A Proposed Framework for Automated Evaluation of Architectural Spatial Configurations Using Fuzzy Logic Approach

Received 5 August 2022; Revised 20 November 2022; Accepted 21 November 2022

Ahmed M. A. Nady¹ Doaa K. Hassan² Ayman Assem³

Keywords Fuzzy logic, Space layout planning, automated evaluation.

Abstract

Architectural spatial layout configurations are the result of a complex design process aiming at managing the most advantageous location of all spaces with certain objectives and constraints. In the presence of broadening the scope of understanding spatial configuration, its role, and its composition in scope of various programmatic, ideological, formal, and engineering aspects, embedded in a complex theoretical background. The aspect of evaluation was the least apparent and there were significant limitations to what can be achieved there. This paper is aiming at evaluating functionality (such as quality of space, use, Access, adjacency, non-adjacency, proximity etc.), build quality (such as performance, efficiency, cost, etc.), impact (such as user performance, internal quality, urban, social, and cultural integration, etc.), indication of the quality of the architectural space design and the quality of the layout configuration. To achieve this research goal, we devised all possible spatial relation, affecting these qualities, as inputs for a given architectural space using descriptive rule blocks. We defined this fuzzy logic system for residential spaces that has been blended into a layout to evaluate the layout configuration. We defined all input variables, output variables, and fuzzy sets, and present space-space relations using membership functions. The paper proposes a framework based on fuzzy logic approach for automated evaluation of architectural spatial layout configurations.

1. Introduction

Historically, intuitive design has been dominating as the most frequent form of architectural practice. However intuitive mechanisms are insufficient when it comes to managerial abilities combination such as technical, technological, aesthetical, social, and economical aspects. Every design process in architecture is a reflection of social life and, at the same time, an attempt to process various types of data as well as transforming physical components to

¹ Teaching Assistant, Department of Architecture, Faculty of Engineering, Ain Shams University, Cairo, Egypt

https://doi.org/10.21608/JESAUN.2022.154553.1159 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

² Associate Professor, Department of Architecture, Faculty of Engineering, Ain Shams University, Cairo, Egypt

³ Associate Professor, Department of Architecture, Faculty of Engineering, Ain Shams University, Cairo, Egypt

improve human-centered environment. It is necessary to define the aim of this paper being a prolegomenon for understanding that evaluation of The Output Quality of design process as a decision-making process of a complex nature that is relative rather than being absolute. Therefore, determining the quality of the output is complex in presence of several critical aspects of The Evaluation Criteria. Nonetheless, several tools have been developed with different approaches to evaluation to address the issue of evaluation, Design Quality Indicator (DQI) [7], AEDET Evolution (Achieving Excellence Design Evaluation Toolkit) [8], Design Excellence Evaluation Process (DEEP) [9], Housing Quality Indicator (HQI) [10],[11], Leadership in Energy & Environmental Design (LEED) [12], Building Research Establishment Environmental Assessment Method (BREEAM) [13], and Building Quality Assessment (BQA), All of them have a great reputation in scholarly publications and their actual frequency of use according to literature reviews as shown in table 1 [2], a study of the strengths and weakness in addition to a summary of Design assessment tools have been concluded in table 2. The success of the design while achieving the standards in any of these evaluation tools doesn't guarantee that it will pass the standards of the other evaluations at the same level. Thus, it can be concluded that the optimum design is a convergence in between all the standards of these tool. Consequently, there has always been a need for the presence of a percentage-based evaluation tool rather than the binary logic evaluation such as Fuzzy Logic Curve.

Fuzzy logic approaches are based, as opposed to classical two-valued logic that assumes only true or false propositions, on propositions that may be both partially true and partially false. The classical set demonstrates one and only true value for a finite number of logical variables. In fuzzy logic, however, input variables are passed into the fuzzy logic system as a fuzzy variable, presented as a vector of membership degrees, as they stem originally from a qualitative or linguistic source. Fuzzy logic systems have recently been proposed to address ambiguity in architectural design approaches and requirements, specifically, in managing uncertainty and soft qualities in spatial layout design. This paper presents Fuzzy logic curve as an approach to the automated evaluation of spatial layout configurations, by conducting the different spatial parameters of the space and identifying the spatial relations between these spaces, involving analyzing spatial characteristics and space-space relations to assess soft qualities such as quality of space, use, Access, adjacency, non-adjacency, proximity, performance, efficiency, cost, etc.

	DQI	AEDET	DEEP	HQI	LEED	BREEAM	BQA
1)Building	Education	Hospitals	Military	Housing	All	Housing	Office
Туре	al	(Health	Housing	(schemes)	types of	Eco-homes	buildings
	Buildings	Care			building	Office	
	in	facilities)			S	Schools	
	Specific.				(residen	Industrial	
	(Can also				tial to	build.	
	be used on				commer	Courts	
	wide				cial)	Healthcare	
						Prison Retail	

 Table 1: Design quality assessment tools review.

	DQI	AEDET	DEEP	HQI	LEED	BREEAM	BQA
	variety of					education	
	buildings)					(Other types	
						of buildings)	
	DQI, LEED	and BREEAN	M can be used f	for a wide van	riety of buil	dings, while the	e rest is
	related with	a specific bui	lding type.				
2)Aim of	-	-ADQ	-ADQ	-	-Green	-Sets the	-
Use	Architectu	Assessmen	Assessment	Measure	building	standard for	Performan
	ral	t -	-Generic	ment and	certifica	best practice	ce
	design	Benchmar	Checklist	assessmen	tion	for	assessmen
	quality	king		t of	system	sustainabilit	t
	(ADQ)			potential		У	
	assessmen			and			
	t			existing			
				house			
				schemes			
				based			
				ADQ	1 1	1	
	DQI, AEDI	ET, DEEP at	nd HQI aim t	o assess arc	hitectural (design quality.	LEED and
	BREEAM L	ry to set the s	standards for co		i green bui	langs, while B	QA anns to
3)Main	assess the po			s.			
Criteria	- Functional	- Functional	- Functionalit	-Location	- Sustaina	- Managemen	- Presentati
SubCriteria	ity Lise	ity Use	v Client	Vigual	ble Sites	t L ife cycle	on -Space
Subcriteria	Access	Access	Operation	Impact	-Water	cost Site	functionali
	Space -	Space -	Single	Open	Ffficien	investigation	ty - Access
	Build	Build	Living	space	CV -	-Health and	and
	Quality	Quality	Accommod	Routes	Energy	well Being	circulation
	Performan	Performan	ation	&movem	and	Lighting	-Business
	ce	ce	Innovation -	ent -Unit	Atmosp	Water Noise	services -
	Engineerin	Engineerin	Build	Size	here -	control -	Amenities
	g sys.	g sys	Quality	Layout	Material	Energy Co2	-Working
	Constructi	Constructi	Performanc	Noise,	s and	emissions	and
	on -Impact	on -Impact	e	light,	Resourc	Energy Use	environme
	Character	Character	Engineering	services,	es -	Noise	nt -Health
	&Innovati	&Innovati	sys Building	and	Indoor	control -	and safety
	on Urban	on Urban	Fabric	adaptabili	Environ	Transport	-Structural
	& social	&social	Innovation -	ty	mental	Public	considerati
	Integration	Integration	Impact	Accessibil	Quality	Transport	ons -
	Staff	Staff&	Context &	ity	-	Cyclist	manageabi
	Environm	Patient	estate	Sustainabi	Locatio	Deliveries -	lity
	ent	Environme	Planning	lity -	n&	Water	
		nt	Form &	External	linkages	Recycling	
			appearance	environm	-	Irrigation	
			Internal	ent Size	Awaren	sys	
			Environmen		ess	Materials	
			t		&educat	Ke-use	
			Conversatio		10n -	Insulation -	
			n of		Innovatı	Land use	
			buildings		on 1n	&Ecology	

