[1] A. Ongel, J. Harvey, Analysis of 30 years of pavement temperatures using the enhanced integrated climate model (EICM), Pavement Res. Cent. (2004).
[2] C.E. Zapata, D. Andrei, M.W. Witczak, W.N. Houston, Incorporation of environmental effects in pavement design, Road Mater. Pavement Des. 8 (2007) 667–693.
[3] J. Chen, H. Wang, P. Xie, Pavement temperature prediction: Theoretical models and critical affecting factors, Appl. Therm. Eng. 158 (2019) 113755.
[4] J. Chen, H. Wang, M. Li, L. Li, Evaluation of pavement responses and performance with thermal modified asphalt mixture, Mater. Des. 111 (2016) 88–97.
[5] H. Wang, I.L. Al-Qadi, Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses under moving vehicular loading, J. Eng. Mech. 139 (2013) 29–38.
[6] I.L. Al-Qadi, H. Wang, Prediction of tire pavement contact stresses and analysis of asphalt pavement responses: A decoupled approach, Asph. Paving Technol. Assoc. Asph. Technol. 80 (2011) 289.
[7] M. Islam, Thermal Fatigue Damage of Asphalt Pavement. University of New Mexico, Albuquerque, (2015).
[8] Z. Khan, H.M. Faisal, R. Tarefder, Fracture toughness measurement of asphalt concrete by nanoindentation, in: ASME Int. Mech. Eng. Congr. Expo., American Society of Mechanical Engineers, 2017: p. V010T13A010.
[9] M.R. Islam, S. Ahsan, R.A. Tarefder, Modeling temperature profile of hot-mix asphalt in flexible pavement, Int. J. Pavement Res. Technol. 8 (2015) 47.
[10] D. Annaratone, Engineering heat transfer, Springer Berlin Heidelberg, 2010. https://doi.org/10.1007/978-3-642-03932-4.
[11] E.O. Lukanen, R. Stubstad, R.C. Briggs, B. Intertec, Temperature predictions and adjustment factors for asphalt pavement, Turner-Fairbank Highway Research Center, 2000.
[12] D.-H. Chen, J. Bilyeu, H.-H. Lin, M. Murphy, Temperature correction on falling weight deflectometer measurements, Transp. Res. Rec. 1716 (2000) 30–39.
[13] M. Li, H. Wang, G. Xu, P. Xie, Finite element modeling and parametric analysis of viscoelastic and nonlinear pavement responses under dynamic FWD loading, Constr. Build. Mater. 141 (2017) 23–35.
[14] Aa. AASHTO, Mechanistic-empirical pavement design guide: A manual of practice, AAoSHaT Off. Ed. (2008).
[15] A.D.W. Nuijten, Runway temperature prediction, a case study for Oslo Airport, Norway, Cold Reg. Sci. Technol. 125 (2016) 72–84.
[16] M. Kangas, M. Heikinheimo, M. Hippi, RoadSurf: a modelling system for predicting road weather and road surface conditions, Meteorol. Appl. 22 (2015) 544–553.
[17] J. Shao, P.J. Lister, An automated nowcasting model of road surface temperature and state for winter road maintenance, J. Appl. Meteorol. 35 (1996) 1352–1361.
[18] L.-P. Crevier, Y. Delage, METRo: A new model for road-condition forecasting in Canada, J. Appl. Meteorol. 40 (2001) 2026–2037.
[19] B.H. Sass, A numerical model for prediction of road temperature and ice, J. Appl. Meteorol. 31 (1992) 1499–1506.
[20] R.H. Ramadhan, H.I.A.-A. Wahhab, Temperature variation of flexible and rigid pavements in Eastern Saudi Arabia, Build. Environ. 32 (1997) 367–373.
[21] M. Solaimanian, T.W. Kennedy, predicting maximum pavement surface temperature using maximum air temperature and hourly solar radiation, Transp. Res. Rec. (1993) 1.
[22] Å. Hermansson, Simulation model for calculating pavement temperatures including maximum temperature, Transp. Res. Rec. 1699 (2000) 134–141.
[23] D. Wang, simplified analytical approach to predicting asphalt pavement temperature, J. Mater. Civ. Eng. 27 (2015) 4015043.
[24] D. Wang, Prediction of time-dependent temperature distribution within the pavement surface layer during FWD testing, J. Transp. Eng. 142 (2016) 6016002.
[25] J. Chen, H. Wang, H. Zhu, Chen et al., 2017], Appl. Therm. Eng. 113 (2017) 739–748.
[26] A. Asefzadeh, L. Hashemian, A. Bayat, Development of statistical temperature prediction models for a test road in Edmonton, Alberta, Canada, Int. J. Pavement Res. Technol. 10 (2017) 369–382.
[27] Z.H. Khan, M.R. Islam, R.A. Tarefder, Determining asphalt surface temperature using weather parameters, J. Traffic Transp. Eng. (English Ed. 6 (2019) 577–588.
[28] H.F. Hassan, A.S. Al-Nuaimi, R. Taha, T.M.A. Jafar, Development of asphalt pavement temperature models for Oman, J. Eng. Res. [TJER]. 2 (2005) 32–42.
[29] I. Adwan, A. Milad, N.H. Abdullah, I. Widyatmoko, M. Mubaraki, M.R.M.A.T. Yazid, N.U.R.I.M.D. Yusoff, predicting asphalt pavement temperature by using neural network and multiple linear regression approach in the eastern Mediterranean region, (n.d.).
