with a lowest order (TEM,,) monochromatic Gaussian
beam (or of other different shapes) propagating in the z-direction as shown in Fig. 1.
The beam is polarized in the xz-plane. Therefore the total incident electric field vector
E'™ can be expressed by[14],

EM™ (XY, 2)=EX°(X.Y.2)ix+EZ (X, ¥, 2)iz, 1)
where i, and i, are unit vectors in the x and z directions, respectively. The time
variation e’ is omitted. We consider first the spot size of the beam at the origin, then
model the beam at an arbitrary located focal point at (X,,Y.,2,). We choose a Gaussian
beam in which the spatial distribution of the amplitude of the transverse complex
component E, is a Gaussian, i.e.

»
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Fig. 1. A spheroidal object centered at the origin of a Cartesian coordinate system
(x,y,2) of radii a, and b along the z- and x-axis respectively illuminated with a
focused shifted Gaussian beam of a spot size w..
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where E, is the amplitude of the beam at its center, i=V-1 and k=2x/. is the wave
number; A is the wavelength. The beam spot size and the radius of phase front at a
distance z are w(z) and R(z) respectively. The parameter z4 is the Rayleigh length. The
minimum spot size w, of the beam occurs at z=0. Also at z=0 the wave front is planar:
R(z)=. After many mathematical processes and manipulations (details are specified in
Reference [14]) the incident beam can be expressed in Vector Spherical Harmonics
(VSH) as[14],

Einc(kr): PZ%% Dimn [aémn M%mn(”)*‘ act)mn Mcl)mn(kr)+ bémn N%mn(kr)*‘ b(t)mn N%mn(kr)]
(3)

where P, and Dy, are normalization factors. The m and n are integer numbers denoting
to the azimuthal mode number and the mode index respectively. The vectors M*(kr),
and N*(kr) are the VVSH of the first kind; and r is the distance from the field point to the
origin. The letters e and o stand for even and odd modes respectively. The coefficients
a'smn, @'omns Dmny @nd bl are the expansion coefficients of the incident field. The
method can be applied to model any physically realizable beams which can be
expressed as a sum of homogeneous plane waves even those beams having non-
analytical representation. The experimentally generated Gaussian beams are commonly
having reducing oscillating tails. Although such beams have non-analytical
representations they can be modeled using our technique.

The internal electric fields E™ and scattered electric fields E° of a
homogeneous arbitrary dielectric object illuminated with a Gaussian beam using the T-
matrix method are [11],

EMK)=p?x>ct . ML (k)+c! .M. (k)+d! NI . (k)+d' .N!.. (k)

emn emn omn omn emn emn omn omn

&)
E3(kr)=p?Y Y Do [fdmn M S0 + fmn M 30 () +08mn N 30 (k1) + 950 N 3ian (K1,
(5)

where kK=rkV ¢, ; &, is the complex dielectric constant of the scatterer relative to that of
the surrounding medium. The c'..,c'..,d' .andd'.. are the expansion
emn omn emn omn

coefficients of the internal electric field. The functions M ®(kr) and N*(kr)are the

V/SH of the third kind (outgoing wave functions), and f,, ., f,.,d:.,and g;,, are

the scattered field expansion coefficients. In case of an axisymmetric object m=m. The
internal and the scattered fields expansion coefficients for each azimuthal mode, m, are
given by [11],

] « i
b, d, g, d,

where the A- and B-matrix are block diagonal matrices depending on the properties of
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the scatterer. Each block is a full matrix of dimension nxn. The indices o and p are
denoting to emn, omn, and emn, omn' respectively. From the matrix systems in (6) the
scattered field expansion coefficients can be obtained in terms of those of the incident
field as [f] = -[T][a], where [T] = [B][A] " is the T-matrix. In case of a spherical objects
the T-matrix is a diagonal matrix and its elements are given by T,=B,/A,. For
spheroidal objects the T-matrix is a block diagonal matrix and its elements are given by

Tip=2q [B]q [AE). Each element in A and B matrices is a surface integral over the

surface of the scatterer which is calculated numerically. Note that the incident and
scattered fields coefficients are expanded up to m and n whereas the internal field
coefficients are expanded to m and n[11]. Calculating the elements of the T-matrix for
spheroids requires tests for convergence and accuracy.

