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A technique combining the plane wave spectrum method and the T-matrix 

method is used to calculate the internal and scattered electric field 

intensities of a homogeneous dielectric spheroidal object illuminated with 

a polarized shaped beam. This technique is modified and used here for 

spheroidal objects of size parameter and elongation larger than those 

previously demonstrated in the literature. The beam is modeled using an 

angular spectrum of plane waves. The beam is physically realizable, 

satisfies Maxwell's equations and arbitrarily focused. Also the beam can 

be shifted far a away from the surface of the object. Scattered and internal 

intensities are calculated using the T-matrix method. The behavior of the 

internal and scattered field intensities of different spheroidal objects 

shows that a near resonant mode(s) can be excited in a spheroid 

illuminated with a focused and shifted beam that propagates in a direction 

perpendicular to the elongation direction of the spheroid. The axial ratio 

(ratio of the radii of the spheroid) is a more critical parameter for the 

internal and scattered field distributions in the case of an oblate spheroid 

as compared with a prolate case. This technique can be used to calculate 

the internal and scattered fields of an inhomogeneous layered spheroid 

illuminated with an arbitrary shaped electromagnetic beam. 
 

I. INTRODUCTION 

Small particles in nature such as soil particles, rain droplets, ice crystals, red blood 

cells and aerosols in the atmosphere, have irregular nonspherical shapes. Such particles 

can be approximated by spheroids [1]. Light scattering by spheroids is important in 

areas such as particle characterization [2], combustion, modeling nonlinear optical 

processes in droplets [3], aerosol detection in the atmosphere and environment [4], and 

biological diagnostics [5]. Other applications in nondestructive optical measurements 

on blood, human dermis, and soil particles need to record the light reflected from, or 

transmitted through those substances [2], [5]. In such cases scattering of a spheroidal 

object by a shaped electromagnetic beam, such as Gaussian beam is encountered.  

The scattering of either an electromagnetic plane wave or a shaped 

electromagnetic beam by a spheroidal object is investigated by many researchers. 

Asano and Yamamoto [1] used the spheroidal expansion method to calculate the 

scattered intensity of a homogeneous spheroid (prolate or oblate) of small elongation 
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and size parameter (size parameter is the ratio of the circumference of the object to the 

wavelength) illuminated with a plane wave. Barton et al. [6, 7] investigated the 

scattering of an electromagnetic Gaussian beam by a small size parameter (≤ 15) and 

slightly elongated oblate spheroid. They used spheroidal expansion of the scalar 

potential of the incident fields along with the boundary matching method. They used 

up to fifth order correction to model the beam. Their technique gives an ill-conditioned 

system of equations in case of modeling a focused shifted beam scattered by a large 

size parameter spheroid. Although their mathematical model of the Gaussian beam 

does not satisfy Maxwell's equations good results were obtained because the minimum 

spot size of the beam was much larger than the incident wavelength and the axial ratio 

of the spheroid was close to 1. Xu et al. [8] provided an approach to express the beam-

shape coefficients of an on-axis Gaussian beam in spheroidal coordinates. Han and Wu 

[9, 10] used the separation of variables method to obtain the angular scattering 

intensities of a homogeneous spheroidal particle illuminated with a Gaussian beam. 

Their method is limited to spheroids of size parameter ≤ 30. 

Barber and Hill [11] employed the T-matrix method to compute the scattered 

and internal intensities of axisymmetric particles such as cylinders, spheroids, and 

spheres of small size parameters illuminated by a plane wave. Mishchenko et al. [12] 

modified the convergence condition of the T-matrix method to enhance the calculation 

processes for spheroids of larger size parameters illuminated with a plane wave. They 

calculated only the scattered intensities. Doicu and Wriedt [13] used the plane wave 

spectrum method with the extended boundary condition method to calculate the 

angular scattering of the far field of a tightly focused Gaussian beam scattered by a 

spheroid of a small size parameter (≈ 20). They employed the vector potential with 

higher-order corrections of the equivalent electromagnetic field. They obtained the 

beam shape coefficients with some errors.   

