• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Volume Volume 51 (2023)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Nassar, M. (2023). The Afflux Calculation Under Effect of Different Number of Vents Experimentally and Using HEC-RAS. JES. Journal of Engineering Sciences, 51(2), 81-92. doi: 10.21608/jesaun.2022.147292.1151
Mohammed Nassar. "The Afflux Calculation Under Effect of Different Number of Vents Experimentally and Using HEC-RAS". JES. Journal of Engineering Sciences, 51, 2, 2023, 81-92. doi: 10.21608/jesaun.2022.147292.1151
Nassar, M. (2023). 'The Afflux Calculation Under Effect of Different Number of Vents Experimentally and Using HEC-RAS', JES. Journal of Engineering Sciences, 51(2), pp. 81-92. doi: 10.21608/jesaun.2022.147292.1151
Nassar, M. The Afflux Calculation Under Effect of Different Number of Vents Experimentally and Using HEC-RAS. JES. Journal of Engineering Sciences, 2023; 51(2): 81-92. doi: 10.21608/jesaun.2022.147292.1151

The Afflux Calculation Under Effect of Different Number of Vents Experimentally and Using HEC-RAS

Article 1, Volume 51, Issue 2, March 2023, Page 81-92  XML PDF (876.14 K)
Document Type: Research Paper
DOI: 10.21608/jesaun.2022.147292.1151
View on SCiNiTO View on SCiNiTO
Author
Mohammed Nassar email
Water Engineering and Water Structures Department, Faculty of Engineering, Zagazig University, Egypt.
Abstract
The effect of vents’ number in bridges for the same contraction ratio was not taken into consideration in many calculation formulas of afflux. The present paper investigates the influence of vents’ number on the calculation of the afflux through bridge for the same contraction ratio. The paper experimentally and numerically modeled the water surface profile through the bridge vents to calculate the afflux. The experimental measurements include two stages, the first stage includes the use of a single pier model with a length of 14.7 cm and a width of 2.3 cm. The second stage includes the presence of two piers of 14.7 cm length and 1.15 cm width for each one. The numerical modeling was done using one-dimensional River Analysis System (HEC-RAS). The results showed that the afflux ratio increased as Froude number increased. The increasing of vents’ number for the same contraction ratio increases the afflux. The case of contraction ratio = 0.623 gives the higher values of the afflux ratio comparing other contraction ratios. The numerical modeling is promising compared the experimental measurements.
Keywords
Bridges; contraction ratio; afflux; piers; HEC-RAS
Main Subjects
Civil Engineering: structural, Geotechnical, reinforced concrete and steel structures, Surveying, Road and traffic engineering, water resources, Irrigation structures, Environmental and sanitary engineering, Hydraulic, Railway, construction Management.
References
[1].        Dawson, J. H. (1943). The effect of lateral contractions on super-critical flow in open channels.

[2].        Fahmy M.R., and Nassar M. A., (2017), Contraction effect upstream abutments on velocity and scour: experimental and theoretical study using IRiC software, Journal of Engineering Sciences Assiut University Faculty of Engineering Vol. 45 No. 1 January 2017. doi: https://doi.org/10.21608/jesaun.2017.116082

[3].        Gary W. Brunner & CEIWR-HEC, (2021), “HEC-RAS, River Analysis System User's Manual Version 6.0”, US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center.

[4].        Ghaderi, A., Daneshfaraz, R., & Dasineh, M. (2019). Evaluation and prediction of the scour depth of bridge foundations with HEC-RAS numerical model and empirical equations, Engineering Journal  23 (6), doi: https://doi.org/10.4186/ej.2019.23.6.279

[5].        Habib, A. A., & Nassar, M. A. (2019). Modelling of Deposition and Erosion Processes Along a 180° Open Canal Bend by Nays2dh in iRIC. Engineering Heritage Journal (GWK), 3(2), 01-05.‏ doi: https://doi.org/10.26480/gwk.02.2019.01.05