[30] G.S. Moussa, M. Owais, Modeling Hot-Mix asphalt dynamic modulus using deep residual neural Networks: Parametric and sensitivity analysis study, Constr. Build. Mater. 294 (2021) 123589.
[31] B.J. Dempsey, M.R. Thompson, A heat transfer model for evaluating frost action and temperature-related effects in multilayered pavement systems, Highw. Res. Rec. (1970).
[32] Q. Li, D.X. Xiao, K.C.P. Wang, K.D. Hall, Y. Qiu, Mechanistic-empirical Pavement Design Guide (MEPDG): a bird’s-eye view, J. Mod. Transp. 19 (2011) 114–133.
[33] G.S. Moussa, M. Owais, Pre-trained deep learning for hot-mix asphalt dynamic modulus prediction with laboratory effort reduction, Constr. Build. Mater. 265 (2020) 120239.
[34] T. Abdel-Wahed, H. Al Nageim, Investigating the effects of cement and cement kiln dust as a filler on the mechanical properties of cold bituminous emulsion mixtures, Int. J. Civ. Eng. Technol. 7 (2016) 441–453.
[35] B.B. Teltayev, K. Aitbayev, Modeling of transient temperature distribution in multilayer asphalt pavement, Geomech. Eng. 8 (2015) 133–152.
[36] R.B. Mallick, B.-L. Chen, A. Veeraragavan, G.L. Babu, S. Bhowinick, Reduction of Pavement High Temperature with the Use of Thermal Insulation Layer and High Reflectivity Surface., Int. J. Pavement Res. Technol. 7 (2014).
[37] B.A. Young, G. Falzone, Z. She, A.M. Thiele, Z. Wei, N. Neithalath, G. Sant, L. Pilon, Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials, Constr. Build. Mater. 147 (2017) 466–477.
[38] D. Yinfei, H. Zheng, C. Jiaqi, L. Weizheng, A novel strategy of inducing solar absorption and accelerating heat release for cooling asphalt pavement, Sol. Energy. 159 (2018) 125–133.
[39] T.A. Abdel-Wahed, N.K. Rashwan, Application of Cement Dust and OPC as Mineral Filler in the binder Hot Mix Asphalt, Eng. Infrastruct. 15 (2016).
[40] J. Gui, P.E. Phelan, K.E. Kaloush, J.S. Golden, Impact of pavement thermophysical properties on surface temperatures, J. Mater. Civ. Eng. 19 (2007) 683–690.
[41] W. ShengYue, Z. QiYang, D. YingNa, S. PeiDong, Unidirectional heat-transfer asphalt pavement for mitigating the urban heat island effect, J. Mater. Civ. Eng. 26 (2014) 812–821.
[42] J. Chen, H. Wang, H. Zhu, Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect, Appl. Therm. Eng. 113 (2017) 739–748.
[43] J. Yang, Z.-H. Wang, K.E. Kaloush, H. Dylla, Effect of pavement thermal properties on mitigating urban heat islands: A multi-scale modeling case study in Phoenix, Build. Environ. 108 (2016) 110–121.
[44] D. Feng, J. Yi, D. Wang, Performance, and thermal evaluation of incorporating waste ceramic aggregates in wearing layer of asphalt pavement, J. Mater. Civ. Eng. 25 (2013) 857–863.
[45] P.K. Dehdezi, R.M. Hall, A. Dawson, Thermo-Physical Optimisation of Specialized Concrete Pavement Materials for Surface Heat Energy Collection and Shallow Heat Storage Applications, (2011).
[46] H. Wu, B. Sun, Z. Li, J. Yu, Characterizing thermal behaviors of various pavement materials and their thermal impacts on ambient environment, J. Clean. Prod. 172 (2018) 1358–1367.
[47] H. Li, J. Harvey, D. Jones, Multi-dimensional transient temperature simulation and back-calculation for thermal properties of building materials, Build. Environ. 59 (2013) 501–516.
[48] H.-G. Kang, Y. ZHENG, Y. CAI, Y. LIU, Regression Analysis of Actual Measurement of Temperature Field Distribution Rules of Asphalt Pavement [J], China J. Highw. Transp. 6 (2007).
[49] L. Wei, S. Kayser, F. Wellner, Impact of surface temperature on fatigue damage in asphalt pavement, J. Highw. Transp. Res. Dev. (English Ed. 7 (2013) 1–6.
[50] S. Biswas, L. Hashemian, A. Bayat, Investigation on seasonal variation of thermal-induced strain in flexible pavements based on field and laboratory measurements, Int. J. Pavement Res. Technol. 9 (2016) 354–362.
[51] M.M. Elsayed, Parametric study of a direct solar-operated, multiple-effect, diffusion still, Sol. Wind Technol. 3 (1986) 95–101.
[52] S. V Patankar, Numerical heat transfer and fluid flow (Book), Washington, DC, Hemisph. Publ. Corp., 1980. 210 P. (1980).
[53] J. Luca, D. Mrawira, New measurement of thermal properties of superpave asphalt concrete, J. Mater. Civ. Eng. 17 (2005) 72–79.
[54] J. Côté, J.-M. Konrad, Thermal conductivity of base-course materials, Can. Geotech. J. 42 (2005) 61–78.
[55] S. Lu, T. Ren, Y. Gong, R. Horton, an improved model for predicting soil thermal conductivity from water content at room temperature, Soil Sci. Soc. Am. J. 71 (2007) 8–14.
[56] C. Marshall, R. Meier, M. Welch, Seasonal temperature effects on flexible pavements in Tennessee, Transp. Res. Rec. 1764 (2001) 89–96.