• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Farghaly, A., Ahmed, K., Gad, A. (2022). Synergistic Physic-Chemical Pretreatment of Lignocellulosic Sugarcane Bagasse via Freezing and Alkaline Processes. JES. Journal of Engineering Sciences, 50(1), 1-19. doi: 10.21608/jesaun.2021.95045.1074
Ahmed M. Farghaly; Kareman Ahmed; Ali Abdel Rahman Gad. "Synergistic Physic-Chemical Pretreatment of Lignocellulosic Sugarcane Bagasse via Freezing and Alkaline Processes". JES. Journal of Engineering Sciences, 50, 1, 2022, 1-19. doi: 10.21608/jesaun.2021.95045.1074
Farghaly, A., Ahmed, K., Gad, A. (2022). 'Synergistic Physic-Chemical Pretreatment of Lignocellulosic Sugarcane Bagasse via Freezing and Alkaline Processes', JES. Journal of Engineering Sciences, 50(1), pp. 1-19. doi: 10.21608/jesaun.2021.95045.1074
Farghaly, A., Ahmed, K., Gad, A. Synergistic Physic-Chemical Pretreatment of Lignocellulosic Sugarcane Bagasse via Freezing and Alkaline Processes. JES. Journal of Engineering Sciences, 2022; 50(1): 1-19. doi: 10.21608/jesaun.2021.95045.1074

Synergistic Physic-Chemical Pretreatment of Lignocellulosic Sugarcane Bagasse via Freezing and Alkaline Processes

Article 1, Volume 50, Issue 1, January and February 2022, Page 1-19  XML PDF (950.88 K)
Document Type: Research Paper
DOI: 10.21608/jesaun.2021.95045.1074
View on SCiNiTO View on SCiNiTO
Authors
Ahmed M. Farghaly email orcid 1; Kareman Ahmed2; Ali Abdel Rahman Gad1
1Civil Engineering Department, Faculty of Engineering, Assiut University, Assiut 71516, Egypt
2Holding Company for Water and Wastewater in Assiut and New Valley, Egypt
Abstract
This study focuses on employing a hybrid pretreatment approach for lignocellulosic Sugarcane Bagasse (SCB) as a major problematic solid waste. The applied technique depended on SCB physical pretreatment via freezing, followed by chemical hydrolysis using alkaline hydrogen peroxide (AHP) and enzymatic hydrolysis. The changes occurred in macrostructure and the entire lignocellulosic compounds during the pretreatment stages were evaluated. Freezing pretreatment resulted in relatively low glucose yield and saccharification ratio at -20 °C for 2 h of 307.52 mg/gm native SCB and 48.5%, respectively. Further AHP pretreatment was performed for the frozen-pretreated SCB at -20 °C and 2 h with assistance of Box–Behnken Design response surface methodology (RSM). The investigated key parameters were H2O2 concentration (3, 5.5 and 8 %v/v), temperature (25, 42.5 and 60 °C) and pretreatment duration (1, 3 and 5 h). The results revealed that the statistical modelling was able to predict the response of glucose yield and TRS production with R2 = 0.8221 and 0.8814, respectively. Applying the optimization tool of RSM, the optimum predicted values of glucose yield and TRS production were (886.51 mg/gm native SCB and 1.44 mg/mL), respectively; confirmed by the experimental analysis (898.5 mg/gm native SCB and 1.32 mg/mL), respectively. The coincided saccharification ratio was 97.5%. These results were obtained at H2O2 of 3 % (v/v), 56.93 °C and 1 h which were 4.32 and 2.01 times higher than that obtained during the freezing pretreatment phase for glucose yield and saccharification ratio, respectively.
Keywords
Sugarcane Bagasse; Lignocellulose; Freezing; Hydrogen peroxide; Response surface methodology
Main Subjects
Civil Engineering: structural, Geotechnical, reinforced concrete and steel structures, Surveying, Road and traffic engineering, water resources, Irrigation structures, Environmental and sanitary engineering, Hydraulic, Railway, construction Management.
References
    1. Abou Hussein SD, Sawan OM (2010) The utilization of agricultural waste as one of the environmental issues in Egypt (a case study). J Appl Sci Res 6:1116–1124
    2. Alriols MG, García A, Llano-ponte R, Labidi J (2010) Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chem Eng J 157:113–120. https://doi.org/https://doi.org/10.1016/j.cej.2009.10.058
    3. Azzam AM (2008) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Heal Part B 421–433. https://doi.org/10.1080/03601238909372658
    4. Bertoti AR, Luporini S, Esperidião MCA (2009) Effects of acetylation in vapor phase and mercerization on the properties of sugarcane fibers. Carbohydr Polym 77:20–24. https://doi.org/https://doi.org/10.1016/j.carbpol.2008.11.036
    5. Canilha L, Chandel AK, Suzane dos Santos Milessi T, et al (2012) Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation. J Biomed Biotechnol 2012:989572. https://doi.org/10.1155/2012/989572
    6. Chandel AK, Antunes FAF, Anjos V, et al (2014) Bioconversion of sugarcane biomass into ethanol: An overview about composition, pre-treatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Biotechnol Biofuels 7:1–17
    7. Chang KL, Thitikorn-amorn J, Hsieh JF, et al (2011) Enhanced enzymatic conversion with freeze pre-treatment of rice straw. Biomass and Bioenergy 35:90–95. https://doi.org/10.1016/j.biombioe.2010.08.027
    8. Chen M, Zhang X, Liu C, et al (2014) Approach to renewable lignocellulosic biomass film directly from bagasse. ACS Sustain Chem Eng 2:1164–1168. https://doi.org/10.1021/sc400555v
    9. Chen WH, Tu YJ, Sheen HK (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pre-treatment with microwave-assisted heating. Appl Energy 88:2726–2734. https://doi.org/10.1016/j.apenergy.2011.02.027
10. Chirayil CJ, Joy J, Mathew L, et al (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crops Prod 59:27–34. https://doi.org/https://doi.org/10.1016/j.indcrop.2014.04.020

