[1] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, & B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, vol.395, no.10223, pp. 497-506, 2020.
[2] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han & L. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet, vol.395, no.10223, pp.507-513, 2020.
[3] D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, & E. Petersen, the continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. International journal of infectious diseases, vol.91, no. 264-266, 2020.
[4] J. F. W. Chan, K. K. W. To, H. Tse, D. Y. Jin, & K. Y. Yuen, Interspecies transmission, and emergence of novel viruses: lessons from bats and birds. Trends in microbiology, vol. 21, no.10, pp. 544-555, 2013.
[5] World Meters: Covid-19 Coronavirus Pandemic; Accessed on: January 2021, https://www.worldometers.Info/Coronavirus/
[6] World Health Organization; Coronavirus disease (COVID-19) advice for the public. Accessed on: April 11, 2020, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public.
[7] A. Narin, C. Kaya & Z. Pamuk. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. ArXiv preprint ArXiv: 2003.10849.
[8] A. Hossam, A. Magdy, A. Fawzy & S. M. Abd El-Kader. An integrated IOT system to control the spread of COVID-19 in Egypt. In International Conference on Advanced Intelligent Systems and Informatics, Springer, Cham, pp. 336-346, 2020.
[9] A. Hossam & A. Fawzy, A rapid diagnosis tool based on LASER for fighting COVID-19. International Journal of Microwave and Optical Technology, vol.15, no, 5, 2020.
[10] K. Li, Y. Fang, W. Li, C. Pan, P. Qin, Y. Zhong, X. Liu, M. Huang, Y. Liao, and S. Li, 2020. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). European radiology, vol. 30, no. 8, pp.4407-4416, 2020.
[11] J. Bullock, A. Luccioni, K. H. Pham, C. S. N. Lam, & M. Luengo-Oroz, Mapping the landscape of artificial intelligence applications against COVID-19. Journal of Artificial Intelligence Research, vol. 69, no. 807-845, 2020.
[12] L. Wang, Z. Q. Lin, & A. Wong. Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Scientific Reports, vol. 10, no.1, pp. 1-12, 2020.
[13] L. Yan, H. T. Zhang, Y. Xiao, M. Wang, Y. Guo, C. Sun & Y. Yuan, Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan, 2020.
[14] S. El-bana, A. Al-Kabbany & M. Sharkas. A multi-task pipeline with specialized streams for classification and segmentation of infection manifestations in covid-19 scans. PeerJ Computer Science, vol.6, e303, 2020.
[15] J. Wang, J. Wu, J., Z. Wu, J. Jeong, & G. Jeon. Wiener filter-based wavelet domain denoising. Displays, 46, 37-41, 2017.
[16] P. Garg & T. Jain. A comparative study on histogram equalization and cumulative histogram equalization. International Journal of New Technology and Research, vol.3, no.9, pp. 263242, 2017.
[17] X. Chen, L. Yao, & Y. Zhang, Residual attention u-net for automated multi-class segmentation of covid-19 chest CT images. ArXiv preprint ArXiv: 2004.05645, 2020.
[18] A. E. Hassanien, L. N. Mahdy, K. A. Ezzat, H. H. Elmousalami, & H. A. Ella, Automatic x-ray covid-19 lung image classification system based on multi-level Thresholding and support vector machine. MedRxiv, 2020.
[19] J. H. Uhl, S. Leyk, Y. Y. Chiang, W. Duan & C. A. Knob lock. Spatializing uncertainty in image segmentation using weakly supervised convolutional neural networks: a case study from historical map processing. IET Image Processing, vol.12, no. 11, pp. 2084-2091, 2018.
[20] F. Shan, Y. Gao, J. Wang, W. Shi, N. Shi, M. Han & Y. Shi. Lung infection quantification of COVID-19 in CT images with deep learning. ArXiv preprint ArXiv: 2003.04655,2020.
[21] D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen, H. Fu & L. Shao. Inf-net: Automatic covid-19 lung infection segmentation from CT images. IEEE Transactions on Medical Imaging, vol.39, no.8, pp. 2626-2637, 2020.