[lIl. NUMERICAL RESULTS

For a certain spheroidal object the T-matrix is calculated once and then it can be used
for different illuminations. The equivalent spherical volume concept is considered to
calculate the size parameter x; of the spheroid [11] that i Xspneroig=Xsphere(@/D)>. The
size parameter of the spheroid is 2za/Z, where 2a is the axis dimension of the spheroid
along the z-axis. To check and confirm that the calculated internal and scattered fields
are accurate we visually compared our results of the internal intensities distributions
with those in Refs. [6, 7] and intensities (internal and scattered) distributions with those
in Refs. [11], [14]. Also we compared computed results for angular scattering
intensities with those illustrated in Refs. [9-12, 14]. No differences were noticed. When
we used the software published in Ref. [19] good agreements were found only for
prolate cases of size parameters < 30 either with our results or with the results of other
references. For example we calculated the angular scattering intensity of a spheroid of
a size parameter x=55.930186, refractive index m=1.3 and an axial ratio p=0.9. The
spheroid is centered at the origin and illuminated with a plane wave of a wavelength
A=1.064um propagating into the z-direction. Figure 2 shows the comparison between
our results and those from Refs. [12] and [19]. Other computations for different cases
(not shown here) illustrated the same observations.
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Fig. 2. Angular scattering intensity for an oblate spheroid of p=0.9, x=55.930186,
and m=1.3 illuminated with a plane wave of A=1.064um computed using our technique
and those in Refs. [12] and [19].
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To illustrate the capabilities of our technique the intensities E.E distribution
inside (E=E™) and outside (E=E™+E®) for different homogenous lossless dielectric
oblate and prolate objects (in free space) are computed. First, we considered an oblate
spheroid of an axial ratio p=0.7143 and a refractive index m=1.36. The size parameter
of the oblate at the operated wavelength is x,=33.79244991 (corresponding to an
equivalent spherical volume size parameter of 42.289501) and its radii are
a=5.72244251 um and b=8.01141952 um. The spheroid is illuminated with a focused
Gaussian beam of a spot size w,=2um and wavelength 1=1.064 um. The beam
propagates along the z-direction. The focal point of the beam is located at the center of
the oblate (x,=Y,=2,=0), i.e. on-axis illumination. The contour plots of the computed
intensity distribution on the xz-plane are shown in Fig. 3(a). Second, we considered a
prolate spheroid of the same radii as the oblate spheroid but with interchanging each
other i.e. a=8.01141952 um, and b=5.72244251 um. The prolate axial ratio is p=1.4
and its size parameter is X,= 47.3094299 (corresponding to an equivalent spherical
volume size parameter of 37.8032393). All other parameters are the same as those of
Fig. 3(a). The contour plot of the computed results is shown in Fig. 3(b). Figure 3
illustrates that the beam gets more focusing if it is scattered by a prolate spheroid
whereas it becomes wider at its waist if it is scattered by an oblate spheroid. Moreover
spots of high intensities in the internal and backscattered zones, and beam
deformations are more pronounced in the oblate case. This phenomenon has important
implications in studying the nonlinear processes in dielectric spheroids.

1.8

0. 5 _ 155 e
x/b x/a
(a) (b)

Fig. 3. Contour plots of the electric field intensity distributions in the x-z plane for an

on-axis Gaussian beam incident on a homogeneous spheroid of refractive index 1.36

centered at the origin. The beam spot size is w,=2um, and its wavelength is 1.064xm.

(a)An oblate of an axial ratio a/b=0.7143 and a size parameter x=33.79244991. Its
radii are a=5.72244251um, and b=8.01141952um along the z- and x-axis respectively.
(b)A prolate of an axial ratio a/b=1.4 and a size parameter x=47.3094299. Its radii are
a=8.01141952um, b=5.72244251m.

The internal and scattered intensities are calculated for two spheroids, one
oblate spheroid and the other prolate spheroid having the same parameters as those of
Fig. 3 except that the beam is shifted along the x-axis by x,=6/2=4.00570976 um for
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the oblate case, and x,=b/2=2.86122125 pm for the prolate case with y,=z,=0 for both
cases. The contour plots of the computed intensity distribution on the xz-plane for the
oblate and prolate spheroids illumination are shown in Fig. 4(a) and 4(b), respectively.
Figure 4 demonstrates that the beam is tilted differently in the two cases due to the
different interactions between the beam and the scatterer.

