[1]. Dawson, J. H. (1943). The effect of lateral contractions on super-critical flow in open channels.
[2]. Fahmy M.R., and Nassar M. A., (2017), Contraction effect upstream abutments on velocity and scour: experimental and theoretical study using IRiC software, Journal of Engineering Sciences Assiut University Faculty of Engineering Vol. 45 No. 1 January 2017. doi:
https://doi.org/10.21608/jesaun.2017.116082
[3]. Gary W. Brunner & CEIWR-HEC, (2021), “HEC-RAS, River Analysis System User's Manual Version 6.0”, US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center.
[4]. Ghaderi, A., Daneshfaraz, R., & Dasineh, M. (2019). Evaluation and prediction of the scour depth of bridge foundations with HEC-RAS numerical model and empirical equations, Engineering Journal 23 (6), doi:
https://doi.org/10.4186/ej.2019.23.6.279
[5]. Habib, A. A., & Nassar, M. A. (2019). Modelling of Deposition and Erosion Processes Along a 180° Open Canal Bend by Nays2dh in iRIC. Engineering Heritage Journal (GWK), 3(2), 01-05. doi:
https://doi.org/10.26480/gwk.02.2019.01.05
[7]. Mehta, D. J., & Yadav, S. M. (2020). Analysis of scour depth in the case of parallel bridges using HEC-RAS. Water Supply, 20(8), 3419-3432. doi:
https://doi.org/10.2166/ws.2020.255
[8]. Nassar, M. A. (2010). One-dimensional hydrodynamic model simulating water stage in open channels (ws-1). International Journal of Modeling, Simulation, and Scientific Computing, 1(02), 303-316. doi:
https://doi.org/10.1142/s1793962310000110
[9]. Nassar, M. A., Ibrahim, A. A., & Negm, A. M. (2009). Modeling of Local Scour Down Stream of Hydraulic Structures Using Support Vector Machines (SVMS). In Proc. Of 6th Int. Conf. on Environmental Hydrology, Cairo, Egypt.
[10]. Negm, A. M., Elfiky, M. M., Attia, M. I., & Ezzeldin, M. M. (2003a), Energy loss due to sudden contraction through transition length in sloped open channels. Proc. of 7th Alazhar Engineering Int. Conf. April 7-10, Faculty of Engineering, Alazhar University, Naser City, Cairo, Egypt, 2003.
[11]. Negm, A. M., Elfiky, M. M., Attia, M. I., & Ezzeldin, M. M. (2003b), protection length downstream of sudden transition for incoming subcritical flow, 1st International Conference of Civil Engineering Science, ICCES1, Vol. 1.
[12]. Negm, A. M., Elfiky, M. M., Owais, T. M., & Nassar, M. H. (2003). Prediction of suspended sediment concentration in river flow using artificial neural networks. In Proceedings of 6th International Conference On River Engineering, Ahvaz, Iran. doi:
[13]. Nones, M., Pugliese, A., Domeneghetti, A., & Guerrero, M. (2018). Po River morphodynamics modelled with the open-source code iRIC. In Free Surface Flows and Transport Processes (pp. 335-346). Springer, Cham. doi:
https://doi.org/10.1007/978-3-319-70914-7_22
[14]. Noor, M., Arshad, H., Khan, M., Khan, M. A., Aslam, M. S., & Ahmad, A. (2020). Experimental and HEC-RAS Modelling of Bridge Pier Scouring. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 74(1), 119-132. doi:
https://doi.org/10.37934/arfmts.74.1.119132
[15]. Parry, J. D., & Jones, T. E. (1992). A design manual for small bridges. TRL Transport Research Laboratory.
[16]. Rai, P. K., Dhanya, C. T., & Chahar, B. R. (2018). Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta. Natural Hazards, 92(3), 1821-1840. doi:
https://doi.org/10.1007/s11069-018-3281-4
[17]. Shimizu, Y., Nelson, J., Arnez Ferrel, K., Asahi, K., Giri, S., Inoue, T., & Yamaguchi, S. (2020). Advances in computational morphodynamics using the International River Interface Cooperative (iRIC) software. Earth Surface Processes and Landforms, 45(1), 11-37. doi:
https://doi.org/10.1002/esp.4653
[18]. Skogerboe, G. V., & Hyatt, M. L. (1968). Rating Side Contractions in Open Channels. Journal of the Irrigation and Drainage Division, 94(1), 181-183. doi:
https://doi.org/10.1061/jrcea4.0000555
[20]. Subedi, A. S., Sharma, S., Islam, A., & Lamichhane, N. (2019). Quantification of the effect of bridge pier encasement on headwater elevation using HEC-RAS. Hydrology, 6(1), 25. doi:
https://doi.org/10.3390/hydrology6010025