The method we present here uses the angular spectrum of plane waves[14] to 

model a lowest order (TEM00) Gaussian beam, and the T-matrix method [11, 15–18] to 

compute the electric fields inside and outside the scatterer. This combination technique 

was used previously [16, 17] to calculate only the far-field scattered by a small size 

parameter spheroidal object illuminated with an on-axis Gaussian beam. Also they 

computed the far fields for a shifted small size parameter spheroid immersed in the 

beam's waist. Their manipulation included re-formulation and re-orientation processes 

which led to complicated computations. Here we extent and reformulate the 

combination technique to calculate the internal and scattered intensities of a 

homogeneous spheroidal object (either a prolate or an oblate) of size parameter and 

elongation larger than those illustrated in the literature. The spheroid is illuminated 

with an arbitrarily on- or off-axis polarized and physically realizable Gaussian beam. 

The vector nature of the beam that satisfies Maxwell’s equations is considered. The 

beam can be focused into a small spot size (≈ a wavelength) shifted to a larger 

distances outside the object. The method can be used to model any beams including 

those beams having shapes deviated from their analytical representation such as those 

generated in laboratories (e.g. most Gaussian beams which generated experimentally 

have reducing oscillating tails). Moreover our technique is separable (irrelevant to the 

other formulation of the T-matrix [15-18]) which means that the formulation of the T-

matrix of the scatterer is manipulated separately from the incident field modeling. The 

advantage of our separable technique is that: first, it deals with any physically 
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realizable shaped beams, second for any particular object the elements of the T-matrix 

are calculated only once and then it can be used for different illuminations. The 

extension of the technique includes many parameters such as size parameter, 

orientation and axial ratio of the spheroid, and the shift and focusing of the beam. 

These parameters and their effects on the field distributions are considered. The 

convergence criteria are investigated for each computed case. The combination 

technique of the plane wave spectrum and the T-matrix method is applicable to a 

variety of objects of different shapes such as layered spheroids illuminated with an 

arbitrary electromagnetic beam.  

Mathematical and numerical analysis are given in section II. Numerical results 

are presented in section III. Conclusions are outlined in section IV.   

 

II. NUMERICAL MODELS AND MATHEMATICAL ANALYSIS 

A homogeneous spheroidal object centered at the origin of a Cartesian coordinate 

system (x,y,z) is considered. The radius of the spheroid along the x-axis is b whereas 

that along the z-axis is a. The spheroid is oriented with respect to the coordinate system 

such that its semimajor axis dimension is along the x-axis (oblate case) or along the z-

axis (prolate case). The axial ratio is ρ=a/b (ρ < 1 for oblate case and ρ > 1 for prolate 

case). The object is illuminated with a lowest order (TEMoo) monochromatic Gaussian 

beam (or of other different shapes) propagating in the z-direction as shown in Fig. 1. 

The beam is polarized in the xz-plane. Therefore the total incident electric field vector 

E
inc

 can be expressed by[14], 

,),,(),,(),,( izyxEizyxEzyxE z
inc
zx

inc
x

inc           (1) 

where ix and iz are unit vectors in the x and z directions, respectively. The time 

variation e
-jωt

 is omitted. We consider first the spot size of the beam at the origin, then 

model the beam at an arbitrary located focal point at (xo,yo,zo). We choose a Gaussian 

beam in which the spatial distribution of the amplitude of the transverse complex 

component
xE  is a Gaussian, i.e. 

 

 
 

 

        

 

 

 

 

 

 

 

 

 

Fig. 1. A spheroidal object centered at the origin of a Cartesian coordinate system 

(x,y,z) of radii a, and b along the z- and x-axis respectively illuminated with a 

focused shifted Gaussian beam of a spot size wo.. 
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where Eo is the amplitude of the beam at its center, i=√-1 and k=2π/λ is the wave 

number; λ is the wavelength. The beam spot size and the radius of phase front at a 

distance z are ω(z) and R(z) respectively. The parameter zg is the Rayleigh length. The 

minimum spot size wo of the beam occurs at z=0. Also at z=0 the wave front is planar: 

R(z)=∞. After many mathematical processes and manipulations (details are specified in 

