[1] Schwab, K. (2019). The global competitiveness report 2019. In World Economic Forum (pp. 198-201).
[2] Central Agency for Public Mobilization and Statistics (CAPMAS). Car and train accidents biannual statistics 2018.
[3] Mbwana, J. R. (2001). A Framework for Developing Stochastic Multi-objective Pavement Management Systems. 1st Africa T2 Conference, 1 - 14.
[4] Fwa, T.F., Chan, W.F., Hoque, K.Z., 2000. Multi-Objective Optimisation for Pavement Maintenance Programming. J. Transp. Eng. 126, 367–374.
[5] AASHTO. (2012). Pavement management guide. 2012. (2nd ed.). AASHTO.
[6] Saha, P., Ksaibati, K., & Atadero, R. (2017). Developing pavement distress deterioration models for pavement management system using Markovian probabilistic process. Advances in Civil Engineering.
[7] Haas, R., Hudson, W. R. (2015). Pavement asset management. John Wiley & Sons.
[8] Durango, P. L., and Madanat, S. M. (2002). "Optimal Maintenance and Repair Policies in Infrastructure Management under Uncertain Facility Deterioration Rates: An Adaptive Control Approach." Transportation Research Part A: Policy and Practice, 36(9), 763-778.
[9] Li, Z. (1997). Development of a probabilistic Based, Integrated Pavement Management System. Waterloo, Ontario, Canada: University of Waterloo.
[10] Soncim, S. P., de Oliveira, I. C. S., Santos, F. B., & Oliveira, C. A. D. S. (2018). Development of probabilistic models for predicting roughness in asphalt pavement. Road Materials and Pavement Design, 19(6), 1448-1457.
[11] Abaza, K. A. (2016). Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. International Journal of Pavement Engineering.
[12] Surendrakumar, K., Prashant, N., & Mayuresh, P. (2013, August). Application of Markovian Probablistic Process to Develop a Decision Support System for Pavement Maintenance Management. International Journal of Scientific and Technology Research, 2(8), 295 – 303
[13] Wu, Z., Flintsch, G.W., 2009. Pavement Preservation Optimization Considering Multiple Objectives and Budget Variability. J. Transp. Eng. 135, 305–315.
[14] J.M. De La Garza, S. Akyildiz, D. R. Bish, and D. A. Krueger, “Network-level optimization of pavementmaintenance renewal strategies,” Advanced Engineering Informatics, vol. 25, no. 4, pp.699–712, 2011.
[15] Gu, W., Ouyang, Y., Madanat, S., 2012. Joint Optimisation of Pavement Maintenance and Resurfacing Planning. Transp. Res. Part B Methodology. 46, 511–519.
[16] Golroo, A., Tighe, S.L., 2012. Optimum Genetic Algorithm Structure Selection in Pavement Management. Asian J. Appl. Sci. 5 5, 327–341.
[17] Sedighpour M, Yousefikhoshbakht M, Darani Nm (2011) An effective genetic algorithm for solving the multiple traveling salesman problem. J Optim Ind Eng 8:73–79
[18] Yang, C., Remenyte-Prescott, R., Andrews, J.D., 2015. Pavement Maintenance Scheduling using Genetic Algorithms. Int. J. Performability Eng. 11, 135–152.
[19] Rifai, A. I., Hadiwardoyo, S. P., Correia, A. G., & Pereira, P. A. U. L. O. (2016). Genetic Algorithm Applied for Optimization of Pavement Maintenance under Overload Traffic: Case Study Indonesia National Highway. In Applied Mechanics and Materials (Vol. 845, pp. 369-378).
[20] Morcous G., Lounis Z., Maintenance optimization of infrastructure networks using genetic algorithms, Automation in Construction 14 (2005) 129– 142
[24]
Prakasan, A. C., Tiwari, D., Shah, Y. U., Parida, M. (2015), “Pavement Maintenance Prioritization of Urban Roads Using Analytical Hierarchy Process”, International Journal of Pavement Research & Technology, 8(2)
[25]
Moazami, D., Muniandy, R., Hamid, H., Yusoff, Z. M. (2011), “The Use of Analytical Hierarchy Process in Priority Rating of Pavement Maintenance”, Scientific Research and Essays, 6(12), 2447-2456.
[26]
Šelih, J., Kne, A., Srdić, A., Žura, M. (2008), “Multiple‐Criteria Decision Support System in Highway Infrastructure Management”. Transport, 23(4), 299-305.
[27]
Li, H., Ni, F., Dong, Q., Zhu, Y. (2018), “Application of analytic hierarchy process in network level pavement maintenance decision-making”. International Journal of Pavement Research and Technology, 11(4), 345-354.
[29]
Sinha, K. C., Patidar, V., Li, Z., Labi, S., Thompson, P. D. (2009), “Establishing the Weights of Performance Criteria: Case Studies in Transportation Facility Management”, Journal of Transportation Engineering, 135(9), 619-631.
[30]
Kim, J., Park, D., Suh, Y., Jung, D. (2019), “Development of Sidewalk Block Pavement Condition Index (SBPCI) using Analytical Hierarchy Process. Sustainability”, 11(24), 7086.