11. Corredor DY, Salazar JM, Hohn KL, et al (2009) Evaluation and characterization of forage Sorghum as feedstock for fermentable sugar production. Appl Biochem Biotechnol 158:164–179. https://doi.org/10.1007/s12010-008-8340-y

12. Da Costa Correia JA, Júnior JEM, Gonçalves LRB, Rocha MVP (2013) Alkaline hydrogen peroxide pre-treatment of cashew apple bagasse for ethanol production: Study of parameters. Bioresour Technol 139:249–256. https://doi.org/https://doi.org/10.1016/j.biortech.2013.03.153

13. Da Silva AS, Inoue H, Endo T, et al (2010) Milling pre-treatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409. https://doi.org/https://doi.org/10.1016/j.biortech.2010.05.008

14. De Guilherme AA, Dantas PVF, Soares JCJ, et al (2017) Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose. Brazilian J Chem Eng 34:937–947. https://doi.org/10.1590/0104-6632.20170344s20160225

15. El-Mashad HM, Van Loon WKP, Zeeman G, et al (2003) Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study. Rev Environ Sci Biotechnol 2:53–66. https://doi.org/10.1023/B:RESB.0000022933.77648.09

16. Elfeki M, Elbestawy E, Tkadlec E (2017) Bioconversion of Egypt’s agricultural wastes into biogas and compost. Polish J Environ Stud 26:2445–2453. https://doi.org/10.15244/pjoes/69938

17. A. El-dorghamy (2007) Energy and Environmental Management in Egypt Bioenergy CDM projects. Science, 80.

18. Farghaly A, Elsamadony M, Ookawara S, Tawfik A (2017) Bioethanol production from paperboard mill sludge using acid-catalyzed bio-derived choline acetate ionic liquid pre-treatment followed by fermentation process. Energy Convers Manag 145:255–264. https://doi.org/10.1016/j.enconman.2017.05.004

19. Rojith G, Bright Singh I. S. (2012) Delignification, cellulose crystallinity change and surface modification of coir pith induced by oxidative delignification treatment. Mater Sci 3:46–55

20. Guo GL, Hsu DC, Chen WH, et al (2009) Characterization of enzymatic saccharification for acid-pre-treated lignocellulosic materials with different lignin composition. Enzyme Microb Technol 45:80–87. https://doi.org/10.1016/j.enzmictec.2009.05.012

21. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pre-treatment. Renew Sustain Energy Rev 27:77–93. https://doi.org/10.1016/j.rser.2013.06.033

22. Harmsen P, Huijgen W, López L, Bakker R (2010) Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. Food Biobased Res 1–49. https://doi.org/10.1016/j.psep.2011.08.004

23. Irfan M, Gulsher M, Abbas S, et al (2011) Effect of various pre-treatment conditions on enzymatic saccharification. Songklanakarin J Sci Technol 33:397–404

24. Jackson de Moraes Rocha G, Martin C, Soares IB, et al (2011) Dilute mixed-acid pre-treatment of sugarcane bagasse for ethanol production. Biomass and Bioenergy 35:663–670. https://doi.org/https://doi.org/10.1016/j.biombioe.2010.10.018

25. Jeong HS, Jang SK, Kim HY, et al (2016) Effect of freeze storage on hemicellulose degradation and enzymatic hydrolysis by dilute-acid pre-treatment of Mongolian oak. Fuel 165:145–151. https://doi.org/10.1016/j.fuel.2015.10.058

26. Karagöz P, Rocha I V, Özkan M, Angelidaki I (2012) Alkaline peroxide pre-treatment of rapeseed straw for enhancing bioethanol production by Same Vessel Saccharification and Co-Fermentation. Bioresour Technol 104:349–357. https://doi.org/https://doi.org/10.1016/j.biortech.2011.10.075

27. Li P, Cai D, Zhang C, et al (2016) Comparison of two-stage acid-alkali and alkali-acid pre-treatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Bioresour Technol 221:636–644. https://doi.org/https://doi.org/10.1016/j.biortech.2016.09.075

28. Lin Y, Wang D, Wu S, Wang C (2009) Alkali pre-treatment enhances biogas production in the anaerobic digestion of pulp and paper sludge. J Hazard Mater 170:366–373. https://doi.org/10.1016/j.jhazmat.2009.04.086