Reference [14]) the incident beam can be expressed in Vector Spherical Harmonics 

(VSH) as[14],                          
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where P, and Dmn are normalization factors. The m and n are integer numbers denoting 

to the azimuthal mode number and the mode index respectively. The vectors M
1
(kr), 

and N
1
(kr) are the VSH of the first kind; and r is the distance from the field point to the 

origin. The letters e and o stand for even and odd modes respectively. The coefficients 

a
t
emn, a

t
omn, b

t
emn, and b

t
omn are the expansion coefficients of the incident field. The 

method can be applied to model any physically realizable beams which can be 

expressed as a sum of homogeneous plane waves even those beams having non-

analytical representation. The experimentally generated Gaussian beams are commonly 

having reducing oscillating tails. Although such beams have non-analytical 

representations they can be modeled using our technique. 

 The internal electric fields E
int

 and scattered electric fields E
s
 of a 

homogeneous arbitrary dielectric object illuminated with a Gaussian beam using the T-

matrix method are [11], 
      

 
m n

nom

t

nomnem

t

nemnom

t

nomnem

t

nem
NdNdMcMcPE

' '

)()()()()( k'k'k'k'k' 1
''''

1
''''

1
''''

1
''''

2int

           (4) 
         

  ],)()()()([ 33332 rNrNrMrMD kgkgkfkfkr omn
t
omnemn

t
emnomn

t
omnemn

t
emn

s

m n
mnPE  

                      (5) 

where k
'
=rk√ r ; r  is the complex dielectric constant of the scatterer relative to that of 

the surrounding medium. The 
t

nem

t

nom

t

nem
dcc '''''' ,, and

t

nom
d ''  are the expansion 

coefficients of the internal electric field. The functions )()( 33 krNandkrM are the 

VSH of the third kind (outgoing wave functions), and
t

omn

t

emn

t

omn

t

emn gandgff ,,,  are 

the scattered field expansion coefficients. In case of an axisymmetric object m
'
=m. The 

internal and the scattered fields expansion coefficients for each azimuthal mode, m, are 

given by [11], 
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where the A- and B-matrix are block diagonal matrices depending on the properties of 
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the scatterer. Each block is a full matrix of dimension nxn
'
. The indices σ and ρ are 

denoting to emn, omn, and emn
’
, omn

’
 respectively. From the matrix systems in (6) the 

scattered field expansion coefficients can be obtained in terms of those of the incident 

field as [f] = -[T][a], where [T] = [B][A]
-1

 is the T-matrix. In case of a spherical objects 

the T-matrix is a diagonal matrix and its elements are given by Tll=Bll/All. For 

spheroidal objects the T-matrix is a block diagonal matrix and its elements are given by 

   AB qplqqlpT
1

 . Each element in A and B matrices is a surface integral over the 

surface of the scatterer which is calculated numerically. Note that the incident and 

scattered fields coefficients are expanded up to m and n whereas the internal field 

coefficients are expanded to m and n
'
[11]. Calculating the elements of the T-matrix for 

spheroids requires tests for convergence and accuracy. 
  

III. NUMERICAL RESULTS 

For a certain spheroidal object the T-matrix is calculated once and then it can be used 

for different illuminations. The equivalent spherical volume concept is considered to 

calculate the size parameter xs of the spheroid [11] that is xspheroid=xsphere(a/b)
2/3

. The 

size parameter of the spheroid is 2πa/λ, where 2a is the axis dimension of the spheroid 

along the z-axis. To check and confirm that the calculated internal and scattered fields 

are accurate we visually compared our results of the internal intensities distributions 

with those in Refs. [6, 7] and intensities (internal and scattered) distributions with those 

in Refs. [11], [14]. Also we compared computed results for angular scattering 

intensities with those illustrated in Refs. [9-12, 14]. No differences were noticed. When 

we used the software published in Ref. [19] good agreements were found only for 

prolate cases of size parameters ≤ 30 either with our results or with the results of other 

references. For example we calculated the angular scattering intensity of a spheroid of 

a size parameter x=55.930186, refractive index m=1.3 and an axial ratio ρ=0.9. The 

spheroid is centered at the origin and illuminated with a plane wave of a wavelength 

λ=1.064µm propagating into the z-direction. Figure 2 shows the comparison between 

our results and those from Refs. [12] and [19]. Other computations for different cases 

(not shown here) illustrated the same observations. 