	DQI	AEDET	DEEP	HQI	LEED	BREEAM	BQA			
			Sustainabilit		design -	Re-use				
			у		Regiona	Ecological				
					1	value				
					Priority.	Biodiversity				
						-Pollution				
						Water				
						sources				
						Refrigerant				
						leaks -				
						Innovation				
	The tools u	se adapted V	itruvian framev	vorks which	can be def	ined as functio	nality, build			
	quality and i	impact, extend	led with ecolog	ical approach	nes like sust	ainability, healt	h, wellbeing			
	and preserv	ing resources	for assessmen	nt of archited	ctural desig	gn quality. For	assessment,			
	design quali	ity is seen as	a degree of exe	cellence with	in the inter	section of the r	nain criteria			
	with their su	ıb-criteria.								
4)Adaptabi	General	General	General	General	General	Adaptability	No			
lity	adaptation	adaptation	adaptation	adaptation	adaptati	for each	adaptabilit			
/Flexibility					on	building	У			
						type				
	No flexibili	ty to change	or adapt the cr	iteria for dif	ferent tasks	s. General mod	ifications or			
	updates on	the system tak	ke time to get in	n action in fu	urther version	ons, which mak	es it hard to			
	adapt the to	ols case based	specific	1		1				
5)Methodol	Structured	Stand-	Stand Alone	Stand-	Online	Stand-alone	Software			
ogy	workshop,	alone	Forms	alone	certifica	forms	based			
	online	forms,	Workshops	forms	tion		survey			
	form, and	Workshop	(in some							
	questionna	S	cases)							
	ires									
	The tools m	ake assessmer	nt via standalon	e forms or in	some case	s with web base	d online			
	surveys/que	surveys/questionnaires to reflect stakeholders' priorities. DQI, AEDET and DEEP also use								
	workshops t	workshops to get individual priorities. LEED, BREEAM, BQA use threshold levels for								
	assessment	of quality.		24						
6)Scope of	Achieve	Evaluate	Identify and	Measure	Acceler	Energy and	Assessme			
Assessment	the best	the quality	minimize	ment and	ate the	sustainabilit	nt of			
	building	of design	risk in the	assessmen	adoptio	У	Performan			
	possible	111 haalthaana	design of	t OI	n oi		ce of a			
	based	huildinga	projects	potential	green		building			
	quanty.	buildings.	(MOD Building)	and	building					
			Building)	house	practice					
				nouse	8					
				based						
				quality						
	DOI DEEL	I DAFDET I	IOI assess the	design aug	l lity I FFF	and RRFAM	certificates			
	buildings re	lated to energy	TV USAGE and er	istainahility	while RO^{Δ}	assesses perfo	rmance of a			
	building		y usage and st	istaniaointy,	while DQP	assesses perio				
7)Phase of	All stages	All stages	All stages of	Design	A11	Design and	Post			
Building	of	of building	building	and in use	stages	in use	occupancy			
Process	building	process	process		of		evaluation			
	0	1	1		-					

	DQI	AEDET	DEEP	HQI	LEED	BREEAM	BQA			
	process	including	including all		building		(can be			
	including	all design	design		process		carried out			
	all design	stages.	stages.		includin		to design			
	stages.				g all		stages)			
					design					
					stages.					
	All tools cla	im that they c	an be used with	nin all stages	of building	process from b	riefing to in			
	use. Althoug	gh the tools ar	e introduced as	they can be	used in any	stages of the bu	uilding			
	process, the	y can be used	effectively in p	ost occupanc	y evaluatio	n (POE).				
8)Organiza	Internal	Internal	Internal and	Internal	Comme	Internal and	Internal			
tion	and	and	external	and	rcial	external	and			
(stakeholde	external	external	stakeholders	external	building	stakeholders	external			
rs)	stakeholde	stakeholde		stakehold	project		stakeholde			
	rs	rs		ers	stakehol		rs			
	(Especiall				ders or					
	y users)				project					
					team					
					member					
					S					
	The intention behind the tools on design quality is to get ideas for the stakeholders,									
	especially fr	om users, for	the assessment	of architectu	ral design o	quality. Getting				
	stakeholders	s ideas is a big	g plus to achiev	e success for	integrated	design teams, h	owever			
	transferring	ideas to desig	n process as kn	lowledge for	design tean	ns can be under	lined as			
	missing part	of the tools.	Tools generally	aim to score	a building	in general, rath	er than			
	transferring	knowledge to	design teams.							
9)Weightin	Likert/Rati	Likert/Rati	Likert/Ratin	Likert/Rat	Likert/R	Likert/Ratin	Likert/Rati			
g System	ng Scale	ng Scale	g Scale	ing Scale,	ating	g Scale	ng Scale			
				Yes/No	Scale					
				Questions						
	All the tools	use adapted l	Likert/rating sc	ale system fo	r assessme	nt. Some of the	n are using			
	verbal scale	verbal scales while others use point scaling system. HQI also asks Yes/No questions.								

Table 2: Design quality assessment tools review.

Strengths	Weaknesses
• Tools tend to be used for assessment of design	• Although the tools can be used for different
quality in a wide variety of buildings, although	types of buildings and for different phases of
there are still limitations. • Criteria selection	building processes, it is still a problem to adapt
mostly are based on a Vitruvian like framework	the underlying system of the pre-defined sets of
and sustainable principles often after extended	criteria (something all above mentioned tools
discussions and many iterations before these	have in common) for making a case base
terms were agreed upon. (Gann et al., 2003) •	specific design evaluation. • The tools have
Dewulf and van Meel (2004) stress that the	problems to contribute to design stages since
recognized importance of the built environment	they are not succeeded to make comparative
makes it necessary to discuss design quality with	assessment of design alternatives. • Most often
laymen, architects, government, and other	the tools must be used with expert facilitators, or
stakeholders. As evidence, there is a growing	are at least assumed to, which make assessment
intention of the tools to get stakeholders ideas,	process tough considering total numbers of

Strengths	Weaknesses
especially users, for assessment of architectural design quality. Reflecting stakeholders' priorities in building processes is a big plus to achieve success for integrated design teams.	stakeholders and time needed. • A big concern for all the tools reviewed is their weighting systems and their methodologies which they use for assessment. All the tools reviewed use a Likert/rating scale system, some of which use verbal judgments while the others use point system for scaling (HQI also uses Yes/No questions). Outcomes of the surveys related to assessment contain heterogeneous data since using this methodology it is not clearly known what the relative importance is of each criterion and sub-criteria to each other. • Another problem is the lack of consistency measurement. Consistency cannot be checked until a certain number of participants exist. As the tools intend to get also non-expert stakeholders' ideas, consistency should be considered, and inconsistent surveys should be avoided.

