References
[1] D. Litalien et al., “A low teperature Differential stirling engine foe power generation,” Bifurcations, vol. 45, no. 1. pp. 1–19, 2009, [Online]. Available: http://dx.doi.org/10.1016/j.refiri.2017.07.010%0Ahttp://coop-ist.cirad.fr%0Ahttp://www.theses.fr/2014AIXM5048%0Ahttp://www.cairn.info/revue-management-et-avenir-2010-6-page-84.htm%0Ahttp://www.cairn.info/bifurcations--9782707156006-page-349.htm%0Ahttp://w.
[2] Z. Bao-sheng, C. Ning, and S. Zheng-chang, “New technology for coalbed methane power generation based on Stirling engine driven by porous burner,” Procedia Earth and Planetary Science, vol. 1, no. 1. pp. 1480–1483, 2009, doi: 10.1016/j.proeps.2009.09.228.
[3] C. H. Cheng and Y. J. Yu, “Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism,” Renewable Energy, vol. 35, no. 11. pp. 2590–2601, 2010, doi: 10.1016/j.renene.2010.04.002.
[4] M. Tarawneh, F. Al-Ghathian, M. A. Nawafleh, and N. Al-Kloub, “Numerical Simulation and Performance Evaluation of Stirling Engine Cycle,” Jordan Journal of Mechanical and Industrial Engineering, Vol. 4, November 2010.
[5] M. H. Ahmadi, M. A. Ahmadi, M. Mehrpooya, and M. A. Rosen, “Using GMDH neural networks to model the power and torque of a stirling engine,” Sustainability (Switzerland), vol. 7, no. 2. pp. 2243–2255, 2015, doi: 10.3390/su7022243.
[6] A. Chmielewski, S. Radkowski, R. Gumiński, and P. Szulim, “Experimental research and application possibilities of microcogeneration system with Stirling engine,” Experimental research and application possibilities of microcogeneration system with Stirling engine, vol. 95, no. 1. pp. 14–22, 2015.
[7] B. Hoegel, “Thermodynamics-Based Design of Stirling Engines For Low-Temperature Heat Sources” Ph.D. thesis, Mech. Dep., University of Canterbury, New Zealand, 2014.
[8] C. Alvarez-Herrera, A. R. Moreno-Nieto, and J. G. Murillo-Ramírez, “Study of temperature distribution over a Stirling engine by using the schlieren technique,” Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI),2015, DOI centre 10.1007/978-3-319-28513-9.
[9] Ke Li et al., “Analysis of Stirling engine heater head with liquid NaK for heat transportation,” Research Gate, 2012, [Online]. Available: https://www.researchgate.net/publication/291299162.
[10] H. Karabulut, H. Solmaz, and F. Aksoy, “A numerical study for Stirling engine heater development,” Heat Transf. Res., vol. 48, no. 6, pp. 477–498, 2017, doi: 10.1615/HeatTransRes.2016011033.
[11] D. Thombare, S. P. Kumbhar, D. G. Thombare, and N. K. Chhapkhane, “CFD Simulation of Stirling Engine Heater,” International Journal of Engineering & Science Research, vol. 3, pp. 3077–3084, 2013, [Online]. Available: www.ijesr.org.
[12] T. Akazawa, K. Hirata, T. Hoshino, H. Kita, and K. Fujiwara, “Design of Ceramics Heater for Stirling Engine,” Icdes. 2014.
[13] K. Kumar and B. T. Kuzhiveli, “Parametric investigation of the hybrid regenerator of a Stirling cryocooler. ” Indian Journal of Cryogenics, vol. 41, pp. 81-85, (2016).
[14] S. K. Andersen, H. Carlsen, and P. G. Thomsen, “Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations,” Energy Convers. Manag., vol. 47, no. 7–8, pp. 894–908, May 2006, doi: 10.1016/j.enconman.2005.06.006.
[15] R. Gheith, F. Aloui, and S. Ben Nasrallah, “Study of the regenerator constituting material influence on a gamma type Stirling engine,” J. Mech. Sci. Technol., vol. 26, no. 4, pp. 1251–1255, Apr. 2012, DOI: 10.1007/s12206-012-0218-9.
[16] C. P. Speer, D. A. Miller, C. J. A. Stumpf, J. P. Michaud, and D. S. Nobes, “Modification of an ST05G-CNC stirling engine to use a low temperature heat source,” 15th International Energy Conversion Engineering Conference, 2017. 2017, doi: 10.2514/6.2017-4793.
[17] S. Alfarawi, R. AL-Dadah, and S. Mahmoud, “Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation,” Energy Convers. Manag. 124, pp. 130–140, 2016.
[20] Wandong Zhao, Ruijie Li, Hailing Li, Ying Zhang, Songgang Qiu, "Numerical analysis of fluid dynamics and thermodynamics in a Stirling engine", Applied Thermal Engineering, 189 (2021) 116727, Doi.org/10.1016/j.applthermaleng. 2021.116727.
[21] ANSYS FLUENT User’s Guide, chapter 7: Porous Media Conditions, Release 16.0 © ANSYS, Inc. January 2015
[22] S.C. Costa, I. Barrino, M. Tutar, J.A. Esnaola, H. Barrutia, "The thermal non-equilibrium porous media modeling for CFD study of woven wire matrix of a Stirling regenerator," Energy Convers. Manage. 89 PP. 473–483, 2015.