29. Lv X, Lin J, Luo L, et al (2018) Enhanced enzymatic saccharification of sugarcane bagasse pre-treated by sodium methoxide with glycerol. Bioresour Technol 249:226–233. https://doi.org/10.1016/j.biortech.2017.09.137

30. Maryana R, Ma’rifatun D, Wheni IA, et al (2014) Alkaline pre-treatment on sugarcane bagasse for bioethanol production. Energy Procedia 47:250–254. https://doi.org/10.1016/j.egypro.2014.01.221

31. Mulinari DR, Voorwald HJC, Cioffi MOH, et al (2009) Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr Polym 75:317–321. https://doi.org/https://doi.org/10.1016/j.carbpol.2008.07.028

32. Nakhla DA, Hassan MG, Haggar S El (2013) Impact of biomass in Egypt on climate change. Nat Sci 05:678–684. https://doi.org/10.4236/ns.2013.56083

33. Owczuk M, Matuszewska A, Filip A, Prachnio P (2014) The study of effectiveness of disintegration of biomass intended to methane fermentation process. Automot Ind Inst

34. Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mater Bioenergy 2:25–32. https://doi.org/10.1166/jbmb.2008.005

35. Rabelo SC, Amezquita Fonseca NA, Andrade RR, et al (2011a) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pre-treated with lime and alkaline hydrogen peroxide. Biomass and Bioenergy 35:2600–2607. https://doi.org/10.1016/j.biombioe.2011.02.042

36. Rabelo SC, Carrere H, Filho RM, Costa AC (2011b) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour Technol 102:7887–7895. https://doi.org/10.1016/j.biortech.2011.05.081

37. Rainey TJ (2009) A study into the permeability and compressibility of Australian bagasse pulp. PhD thesis, Queensl Univ Technol

38. Rasmey A-HM, Hassan HH, Aboseidah AA, Abdul- Wahid OA (2017) Chemical pre-treatment and saccharification of sugarcane bagasse for bioethanol fermentation by Saccharomyces cerevisiae Y17 -KP096551. Basic Res J Microbiol 4:1–11

39. Reis ALS, Damilano ED, Menezes RSC, de Morais Jr. MA (2016) Second-generation ethanol from sugarcane and sweet sorghum bagasses using the yeast Dekkera bruxellensis. Ind Crops Prod 92:255–262. https://doi.org/https://doi.org/10.1016/j.indcrop.2016.08.007

40. Rooni V, Raud M, Kikas T (2017) The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries. Energy 139:1–7. https://doi.org/10.1016/j.energy.2017.07.146

41. Saha BC, Cotta MA (2014) Alkaline Peroxide Pretreatment of Corn Stover for Enzymatic Saccharification and Ethanol Production. Ind Biotechnol 10:34–41. https://doi.org/10.1089/ind.2013.0022

42. Selig MJ, Vinzant TB, Himmel ME, Decker SR (2009) The effect of lignin removal by alkaline peroxide pre-treatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 155:397–406. https://doi.org/10.1007/s12010-008-8511-x

43. Silverstein RA, Chen Y, Sharma-Shivappa RR, et al (2007) A comparison of chemical pre-treatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011. https://doi.org/10.1016/j.biortech.2006.10.022

44. Soccol CR, de Souza Vandenberghe LP, Medeiros ABP, et al (2010) Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour Technol 101:4820–4825. https://doi.org/https://doi.org/10.1016/j.biortech.2009.11.067

45. Timung R, Mohan M, Chilukoti B, et al (2015) Optimization of dilute acid and hot water pre-treatment of different lignocellulosic biomass: A comparative study. Biomass and Bioenergy 81:9–18. https://doi.org/10.1016/j.biombioe.2015.05.006

46. Trache D, Hussin MH, Hui Chuin CT, et al (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93:789–804. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.09.056

47. Tuankriangkrai S, Benjakul S (2010) Effect of Modified Tapioca Starch on the Stability of Fish Mince Gels Subjected to Multiple Freeze-Thawing. J Muscle Foods 21:399–416. https://doi.org/10.1111/j.1745-4573.2009.00190.x

48. Wang P, Chang J, Yin Q, et al (2015) Effects of thermo-chemical pre-treatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw. Bioresour Technol 194:165–171. https://doi.org/10.1016/j.biortech.2015.07.012

49. Weerachanchai P, Leong SSJ, Chang MW, et al (2012) Improvement of biomass properties by pre-treatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459. https://doi.org/10.1016/j.biortech.2012.02.023

50. Wójciak A, Kasprzyk H, Sikorska E, et al (2010) Changes in chromophoric composition of high-yield mechanical pulps due to hydrogen peroxide bleaching under acidic and alkaline conditions. J Photochem Photobiol a Chem 215:157–163. https://doi.org/https://doi.org/10.1016/j.jphotochem.2010.08.005

51. Zhang J, Ma X, Yu J, et al (2011) The effects of four different pre-treatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour Technol 102:4585–4589. https://doi.org/https://doi.org/10.1016/j.biortech.2010.12.093

Statistics
Article View: 435
PDF Download: 605
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.