2. Space Layout Planning & Fuzzy Logic

To indicate the quality of space configuration during design phase of any project, many factors should be considered to evaluate the output of the design process to reach optimum design. Architects deal with many factors of space layout planning such as dimensional factors of each space including length, width, space orientation, and topological factors among different spaces such as adjacency and proximity as well [3]. Currently, architects solve these problems manually by sketches that represent space planning principles, then they refine these sketches to reach suitable space areas and proportions. While they are trying to deal with those constrains, a "strong" or "weak" relationship between two spaces might be defined in the conventional spatial relation matrix diagrams based. These relationships are typically defined generically and may discard a wide spectrum of parameters and variables which could affect other spatial relations, resulting in partially appropriate solutions for spatial configurations[4].

Space layout planning (SLP) is considered a difficult area of computer aided architectural design (CAAD), as the topological assignment and the dimensioning of space elements need to meet certain criteria and constraints. Critical difficulties include the complexity of design information and spaces relations, and the layering of multi-criteria optimization as well. Thus, applying suitable computational model may enhance structuring SLP via multi criteria decision making (MCDM) process[5]. In this respect, fuzzy systems could be appropriate to objectify such complicated and subjective decision-making process. Fuzzy logic and set theory were coined by Lotfi A. Zadeh in 1965 as an alternative for binary logic[6]. This approach allows partial belonging; values in the interval [1 - 0] from the highest level of

compatibility (1) to non-compatibility (0). Fuzzy logic approaches are based, as opposed to classical two-valued logic that assumes only true or false propositions, on propositions that may be both partially true and partially false as shown in fig. 1 [1].

Fig. 1: Difference between classical and fuzzy spatial relation input variables (Left: Classical set, right: Spatial relation input variables using fuzzy curves)

Following this notion, fuzzy inference system (FIS), which is a way of mapping an input space to an output space using fuzzy logic. FIS uses a collection of fuzzy membership functions and rules, instead of Binary logic, to reason about data. It is used in the framework to determine the value of quality indicators. Fuzzy inference interprets the values in the input vector based on user pre-defined rules and assigns values to the output vector as shown in fig. 2. Inputs are the parameters that could be taken into consideration while designing a layout configuration. For instance, the different parameters of the space such as dimensions, area, volume, window dimensions, window area, door dimensions and door area for a given space can be inputs for fuzzy system. Output is the space quality indicator value, which fluctuates between 0 -the lowest and 1 -the highest. It denotes the degree of preferability of space and its elements. It can be numerically formulated with 'indicator' in fuzzy Mathematics. When the space dimensions, area and volume reach the standard values, the output value of the space quality indicator will increase. When the input and output are granulated with membership functions (MFs: fuzzy subsets) conditional statements between them are written in the following form: If (input is MF x), then (output is MF y), like: "If the area is medium, then the space quality value is very high", "If the area is small, then the space quality value is very low", "If the area is large, then the space quality value is medium" as shown in fig. 3. Generally, more than one input is in the operation, and they are connected by logical operators (and, or not) where needed. The parameters and rules are not fixed, and they change to suit different layout configuration designs, which prompt the flexibility of the framework. The inference process determines an output by evaluating each rule, and the final output of the FIS is the weighted average of all rule outputs. In this way, each given space layout configuration has an indicator at the end, expressing their quality value. When the overall calculation process is completed, a list of outputs quality indicators is produced for each space and for overall layout configuration [1] [5].

Fig. 3: Fuzzy logic workflow and Rule blocks in fuzzy logic system

3. Research methodology and Limitations

This Research is relied on an explorative analysis using an inductive approach trying to propose structure a conceptual framework of automated evaluation of architectural spatial configurations using fuzzy logic approach. To achieve this framework, Firstly, the research reviewed the Current design evaluation tools –DQI, DEEP, AEDET, BREEAM, LEED and BQA, to be able to explore the different factors that affect Space layout planning (SLP). Secondly, extracting spatial inputs based on architectural standards. Moreover, defining spatial outputs based on similar design evaluation tools. Thus, we can define rule blocks which define the relation between inputs and outputs. Consequently, we can propose a full framework based on fuzzy logic-based approach that consists of Inputs, outputs and rules block which define the relation between them, to be able to evaluate the design.

the limitation of this paper pertains to building typology. We would propose a fuzzy system relatively simple and arbitrary residential spaces. Other building typologies and spaces have their complexities and will affect the nature and understanding of the described spatial inputs, outputs, and rule blocks, and hence the nature of the evaluation process itself. Scale of the individual spaces is also a significant factor and potential. The relations described in this paper, although demonstrated in the context of a small residential apartment, can be applied in principle to different scales, levels of detail, and relations, including but not limited to

furniture layout schemes in different spatial typologies, departmental spaces and zones, vertically stacked spaces in building configurations, urban neighborhoods, and clusters, etc.

4. Approach

To propose a fuzzy-based approach for the automated evaluation of architectural spatial configurations. We adopted the concept of design quality, more specifically, identifying the overall quality of design requirements for a given spatial layout configuration, such that spatial layout alternates can be evaluated comprehensively in a way that addresses the intended purpose (e.g. how is the functionality, build quality and impact) while considering trade-offs between multiple (non-homogeneous) spatial parameters that designers might not be necessarily aware of during the complex process of design. The basic workflow of using fuzzy based approach is consisting of three main steps (Spatial Inputs, Spatial Outputs & Rule Blocks) as shown in figure 3. It's needed to identify the basic constituents affecting the spatial criteria, we introduce notations for specific space entities that are perceived to inform the logic of the specifics of partial relations, inputs and outputs outlined in the next sections during the fuzzification and defuzzification process as well. Our basic assumption for these entities involved simple layout configurations for multiple spaces joined together to consisting of the layout configuration each of these spaces has openings on it as door and window. These include parameters such as space dimensions, area, center, corner points, door and window location and dimensions, viewing angles to and from the space, and some spatial relations between these spaces etc. Other entities including vertical circulation elements, internal walls and others are out of the scope and will be addressed in future work.

5. Spatial Inputs

To introduce the spatial layout configuration and the spatial relation between the spaces through the inputs and outputs, according to fuzzy logic rules, first we need to define the space and its elements that construct the space and their variables which are seen to inform space to space relations and spaces configuration in the fuzzification and defuzzification process. To initiate fuzzification, two levels of spatial input variables are created, and their associated fuzzy sets and membership functions based on the defined space entity notations as well. Firstly, Spatial input level Zero which is the definition of space entities. Secondly, spatial input level one which describes the function of the space, the spatial configuration between these spaces and the relation between the space and context. The codes for these Spatial input variables, calculation method and fuzzy sets (or descriptors) for all variables. Combination of these variables is used to define rule blocks and identify spatial outputs for a given layout configuration. Each of these variables computes a specific parameter for a given space. We identified the following sets of entities for a given space (ST), like the centroid of the space, corners of the space, lines between these corners, volume, and all openings in this volume.