To trace the beam behavior and its interaction with the object, the beam is
shifted along the x-axis to the surface of the spheroid, that is X,=8.01141952 um for the
oblate case and x,=5.72244251 um for the prolate case. All other parameters are the
same as in Fig. 3. The contour plots of the calculated intensity distribution on the xz-
plane for the oblate and prolate are shown in Fig. 5(a) and 5(b), respectively. The
results show that the electric field intensity is concentrated mainly close to the interior
surface of the oblate spheroid whereas no field exists around the surface of the prolate
spheroid. This distribution of the intensity inside the oblate indicates excitation of a
near resonant low-order mode(s). No near resonance excitation is shown in the prolate
case. More cases (not shown here) for the beam shifted farther away from the surface
of an oblate and a prolate of different axial ratios are considered. All the computed
results for those cases show that low-order modes can be excited in the oblate cases but
no resonant modes are pronounced in the prolate spheroids. Note that the energy of a
low-order morphology-dependant resonance, MDR, in a spherical dielectric object is
distributed around and close to the internal surface of the sphere. As the order of the
MDR gets higher its energy is distributed farther away from the surface inside the
sphere [20]. If a sphere of a certain resonance size parameter is deformed to a spheroid
with an axial ratio close to 1 (slightly elongated) the MDRs could be shifted in
frequencies [21], [22]. Similar results as those in Figs. 4 and 5 but for plane wave
illumination could be obtained approximately using the Geometrical optics method. It
implements Snell's law for each ray constructing the wave of each interaction at the
internal surface of the object. Since the geometrical optics does not deal with field
vectors therefore it is not suitable for a focused beam illumination because it is
constructed by thousands of vectors of plane waves.

zla

05 0 s 1 15 e e [ 0.71431
x/b x/a
(a) (b)
Fig.4. Contour plots of the intensity distributions in the x-z plane for a spheroid. All the
parameters are the same as in Fig. 3 except that the beam is shifted by x,=0.5b,
Yo=2,=0. (a)the oblate case (b) the prolate case.
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Fig.5. Contour plots of the intensity distributions in the x-z plane for a spheroid. All the
parameters are the same as in Fig. 3 except that the beam is shifted by x,=b, y,=z,=0.
(a) the oblate case (b) the prolate case.

"5 4 05

The effect of the axial ratio of a spheroid on the internal intensity distribution
is investigated. We consider a homogeneous dielectric spherical object (p=a/b=1) of a
refractive index m=1.36 and a resonant size parameter X=47.3094299 which
corresponds to the TEsg; MDR. The sphere is centered at the origin and illuminated
with a plane wave of a wavelength 1=1.064 um and propagating in the z-direction. The

normalized amplitudes of the internal expansion coefficients %Cemﬁcomn‘ for
n=58 are computed. Those coefficients are corresponding to the TEss; MDR[23]. The
computations are repeated as a function of the axial ratio with gradually increasing
value (>1, i.e. prolate) and with gradually decreasing value (<1, i.e. oblate). The
computed results are shown in Fig. 6(a). Also the computations are repeated again for
the same case as in Fig. 6(a) but with a Gaussian beam illumination of the same
parameters as those in Fig. 3 except that the beam is shifted outside the sphere to
X,=11.098098 um, y,=z,=0. The computed results are shown in Fig. 6(b) which
illustrate that the coefficient Csg is maximum when p=1 (the sphere case)[23]. As the
value of p increases (prolate) or decreases (oblate) from one (sphere) the coefficient is
damped for any tiny deformation. The results in Fig. 6 show that in the case of the
oblate spheroid more resonant modes are pronounced than in the prolate spheroid case.
The resonant modes in the oblate case have higher quality factor, Q, than those in the
prolate case. Also Fig. 6 shows that more background energy exists for the plane wave
illumination case since the wave illuminates the whole object. The internal energy
distribution depends on, as shown here in Figs. 3-6, the size parameter, the axial ratio,
the orientation of the spheroid, and on the shift of the incident focused beam.
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Fig. 6. Normalized amplitude of the Csg; coefficient as a function of the axial ratio
p=alb of a spheroid of a size parameter x=47.3094299 (is a resonant size parameter of
TEsg; mode for p=1) and a refractive index m=1.36, (a)a plane wave illumination with

a wavelength 1=1.064 um propagating in the z-direction, (b) a Gaussian beam
illumination with parameters as those in Fig. 3 except that the beam is shifted to
X,=11.098098 um, y,=2,=0.

The convergence criteria are tested for each illustrated case using the formula
Nmax=X+4.05x"%+2 in the beginning of the calculations. Then Npa, Nmax are increased
and the convergence is tested for each extra mode. For most cases we consider
Nmax=Nmax. The summation over the azimuthal modes m ranges from 0 t0 Ny -1. Note
that the summation over n or n' is calculated for each mode m (from m+1 to Ny ). Also
the modes n, n', and m should be tested for the Gaussian beam modeling especially for
the shifted beams. For a beam with small shift number of the modes required for
convergence criteria are sufficient to model the beam. Beams of larger shift require
number of modes larger than those necessary for the convergence. Figure 7 shows a 1-
D plot of an incident non-exact Gaussian beam of A=1.064um, and w,=2um. The beam
is shifted to x,=12um, y,=z,=0. Number of modes required to model this beam are
m=77 and n=78. To model an exact Gaussian beam with the same focusing and shift
more modes should be added to the computation (m=85 and n=86).