[36] Meneses, S., Ferreira, A., Collop, A. (2013), “Multi-objective decision-aid tool for pavement management”, In Proceedings of the Institution of Civil Engineers-Transport, 166(2), 79-94.
[38] World Health Organization )2018(. Global status report on road safety 2018: Summary (No. WHO/NMH/NVI/18.20). World Health Organization.
[39] Gaber, M., Wahaballa, A. M., Othman, A. M., & Diab, A. (2017). Traffic accidents prediction model using fuzzy logic: Aswan desert road case study. J. Eng. Sci. Assiut Univ, 45, 2844.
[40] Hultkrantz L, Lindberg G, Andersson C (2006). The value of improved road safety. Journal of risk and uncertainty, 32(2), 151-170.
[41] Moussa, G. S., & Owais, M. (2021). Modeling Hot-Mix asphalt dynamic modulus using deep residual neural Networks: Parametric and sensitivity analysis study. Construction and Building Materials, 294, 123589.
[42] Moussa, G. S., & Owais, M. (2020). Pre-trained deep learning for hot-mix asphalt dynamic modulus prediction with laboratory effort reduction. Construction and Building Materials, 265, 120239.
[43] Hughes B, Newstead S, Anund A, Shu C, Falkmer T (2015). A review of models relevant to road safety. Accident Analysis & Prevention, 74, 250-270.
[45] Alkheder S, Taamneh M, Taamneh S (2017). Severity prediction of traffic accident using an artificial neural network. Journal of Forecasting 36, 100-108.
[47] Yafeng, Y., Yinhai, W., Lu, J., & Wei, W. (2011). Towards Sustainable Transportation Systems. In 11th International Conference of Chinese Transportation Professionals. American Society of Civil Engineers (Vol. 2006, pp. 1925-1933).
[48] Amiri, A. M., Nadimi, N., & Yousefian, A. (2020). Comparing the efficiency of different computation intelligence techniques in predicting accident frequency. IATSS Research.
[49] Labuschagne, F., De Beer, E., Roux, D., & Venter, K. (2017). The cost of crashes in South Africa 2016. Southern African Transport Conference.
[50] Cardoso, J. P., Mota, E. L. A., Rios, P. A. A., & Ferreira, L. N. (2020). Fatores associados à perda de produtividade em pessoas envolvidas em acidentes de trânsito: um estudo prospectivo. Revista Brasileira de Epidemiologia, 23, e200015
[51] Mofadal, A. I., & Kanitpong, K. (2016). Analysis of road traffic accident costs in Sudan using the human capital method. Open journal of civil engineering, 6(2), 203-216.
[52] Wijnen, W., Weijermars, W., Schoeters, A., Van den Berghe, W., Bauer, R., Carnis, L., ... & Martensen, H. (2019). An analysis of official road crash cost estimates in European countries. Safety science, 113, 318-327.
[53] Ali, Q., Yaseen, M. R., & Khan, M. T. I. (2019). Road traffic fatalities and its determinants in high-income countries: a continent-wise comparison. Environmental Science and Pollution Research, 26(19), 19915-19929.
[54] World Health Organization. (2010). Data systems: a road safety manual for decision-makers and practitioners.
[55] Daniels, S., Martensen, H., Schoeters, A., Van den Berghe, W., Papadimitriou, E., Ziakopoulos, A., & Weijermars, W. (2019). A systematic cost-benefit analysis of 29 road safety measures. Accident Analysis & Prevention, 133, 105292.
[56] Samir, E. (2009). Prediction Pavement Performance using Markov Chain Model. Master's Thesis, Faculty of Engineering, Cairo University, Cairo, Egypt
[57] Marzouk, M., Awad, E., & El-Said, M. (2012). An integrated tool for optimizing rehabilitation programs of highways pavement. The Baltic Journal of Road and Bridge Engineering, 7(4), 297-304.
[58] Elhadidy,A.,Elbeltagi,E.,andAmmar,M.(2015)."Optimum Analysis of Pavement
Maintenance Using Multi-Objective Genetic Algorithms". Housing and Building Research Center (HBRC) Journal,ElsevierPublisher,11(1),pp.107-113.
[59] El-Tahan(2017). " Development a pavement maintenance management system frame work using Markov Chains theory for Egyptian higway networs. Doctoral thesis. Faculty of Engi eering, A exandria Uni ersity.
[60] El-Hakim, A., El-Aziz, A., Nader, E., El-Badawy, S. M., & Afify, H. A. (2017). Validation and improvement of pavement ME flexible pavement roughness prediction model using extended LTPP database (No. 17-02203).
[61] Abdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M., & Afify, H. A. (2020). International Roughness Index prediction model for flexible pavements. International Journal of Pavement Engineering, 21(1), 88-99.
[62] Egyptian General Authority for Roads, Bridges, and Land Transport, (GARBLT, 2022).
[63] ASTM D6433-11 (2011) "Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys", ASTM International, West Conshohocken, PA, 2011, www.astm.org.
[65] Saaty, R. W. (1987),“The analytic hierarchy process what it is and how it is used”, Mathematical modelling, 9(3-5), 161-176.