Fig. 4: The modified workflow of using fuzzy logic approach

5.1. Spatial Inputs Level Zero

To introduce Spatial input, level zero is the first level of spatial inputs and can be defined as the pre-defined inputs variables which are used to define the space and its entities [6].

5.1.1. Defining Space Elements

The space elements parameters related to the basic definition of the space such as center point, corner points, lines of the walls, the volume, the openings to create a space and the parameters of this space such as the dimensions, area, volume, window dimensions, window area, door dimensions and door area for a given space. Notations include "Space center" (CS), "Space corners" (CR), "Space Lines" (L), "Space Volume" (V) and "Space Openings" (WD, DR). these parameters assumed based on the space elements in (form, space, and order) [15].

	Space Elements						
	Spatial Input	Code	Definition				
Α	IN0_001_CENTER	CS	Centre of space				
В	IN0_002_CORNERS	CR	Corners of space				
С	IN0_003_LINES	L	Lines of space				
D	IN0_004_VOLUME	V	Volume of space				
Е	IN0_005_OPENING	DR & WD	Door & window opening				

 Table 3: Space elements as spatial inputs level zero definitions

5.1.2. Definition of The Space

the space elements definition parameters related to the basic definition of the space include the space type, dimensions, area, volume, window dimensions, window area, door dimensions and door area for a given space. Notations include "Space Type" (ST), "Space dimensions" (W, D, H), "Space Area" (A), "Space Volume" (V), "window dimensions" (WD_W, WD_H), "window Area" (WD_A), "Door dimensions" (DR_W, DR_H) and "Door Area" (DR_A). these parameters assumed based on architectural standards for spaces (Time Saver [16][17], neufert [18], and metric handbook [19]). Descriptors (or "fuzzy sets") were identified for these variables to describe spatial input based on the computed method. For example, "low", "medium" and "high" descriptors were used to describe space area. "Squarish," "rectangular" and "linear" configuration descriptors were used to describe space on the associated degree of membership of the linguistic term for any value of the spatial input variable. A collective graph is typically used to visualize the membership functions of all descriptors for a given input variable [5].

Table 5: Si	pace definition	as spatial	inputs level	zero definitions
	pace acimition	as spana	inputs it it	Let o definitions

Space	ce Definition						
	Spatial Input	Code	definition	Calculation	unit	Fuz	zy sets
				method			1
A	IN0_101_SPACE TYPE	ST	Define the type of space				
В	IN0_102_WIDTH	W	Width of space		m	Preferable	Unpreferable
С	IN0_103_DEPTH	D	Depth of space		m	Preferable	Unpreferable
D	IN0_104_HEIGHT	Н	Height of space		m	Preferable	Unpreferable
E	IN0_105_AREA	А	Area of space	A = W * D	m 2	Preferable	Unpreferable
F	IN0_106_VOLUME	V	Volume of space	V = A * H	m 3	Preferable	Unpreferable
G	IN0_107_WINDOW WIDTH	WD_W	Window width		m	Preferable	Unpreferable
Η	IN0_108_WINDOW HEIGHT	WD_H	Window height		m	Preferable	Unpreferable
Ι	IN0_109_WINDOW AREA	WD_A	Widow area	WD_A = WD_W *WD_H	m 2	Preferable	Unpreferable
J	IN0_110_DOOR WIDTH	DR_W	Door width		m	Preferable	Unpreferable
K	IN0_111_DOOR HEIGHT	DR_H	Door height		m	Preferable	Unpreferable
L	IN0_112_DOOR AREA	DR_A	Door area	DR_A = DR_W *DR_H	m 2	Preferable	Unpreferable

Table 6: Space definition as spatial inputs level zero illustration diagrams and fuzzy curv

5.2. Spatial Inputs Level One

Spatial input level one is the second level of spatial inputs and can be defined as the spatial inputs variables which are used to define the different types of relations inside the same space, between two spaces or more, and between the space and the context.

5.2.1. Defining Function (One to Zero)

Function parameters are the relation between the space and its properties. These parameters are related to the area, volume, proportion, angles, distortion, window area ratio, free walls, position, columns, colors, texture, and furniture for a given space. Notations include "Area" (A), "Volume" (V), "proportion" (PS), "Angles" (AN), "Distortion" (DS), "Window Area Ratio" (WDAR), "Free Walls" (FW), "position of space" (EXSP, INSP). these parameters assumed based on architectural standards for spaces (Time Saver [16][17], neufert [18], and metric handbook [19]).

			ONE to ZERO			
	Spatial Input	Code	definition	unit	Fuz	zzy sets
Α	IN1_001_AREA_SPACE	А	Area of space	m 2	Preferable	Unpreferable
В	IN1_002_VOLUME_SPACE	V	Volume of space	m 3	Preferable	Unpreferable
С	IN1_003_PROPORTION_SP ACE	PS	Proportion of space		Preferable	Unpreferable
D	IN1_004_ANGLES_SPACE	AN	Angles of space	degree	Preferable	Unpreferable
E	IN1_005_DISTORTION_SPA CE	DS	Distortion of space	-	Preferable	Unpreferable
F	IN1_006_WINDOW AREA RATIO_SPACE	WDAR	Window area ratio	-	Preferable	Unpreferable
G	IN1_007_FREE_WALLS	FW	Number of free walls	-	Preferable	Unpreferable
Н	IN1_008_external internal POSITION_SPACE	EIPS	Define the position of space external or internal	-	Preferable	Unpreferable

Table /: Function as spatial inputs level one to zero definition	Table 7:	Function	as spatial	l inputs lev	el one to zer	o definitions
--	----------	----------	------------	--------------	---------------	---------------

Table 8: Function as spatial inputs level one to zero illustration diagrams and fuzzy curves

5.2.2. Defining Function (One to Half)

Function parameters are the relation between the space and its properties. These parameters are related to the area, volume, proportion, angles, distortion, window area ratio, free walls, position, columns, colors, texture, and furniture for a given space. Notations include "columns" (COLM), "Color elements" (COLR), "Texture Elements" (TXTR) and "Furniture" (FURN).

Function - One to Half								
Spatial Input	Code	definition	unit		Fuzzy	v sets		
IN1_101_COLUMNS	COL M	Regularity of Columns module	-	low	medium	high		
IN1_102_COLORS_ELEME NTS	COLR	the colors of the elements of the space	-	low	medium	high		
IN1_103_TEXTURE_ELEM ENTS	TXTR	the texture of different elements of the space	-	low	medium	high		
IN1_104_FURNITURE	FURN	the texture of different elements of the space	-	low	medium	high		

Table	9:	Function	as s	patial	inputs	level	one t	o half	definitions
I ubic .	· •	I unction		puttur	mputs	10,01	one e	o man	actimitions

5.2.3. Defining Spatial Configuration (ONE to ONE)

Spatial configuration parameters are the relation between two spaces. these parameters are related to center to center, closest corner to corner, the farthest corner to corner, door to door, center door to door center, total center to corner, attached wall length, total area, bounding area, area bounding area ratio, offset curve, isovest area, center door to door center angle for a given spaces. Notations include "center to center" (CSTCS), "closest corner to corner" (CCRCR), "farthest corner to corner" (FCRCR), "door to door" (DRDR), "center door to door center" (CDDC), "total center to corner" (TCSCR), "attached wall length" (ATWL), "total area" (TA), "bounding area" (BA), "area bounding area ratio" (ABAR),"offset curve" (OFFC), "isovest area" (ISOVA), "center door to door center angle" (CDDCA).