 
        Fig. 2. Angular scattering intensity for an oblate spheroid of ρ=0.9, x=55.930186, 

and m=1.3 illuminated with a plane wave of λ=1.064µm computed using our technique  

and those in Refs. [12] and [19]. 

Present technique(x10
-5

) 

Ref(12) 

Ref(19) 
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To illustrate the capabilities of our technique the intensities E.E
*
 distribution 

inside (E=E
int

) and outside (E=E
inc

+E
s
) for different homogenous lossless dielectric 

oblate and prolate objects (in free space) are computed. First, we considered an oblate 

spheroid of an axial ratio ρ=0.7143 and a refractive index m=1.36. The size parameter 

of the oblate at the operated wavelength is xs=33.79244991 (corresponding to an 

equivalent spherical volume size parameter of 42.289501) and its radii are 

a=5.72244251 μm and b=8.01141952 μm. The spheroid is illuminated with a focused 

Gaussian beam of a spot size wo=2μm and wavelength λ=1.064 μm. The beam 

propagates along the z-direction. The focal point of the beam is located at the center of 

the oblate (xo=yo=zo=0), i.e. on-axis illumination. The contour plots of the computed 

intensity distribution on the xz-plane are shown in Fig. 3(a). Second, we considered a 

prolate spheroid of the same radii as the oblate spheroid but with interchanging each 

other i.e. a=8.01141952 μm, and b=5.72244251 μm. The prolate axial ratio is ρ=1.4 

and its size parameter is xs= 47.3094299 (corresponding to an equivalent spherical 

volume size parameter of 37.8032393). All other parameters are the same as those of 

Fig. 3(a). The contour plot of the computed results is shown in Fig. 3(b). Figure 3 

illustrates that the beam gets more focusing if it is scattered by a prolate spheroid 

whereas it becomes wider at its waist if it is scattered by an oblate spheroid. Moreover 

spots of high intensities in the internal and backscattered zones, and beam 

deformations are more pronounced in the oblate case. This phenomenon has important 

implications in studying the nonlinear processes in dielectric spheroids.  

 
                             (a)                                                            (b)        

Fig. 3. Contour plots of the electric field intensity distributions in the x-z plane for an 

on-axis Gaussian beam incident on a homogeneous spheroid of refractive index 1.36 

centered at the origin. The beam spot size is wo=2μm, and its wavelength is 1.064μm. 

(a)An oblate of an axial ratio a/b=0.7143 and a size parameter x=33.79244991. Its 

radii are a=5.72244251μm, and b=8.01141952μm along the z- and x-axis respectively. 

(b)A prolate of an axial ratio a/b=1.4 and a size parameter x=47.3094299. Its radii are 

a=8.01141952μm, b=5.72244251μm. 
 

The internal and scattered intensities are calculated for two spheroids, one 

oblate spheroid and the other prolate spheroid having the same parameters as those of 

Fig. 3 except that the beam is shifted along the x-axis by xo=b/2=4.00570976 μm for 

x/b 

 

  x/a 

 

z/
a
 

 

z/
b
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x/a 

 

x/b 

 

the oblate case, and xo=b/2=2.86122125 μm for the prolate case with yo=zo=0 for both 

cases. The contour plots of the computed intensity distribution on the xz-plane for the 

oblate and prolate spheroids illumination are shown in Fig. 4(a) and 4(b), respectively. 

Figure 4 demonstrates that the beam is tilted differently in the two cases due to the 

different interactions between the beam and the scatterer.  

