1. Bayati, H. and M.H. Bagheripour, Shaking table study on liquefaction behaviour of different saturated sands reinforced by stone columns. Marine Georesources & Geotechnology, 2019. 37(7): p. 801-815.
2. Elsawy, M.B.J.E.J.o.G.E., Conventional and Geogrid-encased Stone Piles Improved Soft Ground under an Embankment. 2017. 22: p. 1561-1573.
3. Jayapal, J. and K. Rajagopal, 3D Numerical Analysis of Embankments supported by Ordinary and Encased Granular Columns.
4. Kalantari, B. and Y. Tavan, 2D FEM Analysis of Stone Column-Supported Embankment and Studying the Effects of Various Parameters on Its Stability Using Cam-Clay Model.
5. Yuan, Q. and Z.-D. Cui, Two-Dimensional Numerical Analysis of the Subgrade Improved By Stone Columns in the Soft Soil Area. Marine Georesources & Geotechnology, 2016. 34(1): p. 79-86.
6. Hasan, M., N.J.C. Samadhiya, and Geotechnics, Performance of geosynthetic-reinforced granular piles in soft clays: Model tests and numerical analysis. 2017. 87: p. 178-187.
7. Hosseinpour, I., et al., Numerical evaluation of a granular column reinforced by geosynthetics using encasement and laminated disks. 2014. 42(4): p. 363-373.
8. Zhang, X., et al., 3D coupled mechanical and hydraulic modeling of geosynthetic encased stone column-supported embankment over soft clay. 2021. 39(11): p. 1285-1295.
9. Chen, J.-F., et al., Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment. 2015. 43(5): p. 424-431.
10. Abusharar, S.W. and J. Han, Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay. Engineering Geology, 2011. 120(1): p. 103-110.
11. Dar, L.A. and M.Y.J.T.I.G. Shah, Deep-seated slope stability analysis and development of simplistic FOS evaluation models for stone column-supported embankments. 2021. 8(2): p. 203-227.
12. Jayapal, J. and K. Rajagopal. Numerical Study of Embankments Supported by Ordinary and Encased Granular Columns in Peat. in Advances in Computer Methods and Geomechanics: IACMAG Symposium 2019 Volume 2. 2020. Springer Nature.
13. Ng, K., Y.J.J.o.E.S. Chew, and Technology, Slope stability analysis of embankment over stone column improved ground. 2019. 14(6): p. 3582-3596.
14. Pandey, B., S. Rajesh, and S. Chandra, 3-D Finite Element Study of Embankment Resting on Soft Soil Reinforced with Encased Stone Column, in Problematic Soils and Geoenvironmental Concerns. 2021, Springer. p. 451-465.
15. Yoo, C. and S.-B.J.G.I. Kim, Numerical modeling of geosynthetic-encased stone column-reinforced ground. 2009. 16(3): p. 116-126.
16. Zheng, G., et al., Influence of geosynthetic reinforcement on the stability of an embankment with rigid columns embedded in an inclined underlying stratum. 2021. 49(1): p. 180-187.
17. Zhou, Y., et al., Evaluation of geosynthetic-encased column-supported embankments with emphasis on penetration of column toe. 2021. 132: p. 104039.
18. Han, J., et al., Evaluation of deep-seated slope stability of embankments over deep mixed foundations, in GeoSupport 2004: Drilled Shafts, Micropiling, Deep Mixing, Remedial Methods, and Specialty Foundation Systems. 2004. p. 945-954.
19. Manual, P.D.C.V.-T., 2021.
20. Brinkgreve, R., W. Broere, and D.J.T.N. Waterman, Plaxis, Finite element code for soil and rock analyses, users manual. 2006.
21. Phutthananon, C., et al., Numerical study of the deformation performance and failure mechanisms of TDM pile-supported embankments. 2021. 30: p. 100623.
22. Liu, K.W. and R.K. Rowe, Performance of reinforced, DMM column-supported embankment considering reinforcement viscosity and subsoil’s decreasing hydraulic conductivity. Computers and Geotechnics, 2016. 71: p. 147-158.
23. Jamsawang, P., et al., Three-dimensional numerical analysis of a DCM column-supported highway embankment. 2016. 72: p. 42-56.
24. Wang, A. and D. Zhang, Lateral Response and Failure Mechanisms of Rigid Piles in Soft Soils Under Geosynthetic-Reinforced Embankment. International Journal of Civil Engineering, 2020. 18(2): p. 169-184.
25. Dar, L.A., M.Y.J.G. Shah, and G. Engineering, Three dimensional numerical study on behavior of geosynthetic encased stone column placed in soft soil. 2021. 39(3): p. 1901-1922.
26. Lo, S., et al., Geosynthetic-encased stone columns in soft clay: a numerical study. 2010. 28(3): p. 292-302.
27. Naseer, S., et al., Laboratory and numerical based analysis of floating sand columns in clayey soil. 2019. 10(1): p. 1-16.
28. Huang, B., et al., Numerical study of reinforced soil segmental walls using three different constitutive soil models. 2009. 135(10): p. 1486-1498.
29. Leshchinsky, D. and C.J.G.I. Vulova, Numerical investigation of the effects of geosynthetic spacing on failure mechanisms in MSE block walls. 2001. 8(4): p. 343-365.
30. Hosseinpour, I., et al., A comparative study for the performance of encased granular columns. 2019. 11(2): p. 379-388.
31. Parsa-Pajouh, A., et al., Trial embankment analysis to predict smear zone characteristics induced by prefabricated vertical drain installation. 2014. 32(5): p. 1187-1210.
32. Schanz, T., P. Vermeer, and P.G. Bonnier, The hardening soil model: formulation and verification, in Beyond 2000 in computational geotechnics. 2019, Routledge. p. 281-296.
33. Brinkgreve, R.B., et al., Plaxis material models manual. 2020.
34. Almeida, M. and M. Marques, Design and Performance of Embankments on Very Soft Soils. 2013.
35. Jeong, S., et al., Time-dependent behavior of pile groups by staged construction of an adjacent embankment on soft clay. 2004. 41(4): p. 644-656.
36. Debbabi, I.E., et al., Numerical modeling of encased stone columns supporting embankments on sabkha soil. 2020. 6(8): p. 1593-1608.
37. Vibhoosha, M., A. Bhasi, and S. Nayak, Effect of geosynthetic stiffness on the behaviour of encased stone columns installed in lithomargic clay, in Advances in Computer Methods and Geomechanics. 2020, Springer. p. 197-207.