Spatial configuration – one to one							
Spatial Input Code definition unit Fuzzy se				Fuzzy sets			
IN1_201_CENTER_TO_CENTER	CSTCS	the length between the center to center of the spaces	m	low	mediu m	high	
IN1_202_CLOSEST_CORNER_TO _CORNER	CCRCR	the length between the closest corners of the spaces	m	low	medium	high	
IN1_203_FARTHEST_CORNER_T O_CORNER	FCRCR	the length between the farthest corners of the spaces	m	low	medium	high	
IN1_204_DOOR_TO_DOOR	DRDR	the length between the doors of the spaces	m	low	medium	high	
IN1_205_CENTER_DOOR_DOOR _CENTER	CDDC	the length between the centers to door to door to center of the spaces	m	low	medium	high	
IN1_206_TOTAL_CENTER_TO_C ORNER	TCSCR	the total length between the center and the corner of the spaces	m	low	medium	high	
IN1_207_ATTACHED_WALL_LE NGTH	ATWL	the length of the attached wall between the spaces	m	low	medium	high	

 Table 10: Spatial Configuration as spatial inputs level one to half definitions

Spatial configuration – one to one							
Spatial Input	Code	definition	unit		Fuzzy sets		
IN1_208_TOTAL AREA	TA	the total area of the spaces	m	low	medium	high	
			2				
IN1_209_BOUNDING_AREA	BA	the bounding area of the	m	low	medium	high	
		spaces	2				
IN1_210_AREA_BOUNDING_AR	ABAR	the area bounding area ratio	m	low	medium	high	
EA_RATIO			2				
IN1_211_OFFSET_CURVE	OFFC	the number of offset curves	-	low	medium	high	
		that contain the other space					
IN1_213_ISOVEST AREA	ISOVA	the isovest area of the space	m	low	medium	high	
			2				
IN1_215_CENTER DOOR DOOR	CDDCA	the angle between the center	de	low	medium	high	
CENTER ANGLE		to door door center of the	gre				
		spaces	e				

Table 11: Spatial Configuration as spatial inputs level one to half illustration diagrams and fuzzy curves

5.2.4. Defining the spatial configuration (ONE to MANY)

Spatial configuration parameters are the relation between many spaces. These parameters are related to total area, bounding area, area bounding area ratio, number of edges, configuration, depth of spaces and privacy for a given spaces. Notations include "total area" (TA), "bounding area" (BA), "area bounding area ratio" (ABAR), "number of edges" (NOE), "configuration" (CONF), "depth of space" (DEPSP) and "privacy" (PRIVSP).

Spatial Configuration - One to Many								
Spatial Input	Code	definition	unit		Fuzzy sets			
IN1_301_TOTAL AREA	TA	the total area of the spaces	m 2	low	medium	high		
IN1_302_BOUNDING AREA	BA	the bounding area of the spaces	m 2	low	medium	high		
IN1_303_AREA BOUNDING AREA RATIO	TABAR	the area bounding area ratio	-	low	medium	high		
IN1_304_NUMBER OF EDGES	NOE	the number of edges	-	low	medium	high		
IN1_305_CONFIGURATION	CONF	the configuration of the spaces	-	low	medium	high		

Spatial Configuration - One to Many								
Spatial Input	Code	definition	unit		Fuzzy sets			
IN1_306_DEPTH SPACES	DEPSP	Degree of depth of the space	-	low	medium	high		
IN1_307_PRIVACY	PRIVSP	Degree of privacy of the space	-	low	medium	high		

5.2.5. Defining the site (ONE to CONTEXT)

Site parameters are the relation between the space and the context. These parameters are related to orientation, viewing angle, external opening, external solid, void ratio, solid ratio, and void solid ratio for a given space. Notations include "orientation" (ORAN), "viewing angles" (VWAN), "external opening" (EXVO), "external solid" (EXSO), "void ratio" (VORT), "solid ratio" (SORT) and "void solid ratio" (VOSOR).

SPATIAL CONFIGURATION - ONE TO MANY – SPATIAL INPUTS LEVEL ONE						
Spatial Input	Code	definition	unit	Fuz	zy sets	
A. IN1_401_ORIENTATION	ORAN	The angle of the orientation of the spaces	degree	Preferabl e	Unpreferable	
B. IN1_402_VIEWING_ANGLE S	VWAN	the viewing angles of the spaces	degree	Preferabl e	Unpreferable	
C. IN1_403_EXTERNAL OPENINGS	EXVO	the external area of the spaces	m 2	Preferabl e	Unpreferable	
D. IN1_404_EXTERNAL SOLIDS	EXSO	the external solids of the spaces	m 2	Preferabl e	Unpreferable	
E. IN1_405_VOID RATIO	VORT	the void ratio of the spaces	-	Preferabl e	Unpreferable	
F. IN1_406_SOLID RATIO	SORT	the solid ratio of the spaces	-	Preferabl e	Unpreferable	
G. IN1_407_VOID SOLID RATIO	VOSOR	the solid void ratio of the spaces	-	Preferabl e	Unpreferable	

Table 14: Site as spatial inputs level one to context definitions

Table 15: Site as spatial inputs level one to context definitions

6. Spatial Output Qualities

For the defuzzification process, we identified spatial output variables and their associated fuzzy sets and membership functions. Design Quality Indicator (DQI) three quality fields separated into (Functionality, build quality, and Impact) [14], based on these qualities we developed our definition of variables for spatial outputs. These variables describe three main outputs categories:

- Outputs for Functionality (including Space Elements, Space, Use, Location, Access, Spatial Relations, Adjacency and Non-Adjacency & Proximity)
- Outputs for Build quality (including Performance, Efficiency, Engineering, Construction and Cost)
- Outputs for Impact (Including user preferences, form material, internal environment, urban Integration, Society and Culture).

Descriptors (or "fuzzy sets") were identified for these variables to describe the spatial output based on the computed method. For example, "accepted" and "not-accepted" descriptors were used to describe "Functionality of space." A "membership function" was used to define each descriptor based on the associated degree of membership of the linguistic term for any value of the spatial output variable. A collective graph is typically used to visualize the membership functions of all descriptors for a given output variable.

6.1. Functionality

Functionality is considered as one of spatial outputs. This spatial quality is the indicator for the quality of space elements, the space itself, spatial relation between the spaces and the spatial relation between the space and the context. These parameters are related to space elements, space, use, Location, Access, Adjacency, Non-Adjacency, Proximity & Spatial Relations for the given spaces.