To trace the beam behavior and its interaction with the object, the beam is 

shifted along the x-axis to the surface of the spheroid, that is xo=8.01141952 μm for the 

oblate case and xo=5.72244251 μm for the prolate case. All other parameters are the 

same as in Fig. 3. The contour plots of the calculated intensity distribution on the xz-

plane for the oblate and prolate are shown in Fig. 5(a) and 5(b), respectively. The 

results show that the electric field intensity is concentrated mainly close to the interior 

surface of the oblate spheroid whereas no field exists around the surface of the prolate 

spheroid. This distribution of the intensity inside the oblate indicates excitation of a 

near resonant low-order mode(s). No near resonance excitation is shown in the prolate 

case. More cases (not shown here) for the beam shifted farther away from the surface 

of an oblate and a prolate of different axial ratios are considered. All the computed 

results for those cases show that low-order modes can be excited in the oblate cases but 

no resonant modes are pronounced in the prolate spheroids. Note that the energy of a 

low-order morphology-dependant resonance, MDR, in a spherical dielectric object is 

distributed around and close to the internal surface of the sphere. As the order of the 

MDR gets higher its energy is distributed farther away from the surface inside the 

sphere [20]. If a sphere of a certain resonance size parameter is deformed to a spheroid 

with an axial ratio close to 1 (slightly elongated) the MDRs could be shifted in 

frequencies [21], [22]. Similar results as those in Figs. 4 and 5 but for plane wave 

illumination could be obtained approximately using the Geometrical optics method. It 

implements Snell's law for each ray constructing the wave of each interaction at the 

internal surface of the object. Since the geometrical optics does not deal with field 

vectors therefore it is not suitable for a focused beam illumination because it is 

constructed by thousands of vectors of plane waves. 

 

 
 

                           (a)                                                                    (b)        
Fig.4. Contour plots of the intensity distributions in the x-z plane for a spheroid. All the 

parameters are the same as in Fig. 3 except that the beam is shifted by xo=0.5b, 

yo=zo=0. (a)the oblate case (b) the prolate case. 
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                            (a)                                                                 (b)        
Fig.5. Contour plots of the intensity distributions in the x-z plane for a spheroid. All the 

parameters are the same as in Fig. 3 except that the beam is shifted by xo=b, yo=zo=0.  

(a) the oblate case (b) the prolate case. 

 

The effect of the axial ratio of a spheroid on the internal intensity distribution 

is investigated. We consider a homogeneous dielectric spherical object (ρ=a/b=1) of a 

refractive index m=1.36 and a resonant size parameter xs=47.3094299 which 

corresponds to the TE58,1 MDR. The sphere is centered at the origin and illuminated 

with a plane wave of a wavelength λ=1.064 μm and propagating in the z-direction. The 

normalized amplitudes of the internal expansion coefficients cc
nmonme

m
''  for 

n
'
=58 are computed. Those coefficients are corresponding to the TE58,1 MDR[23]. The 

computations are repeated as a function of the axial ratio with gradually increasing 

value (>1, i.e. prolate) and with gradually decreasing value (<1, i.e. oblate). The 

computed results are shown in Fig. 6(a). Also the computations are repeated again for 

the same case as in Fig. 6(a) but with a Gaussian beam illumination of the same 

parameters as those in Fig. 3 except that the beam is shifted outside the sphere to 

xo=11.098098 μm, yo=zo=0. The computed results are shown in Fig. 6(b) which 

illustrate that the coefficient C58,1 is maximum when ρ=1 (the sphere case)[23]. As the 

value of ρ increases (prolate) or decreases (oblate) from one (sphere) the coefficient is 

damped for any tiny deformation. The results in Fig. 6 show that in the case of the 

oblate spheroid more resonant modes are pronounced than in the prolate spheroid case. 

The resonant modes in the oblate case have higher quality factor, Q, than those in the 

prolate case.  Also Fig. 6 shows that more background energy exists for the plane wave 

illumination case since the wave illuminates the whole object. The internal energy 

distribution depends on, as shown here in Figs. 3-6, the size parameter, the axial ratio, 

the orientation of the spheroid, and on the shift of the incident focused beam. 
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                  Axial ratio (a/b)                                                   Axial ratio (a/b) 

                            (a)                                                                    (b) 
Fig. 6. Normalized amplitude of the C58,1 coefficient as a function of the axial ratio 

ρ=a/b of a spheroid of a size parameter x=47.3094299 (is a resonant size parameter of 

TE58,1 mode for ρ=1) and a refractive index m=1.36, (a)a plane wave illumination with  

a wavelength λ=1.064 μm propagating in the z-direction, (b) a Gaussian beam 

illumination with parameters as those in Fig. 3 except that the beam is shifted to 

xo=11.098098 μm, yo=zo=0. 