[6].        https://www.definitions.net/definition/afflux

[7].        Mehta, D. J., & Yadav, S. M. (2020). Analysis of scour depth in the case of parallel bridges using HEC-RAS. Water Supply, 20(8), 3419-3432.‏ doi: https://doi.org/10.2166/ws.2020.255

[8].        Nassar, M. A. (2010). One-dimensional hydrodynamic model simulating water stage in open channels (ws-1). International Journal of Modeling, Simulation, and Scientific Computing, 1(02), 303-316.‏ doi: https://doi.org/10.1142/s1793962310000110

[9].        Nassar, M. A., Ibrahim, A. A., & Negm, A. M. (2009). Modeling of Local Scour Down Stream of Hydraulic Structures Using Support Vector Machines (SVMS). In Proc. Of 6th Int. Conf. on Environmental Hydrology, Cairo, Egypt.‏

[10].    Negm, A. M., Elfiky, M. M., Attia, M. I., & Ezzeldin, M. M. (2003a), Energy loss due to sudden contraction through transition length in sloped open channels. Proc. of 7th Alazhar Engineering Int. Conf. April 7-10, Faculty of Engineering, Alazhar University, Naser City, Cairo, Egypt, 2003.  

[11].    Negm, A. M., Elfiky, M. M., Attia, M. I., & Ezzeldin, M. M. (2003b), protection length downstream of sudden transition for incoming subcritical flow, 1st International Conference of Civil Engineering Science, ICCES1, Vol. 1.

[12].    Negm, A. M., Elfiky, M. M., Owais, T. M., & Nassar, M. H. (2003). Prediction of suspended sediment concentration in river flow using artificial neural networks. In Proceedings of 6th International Conference On River Engineering, Ahvaz, Iran.‏ doi:

[13].    Nones, M., Pugliese, A., Domeneghetti, A., & Guerrero, M. (2018). Po River morphodynamics modelled with the open-source code iRIC. In Free Surface Flows and Transport Processes (pp. 335-346). Springer, Cham.‏ doi: https://doi.org/10.1007/978-3-319-70914-7_22

[14].    Noor, M., Arshad, H., Khan, M., Khan, M. A., Aslam, M. S., & Ahmad, A. (2020). Experimental and HEC-RAS Modelling of Bridge Pier Scouring. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 74(1), 119-132.‏ doi: https://doi.org/10.37934/arfmts.74.1.119132

[15].    Parry, J. D., & Jones, T. E. (1992). A design manual for small bridges. TRL Transport Research Laboratory.‏

[16].    Rai, P. K., Dhanya, C. T., & Chahar, B. R. (2018). Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta. Natural Hazards, 92(3), 1821-1840.‏ doi: https://doi.org/10.1007/s11069-018-3281-4

[17].    Shimizu, Y., Nelson, J., Arnez Ferrel, K., Asahi, K., Giri, S., Inoue, T., & Yamaguchi, S. (2020). Advances in computational morphodynamics using the International River Interface Cooperative (iRIC) software. Earth Surface Processes and Landforms, 45(1), 11-37.‏ doi: https://doi.org/10.1002/esp.4653

[18].    Skogerboe, G. V., & Hyatt, M. L. (1968). Rating Side Contractions in Open Channels. Journal of the Irrigation and Drainage Division, 94(1), 181-183.‏ doi: https://doi.org/10.1061/jrcea4.0000555

[19].    Sturm, T. W. (1985). Simplified design of contractions in supercritical flow. Journal of Hydraulic Engineering, 111(5), 871-875.‏ doi: https://doi.org/10.1061/(asce)0733-9429(1985)111:5(871)

[20].    Subedi, A. S., Sharma, S., Islam, A., & Lamichhane, N. (2019). Quantification of the effect of bridge pier encasement on headwater elevation using HEC-RAS. Hydrology, 6(1), 25.‏ doi: https://doi.org/10.3390/hydrology6010025

[21].    Wu, B., & Molinas, A. (2001). Choked flows through short contractions. Journal of Hydraulic Engineering, 127(8), 657-662.‏ doi: https://doi.org/10.1061/(asce)0733-9429(2001)127:8(657).

Statistics
Article View: 531
PDF Download: 1,125
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.