Table (1) shows numbers of modes n necessary for convergence for different
spheroidal objects having the same size parameter, x=47.3094299, as a sphere (p=1) of
radius a illuminated with a plane wave of 2=2um compared with those calculated using
the criteria in Reference [12]. Note that m=1 for the plane wave illumination
propagating in the z-direction.

Table (1) illustrates that number of modes n necessary for convergence decreases
when the radius of the sphere increases in the direction of the propagation (prolate)
whereas it increases when the radius increases in the direction perpendicular to the
direction of propagation. Numbers of modes m, and n required for cases illustrated in
Figs. 2 and 4, and some other cases of large size parameters are shown in Table (2).
The maximum size parameter for a prolate spheroid that can be handled by our
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technique is 76.1066055 with p=1.4286. Modes necessary for convergence criteria for
both the beam modeling and for the field calculations are m=77 and n=78. For an
oblate spheroid the maximum size parameter is 55.930186 with a/b=0.9 using m=77
and n=78. These values of m and n get larger numbers and reach out of the limit of our
codes if both the size parameter and the elongation are increased in the same time. For
smaller size parameter and larger elongation the convergence occurs at smaller values
of m, and n.

= o =2
b m m
T T T

Normalized intensity

(=]

o
m
o

X-axis
Fig. 7. A 1-D plot of an incident shifted non-exact Gaussian beam with 2=1.064um,
Wo= 2Um, X,2=12um, X,=0, ¥,=0. Number of modes required to model the beam are
m=77 and n=78.

Table (1) Numbers of modes necessary for convergence for a plane wave illumination

a/lb Present Reference [12]
technique
a/b=1.4286 54 60
a/b=1.25 58 59
a/b=1.1111 61 59
a/b=1 64 62
a/b=0.9 68 67
a/b=0.8 73 71
a/b=0.7 78 89

Figures 3-6 demonstrate that our technique is accurate and capable to deal with
cases that could not be addressed in the literature. To the best of our knowledge that
the manipulation and modification of the T-matrix method with the plane wave
spectrum technique to apply for an elongated large size parameter spheroid illuminated
with considerably focused and shifted incident beam was not considered before.
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Table (2) Numbers of modes m and n necessary for convergence for a Gaussian beam

illumination

a/b X Shift of the beam | m n
1.4286 (prolate) 76.106055 | x,=b=8.4788586 77 | 78
1.4 (as in Fig. 2b) 47.3094299 | on-axis 53 | 54
1.4 (as in Fig. 4b) 47.3094299 | xo=b 53 | 54
0.9 (oblate) 55.930186 | x,=b=5.7221952 77 | 78
0.7143 (as in Fig. 2a) | 33.792449 | on-axis 58 | 59
0.7143 (as in Fig. 4a) | 33.792449 | xo=b 58 | 59
0.7143 47.3094299 | xo=b 77 | 78
0.6 42.682721 | xo=b 77 | 78

V. CONCLUSIONS

The technique that combining the plane wave spectrum method and the T-matrix
method is used to calculate internal, and scattered electric field intensities of a
homogeneous dielectric spheroidal object (a prolate or an oblate) illuminated with a
focused polarized Gaussian beam. The beam is modeled by a spectrum of plane-waves.
The vector nature of the beam is considered that satisfies Maxwell's equations. The
beam can be arbitrarily focused and shifted to a large distance. The internal and
scattered intensity distributions are computed using the T-matrix method. The
combination technique is manipulated in a separate way that enables us to consider
spheroids of size parameter and elongation larger than those addressed in the literature.

In the case of an on-axis illumination the beam is focused more inside the
oblate but it becomes wider at its focal point inside the prolate. If the beam is shifted to
or farther away from the surface of the spheroidal object along its minor axis
dimension very minor and limited near resonance modes will be excited. Nevertheless
near resonant low-order modes dominate the internal intensity distributions at certain
values of the axial ratio if the beam is shifted to or farther away from the surface of the
spheroid along the perpendicular direction of its major axis dimension.

The technique presented here is limited to spheroidal object of a size parameter
up to 76.106055 with an axial ratio of 1.4286 or a size parameter 47.3094299 with an
axial ratio 0.7143 illuminated with a focused incident beam shifted to a long distance
outside the object.
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