 

The convergence criteria are tested for each illustrated case using the formula 

nmax=x+4.05x
1/3

+2 in the beginning of the calculations. Then nmax, n
'
max are increased 

and the convergence is tested for each extra mode. For most cases we consider 

nmax=n
'
max. The summation over the azimuthal modes m ranges from 0 to nmax -1. Note 

that the summation over n or n' is calculated for each mode m (from m+1 to nmax). Also 

the modes n, n', and m should be tested for the Gaussian beam modeling especially for 

the shifted beams. For a beam with small shift number of the modes required for 

convergence criteria are sufficient to model the beam. Beams of larger shift require 

number of modes larger than those necessary for the convergence. Figure 7 shows a 1-

D plot of an incident non-exact Gaussian beam of λ=1.064µm, and wo=2µm. The beam 

is shifted to xo=12µm, yo=zo=0. Number of modes required to model this beam are 

m=77 and n=78. To model an exact Gaussian beam with the same focusing and shift 

more modes should be added to the computation (m=85 and n=86).  

Table (1) shows numbers of modes n necessary for convergence for different 

spheroidal objects having the same size parameter, x=47.3094299, as a sphere (ρ=1) of 

radius a illuminated with a plane wave of λ=2µm compared with those calculated using 

the criteria in Reference [12]. Note that m=1 for the plane wave illumination 

propagating in the z-direction. 

Table (1) illustrates that number of modes n necessary for convergence decreases 

when the radius of the sphere increases in the direction of the propagation (prolate) 

whereas it increases when the radius increases in the direction perpendicular to the 

direction of propagation. Numbers of modes m, and n required for cases illustrated in 

Figs. 2 and 4, and some other cases of large size parameters are shown in Table (2). 

The maximum size parameter for a prolate spheroid that can be handled by our 
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technique is 76.1066055 with ρ=1.4286. Modes necessary for convergence criteria for 

both the beam modeling and for the field calculations are m=77 and n=78. For an 

oblate spheroid the maximum size parameter is 55.930186 with a/b=0.9 using m=77 

and n=78. These values of m and n get larger numbers and reach out of the limit of our 

codes if both the size parameter and the elongation are increased in the same time. For 

smaller size parameter and larger elongation the convergence occurs at smaller values 

of m, and n.  

 

    
 

Fig. 7. A 1-D plot of an incident shifted non-exact Gaussian beam with λ=1.064µm, 

wo= 2µm, xo=12µm, xo=0, yo=0. Number of modes required to model the beam are 

m=77 and n=78. 

 

Table (1) Numbers of modes necessary for convergence for a plane wave illumination 

 a/b  Present 

technique 

Reference [12] 

a/b=1.4286  54 60 

a/b=1.25  58 59 

a/b=1.1111  61 59 

a/b=1 64 62 

a/b=0.9  68 67 

a/b=0.8  73 71 

a/b=0.7  78 89 

 

Figures 3-6 demonstrate that our technique is accurate and capable to deal with 

cases that could not be addressed in the literature. To the best of our knowledge that 

the manipulation and modification of the T-matrix method with the plane wave 

spectrum technique to apply for an elongated large size parameter spheroid illuminated 

with considerably focused and shifted incident beam was not considered before.  
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Table (2) Numbers of modes m and n necessary for convergence for a Gaussian beam 

illumination 

a/b x Shift of the beam  m n 

1.4286 (prolate) 76.106055 xo=b=8.4788586 77 78 

1.4 (as in Fig. 2b) 47.3094299 on-axis 53 54 

1.4 (as in Fig. 4b) 47.3094299 x0=b 53 54 

0.9 (oblate) 55.930186 xo=b=5.7221952 77 78 

0.7143 (as in Fig. 2a) 33.792449 on-axis 58 59 

0.7143 (as in Fig. 4a) 33.792449 x0=b 58 59 

0.7143 47.3094299 x0=b 77 78 

0.6 42.682721 x0=b 77 78 

 

IV. CONCLUSIONS 

The technique that combining the plane wave spectrum method and the T-matrix 

method is used to calculate internal, and scattered electric field intensities of a 

homogeneous dielectric spheroidal object (a prolate or an oblate) illuminated with a 

focused polarized Gaussian beam. The beam is modeled by a spectrum of plane-waves. 