The spatial output variable (OUT101_SPACE ELEMENTS) denotes the degree of acceptance of all space elements including the basic dimensions of the space and the space opening dimensions based on the space type. (OUT102_SPACE) denotes the degree of acceptance of the architectural space. (OUT103_USE) denotes the degree of acceptance of the space according to its use. (OUT104_CONTEXT) denotes the degree acceptance of space according to its relationship with the context. (OUT105_ACCESS) denotes the degree of convenience and comfort regarding physical accessibility from one space to another. (OUT07_Adjacency) denotes the degree of immediacy of space connection in relation to other neighboring spaces. (OUT107_NON-ADJACENCY) denotes the degree of immediacy of space connection in relation to other neighboring spaces. (OUT108_PROXIMITY) denotes the degree of proximity of space connection in relation to other neighboring spaces. (OUT109_SPATIAL_RELATIONS) denotes the degree of physical linkage of one space to other spaces.

Functionality of Space						
Spatial Output	Code	Fuzzy Sets				
OUT101_SPACE ELEMENTS	SPELEM	Preferable	Unpreferable			
OUT102_SPACE	SP	Preferable	Unpreferable			
OUT103_USE	USE	Preferable	Unpreferable			
OUT104_LOCATION	LOC	Preferable	Unpreferable			
OUT105_ACCESS	ACS	Preferable	Unpreferable			
OUT106_ADJACENCY	ADJ	Preferable	Unpreferable			
OUT107_NON-ADJACENCY	NONADJ	Preferable	Unpreferable			
OUT108_PROXIMITY	PROX	Preferable	Unpreferable			
OUT109_SPATIAL_RELATIONS	SPTREL	Preferable	Unpreferable			

Table 16: Functionality as spatial output definitions

6.2. Build Quality

These parameters are related to performance, efficiency, engineering, construction, and cost of the layout configuration. The spatial output variable (OUT201_PERFORMANCE) denotes the degree of acceptance of the measured quality of spaces. (OUT202_EFFICIENCY) denotes the degree of acceptance of the ratio between the desired quality, as spatial output to the spatial inputs. (OUT203_ENGINEERING) denotes the degree of acceptance of the engineering of the spaces. (OUT204_CONSTRUCTION) denotes the degree of acceptance of the construction quality of spaces. (OUT205_COST) denotes the degree of acceptance of the construction cost according to the used construction material and the constructed spaces.

Build Quality of Space						
Spatial OutputCodeFuzzy Sets						
A. OUT201_PERFORMANCE	PERF	Preferable	Unpreferable			
B. OUT202_EFFICIENCY	EFFIC	Preferable	Unpreferable			
C. OUT203_ENGINEERING	ENG	Preferable	Unpreferable			
D. OUT204_CONSTRUCTION	CONST	Preferable	Unpreferable			
E. OUT205_COST	COST	Preferable	Unpreferable			

Table 18: Build Quality as spatial outputs definitions

Table 19: Build Quality as spatial outputs fuzzy curves

6.3. Impact

These parameters are related to user performance, material form, internal environment, urban, social, and cultural integration for the given spaces. The spatial output variable (OUT301_USER_PREFERENCES) denotes the degree of acceptance of the user preferences. (OUT302_FORM_MATERIAL) denotes the degree of acceptance of the architectural form according to the context and the used materials for the facade. (OUT303_INTERNAL ENVIRONMENT) denotes the degree of acceptance of internal environment according to the thermal comfort, air ventilation and daylighting inside the spaces. (OUT304_URBAN INTEGRATIOAN) denotes the degree of acceptance of integration of the space within urban spaces. (OUT305_SOCIAL AND CULTURE) denotes the degree of acceptance of the spaces according to the social aspects of the users and the culture of the community.

	Impact of Space							
	Spatial Output	Code	Fuzzy Sets					
Α	OUT301_USER_PREFERENCES	USRPERF	Preferable	Unpreferable				
В	OUT302_FORM_MATERIAL	FOMMAT	Preferable	Unpreferable				
С	OUT303_INTERNAL	INTENVR	Preferable	Unpreferable				
	ENVIRONMENT							
D	OUT304_URBAN	URBNINT	Preferable	Unpreferable				
	INTEGRATIOAN							
E	OUT305_SOCIAL_CULTURE	SOCCULT	Preferable	Unpreferable				

Table 20: Impact as spatial outputs definitions

Table 21: Impact as spatial outputs fuzzy curves

7. Spatial Rule Blocks

Based on the identified linguistic variables, we devised some rule blocks that control and contribute to the satisfaction of a given spatial output variable by virtue of a combination of different spatial inputs. Rule Block 01 (RB101_SPACE ELEMENTS), for example, demonstrates a rule block that controls the relation between (IN0_101_SPACE TYPE), (IN0_102_WIDTH), (IN0_103_DEPTH), (IN0_104_HEIGHT), (IN0_105_AREA), (IN0_106_VOLUME), (IN0_107_WINDOW WIDTH), (IN0_108_WINDOW HEIGHT), (IN0_109_WINDOW AREA), (IN0_110_DOOR WIDTH), (IN0_111_DOOR HEIGHT) and (IN0_112_DOOR AREA) on the one hand and (OUT101_SPACE ELEMENTS) on the other

hand. If the descriptor of the width (IN0 102) is "preferable," the descriptor of the depth (IN0 103) is "preferable," the descriptor of the height (IN0 104) is "preferable," the descriptor of the area (IN0 105) is "preferable," the descriptor of the volume (IN0_106) is "preferable," the descriptor of the window height (IN0 107) is "preferable," the descriptor of the window area (IN0_108) is "preferable," the descriptor of the door width (IN0_109) is "preferable," the descriptor of the door height (IN0 110) is "preferable" and the descriptor of the door area (IN0_111) is "preferable" for a specific space type then the descriptor of the spatial output "SPACE ELEMENTS" (OUT101) is "preferable." If the descriptor (IN0_102), (IN0_103), (IN0_104), (IN0_105), (IN0_106), (IN0_107), (IN0_108), (IN0_109), (IN0_110) and (IN0_111) however, are "not preferable," respectively, the descriptor of (OUT101) is "not accepted". In this case, ten spatial inputs (IN0_102, IN0_103, IN0_104, IN0_105, IN0_106, IN0_107, IN0_108, IN0_109, IN0_110 and IN0_111) contributed to the description of one spatial output (OUT101) for (RB101), using two "if then" rules that denote two conditions for evaluating the degree of acceptance of space elements whether to be accepted or not. This is not a typical case; as the result varies depending on the number of spatial input variables, the specific nature of the fuzzy sets and the rules regulating the relation between the spatial input variable(s) and the target spatial output variable. Table 8 shows the structure of the proposed fuzzy logic rule blocks and the relation between 61 spatial input variables and 19 spatial output variables using 19 rule blocks that control the input– output relations.