[22] J. Ma, Z. Nie, C. Wang, G. Dong, Q. Zhu, J. He & X. Yang. Active contour regularized semi-supervised learning for COVID-19 CT infection segmentation with limited annotations. Physics in Medicine & Biology, vol.65, no.22, pp. 225034, 2020.
[23] T. Bhatia. An image-processing method to detect sub-optical features based on understanding noise in intensity measurements. European Biophysics Journal, vol. 47, no. 5, pp. 531-538, 2018.
[24] S. Varela-Santos, & P. Melin. A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks. Information sciences, vol.545, pp. 403-414, 2021.
[25] H. Zhang, C. L. Hung, G. Min, J. P. Guo, M. Liu & X. Hu, GPU-accelerated GLRLM algorithm for feature extraction of MRI. Scientific reports, vol. 9, no.1, pp.1-13,2019
[26] P. K. Chandrakar, A. K. Shrivas, & N. Sahu, Design of a Novel Ensemble Model of Classification Technique for Gene-Expression Data of Lung Cancer with Modified Genetic Algorithm. EAI Endorsed Transactions on Pervasive Health and Technology, vol. 7, no.25, pp. e2, 2021.
[27] M. Zivkovic, N. Bacanin, K. Venkatachalam, A. Nayyar, A. Djordjevic, I. Strumberger & F. Al-Turjman, COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustainable Cities and Society, vol.66, pp.102669, 2021.
[28] M. Zaman & A. Hassan, Fuzzy Heuristics and Decision Tree for Classification of Statistical Feature-Based Control Chart Patterns. Symmetry, vol.13, no.1, pp.110, 2021.
[29] A. M. Ali, K. Z. Ghafoor, H. S. Maghdid, & A. Mulahuwaish. Diagnosing COVID-19 Lung Inflammation Using Machine Learning Algorithms: A Comparative Study. In Internet of Medical Things for Smart Healthcare, pp. 91-105, Springer, Singapore, 2020.
[30] M. Ilyas, H. Rehman & A. Naït-Ali. Detection of covid-19 from chest x-ray images using artificial intelligence: An early review. ArXiv preprint ArXiv: 2004.05436, 2020.
[31] A. R. M. T. Islam, S. Talukdar, S. Mahato, S. Kundu, K. U. Eibek, Q. B. Pham, & N. T. T. Linh. Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, vol.12, no.3, pp. 101075, 2021.
[32] R. Mostafiz, M. S. Uddin, N. A. Alam, M.M. Reza, & M. M. Rahman, M. Covid-19 Detection in Chest X-ray through Random Forest Classifier using a Hybridization of Deep CNN and DWT Optimized Features. Journal of King Saud University-Computer and Information Sciences, 2020.
[33] T. Bahadur Chandra, K. Verma, B. Kumar Singh, D. Jain, & S. Singh Netam, Coronavirus Disease (COVID-19) Detection in Chest X-Ray Images using Majority Voting Based Classifier Ensemble. Expert Syst Appl, 113909-113909, 2020.
[34] A. Wadhawan, Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID Twitter BERT and Bagging Ensemble Technique based on Plurality Voting. ArXiv preprint ArXiv: 2010.00294, 2020.
[37] S. Kadry, V. Rajinikanth, S. Rho, N. S. M. Raja, V.S. Rao & K. P. Thanaraj, Development of a machine-learning system to classify lung CT scan images into normal/covid-19 class. ArXiv preprint ArXiv: 2004.13122, 2020.
[38] A. Hossam, H. M. Harb, & H. M. Abd El Kader. Automatic image segmentation method for breast cancer analysis using thermography. JES. Journal of Engineering Sciences, vol.46, no.1, pp.12-32, 2018.
[39] Z. Fang, Z. Xu, T. Jang, F. Zhou & S. Huang, Standard deviation Quantitative Characterization and Process Optimization of the Pyramidal Texture of Mon crystalline Silicon Cells. Materials, vol.13, no.3, pp.564, 2020.