The vector nature of the beam is considered that satisfies Maxwell's equations. The 

beam can be arbitrarily focused and shifted to a large distance. The internal and 

scattered intensity distributions are computed using the T-matrix method. The 

combination technique is manipulated in a separate way that enables us to consider 

spheroids of size parameter and elongation larger than those addressed in the literature. 

In the case of an on-axis illumination the beam is focused more inside the 

oblate but it becomes wider at its focal point inside the prolate. If the beam is shifted to 

or farther away from the surface of the spheroidal object along its minor axis 

dimension very minor and limited near resonance modes will be excited. Nevertheless 

near resonant low-order modes dominate the internal intensity distributions at certain 

values of the axial ratio if the beam is shifted to or farther away from the surface of the 

spheroid along the perpendicular direction of its major axis dimension. 

The technique presented here is limited to spheroidal object of a size parameter 

up to 76.106055 with an axial ratio of 1.4286 or a size parameter 47.3094299 with an 

axial ratio 0.7143 illuminated with a focused incident beam shifted to a long distance 

outside the object. 
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خا  وخابرج لاسام  ييابوج اتلاابن  واا  ااب ا تم تطويرأسلوب لحسابب دا ا ملالاابال ملبير يا   م       
عبزلااا  واسااالط عليااار داااطبس بيرواطنبطيسااار اسااات.طب وأختيااابرج ملداااب ع وم سااالوب ملاساااتخ م يساااتطي  
ملتطباااا  اااا  م لاسااابم مل ييااابوي  ممل اطباااا  حلااااار واطباااا  أساااتطبل  أب ااار اااا  ملتااار تااام ندااار ب  ااار 

داط  ملاسالط  ملا  اولاابل اساتوي  قبع يا  م  حبث ا  ق  ع و مم م سلوب يطتا  علا  طري.ا  تحليا  م 
داا ا ملالااابال  مخاا  وخاابرج مللاساام مل يياابوجع لإيلاااب    T-matrixلتاثياا  ملدااطبس ملاساالط وطري.اا  ملااا 

و ااامل ملطري.ااا  ايضاااا  أييااابع لتاثيااا  م داااط  ملاربااازا وملتااا  لياااب مزمحااا  اببنيااا  عااا  مللاسااام مل ييااابوج أو 
م دط  ملاول ا  ر ملاطا  وملت  لاي  لياب تاثيا  ريبيارع وملداطبس ملااثا   يامل ملطري.ا  يح.ا  اطاب ال 

 اببسوي ع
دا ا ملالاابال  مخا  مللاسام مل ييابوج أأيارل أنار اا  ملاابا  توليا  اولاابل ا  حسابب  رمسا          

عن  أو قري   ا  اولابل ملرني  لللاسم مل ييابوج ذمم باب  ملداطبس ملاسالط اربازم ون.طا  تربيازل ت.ا  علا  
سطح مللاسم أو خبرلار وينتدر  ر أتلابل عاو يبع عل  أتلابل مستطبل  مللاسمع وولا  أييبع ا  مل رمسا  أ  

 م ستطبل   و ملاطبا  م بثر حسبسيٍ  لتوزي  د ا ملالابال  مخ  وخبرج مللاسم مل ييبوجع اطبا 
وملطري.اا  ملاطااورا  اامل ياباا  مسااتخ مايب لحساابب داا ا ملالااابال ملبيرواطنبطيسااي  للاساام  يياابوج       

ب  غير اتلابن  قطريبع أج ممل ط .بل اتح ا ملاربز واسلط علير دطبس بيرواطنبطيسر اربز ممل دا
 أختيبرج وممل أزمح   بلنس   لللاسمع
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