Functionality				
Spatial Output	Code	Spatial Inputs	Spatial Output	
RB101_SPACE ELEMENTS	RB_SPELEM	IN0_101, IN0_102, IN0_103, IN0_104, IN0_105, IN0_106, IN0_107, IN0_108, IN0_109_IN0_110_IN0_111 & IN0_112	OUT101	
RB102_SPACE	RB_SP	IN0_109, IN0_110, IN0_111 & IN0_112. IN1_001, IN1_002, IN1_003, IN1_004, IN1_005, IN1_006, IN1_007 & IN1_008	OUT102	
RB103_USE	RB_USE	IN1_001, IN1_002, IN1_003, IN1_004, IN1_005, IN1_006 & IN1_007	OUT103	
RB104_CONTEXT	RB_CONT	IN1_401, IN1_402, IN1_403, IN1_404, IN1_405, IN1_406 & IN1_407	OUT104	
RB105_ACCESS	RB_ACS	IN1_305, IN1_306, IN1_307	OUT105	
RB106_ADJACENCY	RB_ADJ	IN1_201, IN1_202, IN1_203, IN1_204, IN1_205, IN1_206, IN1_207, IN1_208, IN1_209, IN1_210, IN1_211, IN1_113 & IN1_215	OUT106	
RB107_NON-ADJACENCY	RB_NONADJ	IN1_201, IN1_202, IN1_203, IN1_204, IN1_205, IN1_206, IN1_207, IN1_208, IN1_209, IN1_210, IN1_211, IN1_113 & IN1_215	OUT107	
RB108_PROXIMITY	RB_PROX	IN1_201, IN1_202, IN1_203, IN1_204, IN1_205, IN1_206, IN1_207, IN1_208, IN1_209, IN1_210, IN1_211, IN1_113 & IN1_215	OUT108	
RB109_SPATIAL_RELATIONS	RB_SPTREL	IN1_301, IN1_302, IN1_303, IN1_304, IN1_305, IN1_306 & IN1_307	OUT109	

Table 22: Rule blocks definitions

Build Quality				
Spatial Output	Code			
RB201_PERFORMANCE	RB_PERF	IN1_102, IN1_103	OUT201	
RB202_EFFICIENCY	RB_EFFIC	IN1_001, IN1_002, IN1_003, IN1_004,	OUT202	
		IN1_005, IN1_006, IN1_007 & IN1_104		
RB203_ENGINEERING	RB_ENG	IN0_107, IN0_108, IN0_110, IN0_111,	OUT203	
		IN1_003, IN1_004, IN1_005, IN1_101,		
		IN1_303, IN1_304, IN1_305		
RB204_CONSTRUCTION	RB_CONST	IN1_003, IN1_004, IN1_101, IN1_301,	OUT204	
		IN1_302, IN1_303, IN1_304, IN1_305		
RB205_COST	RB_COST	IN1_004, IN1_005, IN1_101, IN1_301,	OUT205	
		IN1_302, IN1_303, IN1_304, IN1_305,		
		IN1_403, IN1_404, IN1_405, IN1_406,		
		IN1_307		
Impact				
Spatial Output	Code		_	
RB301_USER preferences	RB_USRPERF	IN0_201, IN0_202, IN0_203, IN1_008,	OUT301	
		IN1_307		
RB302_FORM_MATERIAL	RB_FOMMAT	IN1_401, IN1_402, IN1_403, IN1_404,	OUT302	
		IN1_405, IN1_406, IN1_407		
RB303_INTERNAL	RB_INTENVR	IN0_107, IN0_108, IN0_110, IN0_111,	OUT303	
ENVIRONMENT		IN0_112, IN1_006, IN1_401, IN1_402,		
		IN1_403, IN1_404, IN1_405, IN1_406,		
		IN1_407		
RB304_URBAN	RB_URBNINT	IN1_401, IN1_402, IN1_403, IN1_404,	OUT304	
INTEGRATIOAN		IN1_405, IN1_406, IN1_407		
OUT304_SOCIAL_CULTURE	RB_SOCCULT		OUT305	

8. The Proposed Framework for Automated Evaluation of Spatial Layout Configuration Using Fuzzy Logic Approach

Our proposed framework for automated evaluation of spatial layout configuration using fuzzy logic approach consists of 4 stages; stage 1: spatial input level zero (space definition [space elements, space elements definition] & user experience) ,stage 2: (Function [one to zero, one to half], Spatial Configuration [one to one, one to many] and site[one to context] ,stage 3: fuzzy logic rules blocks , and stage 4: Spatial outputs[functionality, build quality & impact]. The following diagram illustrates the detailed proposed framework of automated evaluation of spatial layout configuration using fuzzy logic approach

Fig. 7: the detailed proposed framework for automated evaluation for spatial layout configuration using fuzzy logic approach.

9. Conclusions

This Architectural spatial layout configurations aim to fulfill various goals which are usually expected to provide solutions transferable into physical volumes and solid environmental components. In the presence of various inputs and goals in the design process the architects and designers started to find it difficult to achieve an absolute success in all the aspects and approaches that should be considered in the design. Consequently, they started to work to achieve the optimum solution to the design problem by balancing all the inputs and constraints to reach the highest percentages of success in all the design objectives. This created the need for the presence of an automated evaluation tool that can comprise all the evaluation criteria

needed, moreover considering the design objectives and constraints. This tool should evaluate layout configuration in a precise way showing the percentage of success in each of the design objectives, not a binary evaluation ("weak" or "strong"). In this paper, we created all possible spatial relation inputs affecting physical and non-physical outputs for a given space using descriptive rule blocks in a fuzzy logic software development tool. We use this fuzzy logic system to evaluate different spatial layout configurations. All linguistic input variables, output variables, and fuzzy sets are defined, and space-space relations are presented using membership functions. The resulting database of fuzzy agents is used to evaluate the design process output. This paper introduced a proposed framework for the automated evaluation for spatial layout configuration using fuzzy logic approach to describe the quality of design. The paper attempted to evaluate these qualities by separating them into three main Qualities functionality, build quality & impact and by defining all space elements, calculation methods for spatial inputs, and addressing rule blocks to describe the relations between these inputs and spatial outputs that take into consideration their fuzzy sets or descriptors. In this paper, the relations described can be applied in principle to three different scales, Function [one to zero, one to half], Spatial Configuration [one to one, one to many] and site [one to context]. The paper's findings confirm that using an automated evaluation fuzzy logic-based tool, rather than the conventional spatial relation matrix diagrams that tend to describe those relations holistically as "strong" or "weak" relations, opens the door for the possibility of automating the whole design process of spatial layout configurations, allowing to make use of optimization methodologies to achieve the optimum design solution that reaches the highest percentages in all design objectives. This possible optimized automated design process was not going to be possible without a reliable automated evaluation tool that can build dataset for fuzzy logic and optimization process to work on. For spatial inputs and addressing rule blocks to describe the relations between these inputs and spatial outputs that take into consideration their fuzzy sets or descriptors.

References

- [1] A. Assem, S. Abdelmohsen, and M. Ezzeldin, "A Fuzzy-Based Approach for Evaluating Existing Spatial Layout Configurations," Proc. Int. Conf. Educ. Res. Comput. Aided Archit. Des. Eur., vol. 2, no. September, pp. 35–44, 2019, Doi: 10.5151/proceedingsecaadesigradi2019_290.
- [2] D. A. A. Aibinu, D. Dassanayake, and V. C. Thien, Management and innovation for a sustainable built environment CIB International Conference of WO55, WO65, WO89, W112, TG76, TG78, TG81. University of Technology, 2011.
- [3] B. Medjdoub and B. Yannou, "Separating topology and geometry in space planning," CAD Comput. Aided Des., vol. 32, no. 1, pp. 39–61, 2000, Doi: 10.1016/S0010-4485(99)00084-6.
- [4] M. Karlen, Space Planning Basics. 2009.
- [5] A. Çekmiş, "Fuzzy Logic in Architectural Site Planning Design," Procedia Comput. Sci., vol. 102, no. August, pp. 176–182, 2016, Doi: 10.1016/j.procs.2016.09.386.
- [6] L. A. Zadeh, "Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic," Fuzzy Sets Syst., vol. 90, no. 2, pp. 111–127, 1997, Doi: 10.1016/S0165-0114(97)00077-8.

- [7] Gann, D.M., Salter A.J., Whyte J.K., Design Quality Indicator as a Tool for Thinking, Building Research & Information 31(5), 318–333, 2003
- [8] Gesler, W., Bell, M., Curtis, S., Hubbard, P., Francis, S., Therapy by Design: Evaluating the UK Hospital Building Program, Health & Place 10 117–128, (2004)
- [9] DEEPTM, an international research and development organization engineering new technologies which will improve understanding and preservation of the planet's deep-water environments. (www.DEEP.com)
- [10] Giddings, B., Sharma, M., Jones, P., Jones, M., Architectural Design Quality in Local Authority Private Finance Initiative Projects, Proceedings W096 - Special Track 18th CIB World Building Congress, Salford, United Kingdom (2010)
- [11] Hwang, C. and ve Ming, J., 1987. Housing quality indicators. [online] GOV.UK. Available at: http://www.homesandcommunities.co.uk/hqi [Accessed February 2011].
- [12] Usgbc.org. 2022. LEED certification for neighbourhood development | U.S. Green Building Council. [online] Available at: ">http://www.usgbc.or
- [13] Lee, W.J., Burnett, J., Benchmarking Energy Use Assessment of HK-BEAM, BREEAM and LEE, Building and Environment 43, 1882–1891, 2008
- [14] S. Macmillan, *Designing better building: Quality and value in the built environment*. 2004. Doi: 10.4324/9780203563328.
- [15] F. D. K. Ching, *Architecture: Form, Space, and Order*. 2007. [Online]. Available: http://www.amazon.co.uk/Architecture-Francis-D-K-Ching/dp/0471752169
- [16] Time-saver, "Time-saver standards for building types." 1980.
- [17] W. F. E. Preiser and U. Schramm, *Time-Saver Standards for Architectural Design Data*. *Building Performance Evaluation*. 1997.
- [18] Neufert Peter, Ernst, "[Architecture. eBook]. Neufert_3_edition.pdf." p. 638, 2009. [Online]. Available:

https://archive.org/details/Architectural_Standard_Ernst_Peter_Neufert_Architects_Data/page/n 11

[19] Littlefield, D. (2007). Metric Handbook (3ο έκδ.; P. Buxton, Επιμ.). Oxford, England: Architectural Press.

منهجية عمل مقترحة للتقييم الآلي للتشكيلات الفراغية المعمارية باستخدام المهجية عمل مقترحة للتقييم الرقمي الضبابي

التشكيلات الفراغية المعمارية هي نتاج لعملية تصميم معقدة تهدف إلى تحقيق الموقع الأكثر ملائمة لكل الفراغات المعمارية في إطار مجموعة من الأهداف والقيود المحددة. في ظل وجود توسع بهدف فهم التشكيلات الفراغية ودور ها وتكويناتها في العديد من النطاقات البر امجية والأيديولوجية والشكلية والجوانب الهندسية، والمتضمنة في خلفية نظرية معقدة. جانب التقييم هو الأقل وضوحا وهناك قيود كبيرة على ما يمكن تحقيقه فيه. تهدف هذه الورقة إلى تقييم الجوانب الوظيفية (مثل جودة المساحة والاستخدام والوصول والتقارب وعدم التقارب والقرب وما إلى ذلك)، وجودة البناء (مثل الأداء والكفاءة والتكلفة وما إلى ذلك)، والتأثير (مثل أداء المستخدم والجودة الداخلية والتكامل الحضري والاجتماعي والثقافي وما إلى ذلك)، والتأثير (مثل تصميم الفراغات المعمارية وجودة التشكيلات الفراغية. والتحقيق هدف هذا البحث، ابتكرنا جميع العلاقات الفراغية الممكنة، التي تؤثر على تلك الحودة، كمدخلات لفراغات معمارية محددة باستخدام مجموعة من الفراغية الممكنة، التي تؤثر على تلك الجودة، كمدخلات لفراغات معمارية محددة باستخدام مجموعة من والقواعد الوصفية. قما بتعريف نظام المنطق الرقمي الضبابي لفراغات معمارية محددة باستخدام مجموعة من والقواعد الوصفية. قما بتعريف نظام المنطق الرقمي الضبابي لفراغات معمارية محددة باستخدام محموعة من والقواعد الوصفية قبنا بتعريف نظام المنطق الرقمي الضبابي لفراغات معمارية سكنية والتي تم دمجها في والقواعد الرقمية المنتي والمخرجات الفراغية. والفراغ باستخدام وظائف المتور المتورة تشكيل فراغي لتقييم التشكيلات الفراغية. ولهذا قمنا بتعريف كل المدخلات المتورة والمخرجات المتغيرة والقواعد الرقمية الضبابية ونقدم العلاقات بين الفراغ والفراغ باستخدام وظائف المخرجات المتغيرة مالمؤرائية منه معارية محمويا في معارية معامرية الممانية ونقدم العلاقات بين الفراغ والفراخ المتاد المتغيرة والمخرجات المتغيرة والمؤرجات المتغيرة والقراعية الممارية المعمارية. ومام المنابة والفراغ باستخدام وظائف العضوية. تقترح الورقة من كيل فراغي المنطق الرقمي الضبابي للتقييم الآلي للتشكيلات الفراغية المعارية.

يعتمد هذا البحث للوصول الي هذ الإطار على تحليل استكشافي باستخدام نهج استقرائي. لتحقيق ذلك أولاً، استعرض البحث أدوات تقييم التصميم الحالية - DEEP ،DQI، AEDET، AEDER، AEDET، LEED، BREEAM، AEDET، DEEP، DQI، لتتمكن من استكشاف العوامل المختلفة التي تؤثر على تخطيط الفضاء. ثانياً: استخراج المدخلات المكانية على أساس المعايير المعمارية. علاوة على ذلك، تحديد النواتج المكانية بناءً على أدوات تقييم تصميم مماثلة. وبالتالي، يمكننا تحديد مجموعات القواعد التي تحدد العلاقة بين المدخلات والمخرجات. وبالتالي، يمكننا اقتراح إطار كامل يعتمد على نهج مبني على المنطق الغامض يتكون من المدخلات والمخرجات. والقواعد التي تحدد العلاقة بينها، حتى نتمكن من تقييم التصميم.