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Abstract

Pavement performance prediction is widely considered as a significant element
of road infrastructure asset-management systems or Pavement Management
Systems (PMS) by pavement researchers and practitioners. Predicting
pavement performance significantly reduces the huge costs of constructing
roads, especially in the case of countries that made incredible investments in
road construction. This study mainly focuses on the implementation of the
mechanistic-empirical (M-E) analysis method using the AASHTOWare
Pavement ME Design (AASHTOWare PMED) software for flexible pavement
distress prediction-models generation. To achieve that four steps were
followed. First, the most accurate assessment that shows the combined impact
of the most important parameters that affect flexible pavement performance
was used to perform the AASHTOWare runs. In which, 378 design
combinations of (3 traffic speed levels x 3 traffic load levels x3 climatic zones
x7 Surface HMA mixes widely used in Egypt) at two input levels of the
AASHTOWare PMED hierarchy (levels 1 &2) that typically are required for
binders and hot-mix-asphalt (HMA) were used. Second, a sensitivity analysis
to study the combined effect and impact of the investigated parameters on
AASHTOWare PMED-predicted performance (cracking, rutting, and
roughness) was conducted at the two input levels. Third, a Multiple Linear
Regression (MLR) was implemented as a modeling approach to develop five
performance prediction models for flexible pavements based on the
AASHTOWare PMED software results. The proposed MLR models predicted
each distress as a function of climatic factors, the surface HMA properties,
different regions' speed levels, and traffic volume levels. Finally, a validation
process of the proposed MLR prediction models was conducted. Results
indicated that the proposed models yield an overall good prediction, asserting
the robustness of the proposed process. Proposed MLR prediction models can
be perceived as a function of Average Annual Daily Truck Traffic, Traffic
speed, mean annual air temperature, and the percentage of air voids. This study
provides a procedure to develop the performance prediction models of flexible
pavements based on the AASHTOWare PMED approach and in accordance
with different regions’ input levels.
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1. Introduction

Due to the high maintenance cost associated with highway systems, the need to improve pavement
performance has become one of the most important needs to decrease costs. Pavement performance
IS a representation of pavement behavior under traffic and climate conditions. In general, asphalt
pavements are designed to resist cracking, rutting, and other distresses which, when they occur,
increase the maintenance costs of the pavement and reduce the pavement service life [1]. The
flexible pavement performance is governed by many factors including asphalt mixture components’
properties as well as traffic and climate conditions [2,3,4]. The prediction of pavement distresses
makes the expectation of pavement properties possible, thus improving it or selecting the most
suitable HMA mixtures of flexible pavement design for several local conditions. Thus, to build
roads to resist pavement distresses then decrease the maintenance cost and increase the pavement
services life span, pavement engineers need to look for new predicting distress mechanisms.

The new Mechanistic-Empirical Pavement Design Guide (MEPDG) has been introduced by
AASHTO based on the Mechanistic-Empirical (M-E) design method that is embedded in the
AASHTOWare software. The AASHTOWare software considers the climate, material properties,
subgrade type, traffic, etc. to compute the deflections, stresses, and strains, estimate the distresses,
and predict the performance of pavements with the distress transfer functions for the entire service
life of the pavement [5,6]. In many countries such as Italy [7] and Romania [8] as well as in the
USA states such as lowa [9], Oregon [10] and Kansas [11], usage of the AASHTOWare software
gained significant popularity. Several studies have been performed to study the impact of inputs on
the performance indicators using the MEPDG [12,13,14,15]. Thus initiate the development of new
approaches to tackle the scarcity of the required input data in countries, e.g., Qatar [16]. While
limited studies investigated the implementation of the MEPDG to provide long-term performance
evaluations for road network investments in Middle East countries, e.g., Saudi Arabia [17]and [18],
Qatar [19] and [16], and Egypt [15,20,21,22], Lebanon [23] as well as in the developed countries,
e.g., India [24] and Turkey [25] and [26]. The scarcity of the required input data makes the
implementation of the MEPDG in the Middle East region still in its early stages to reach an
optimum design.

The main objective of this study is to initiate a procedure to develop prediction models of flexible
pavement distresses based on the MEPDG approach and follow different regions’ input. In this
procedure, seven different types of HMA of the wearing layer materials at three weather stations
representing climatic regions in Egypt: Alexandria, Cairo, and Aswan were analyzed optimizing
378 design combinations for the typical flexible pavement section. Furthermore, a sensitivity
analysis to study the combined effect and impact of the investigated parameters on MEPDG-
predicted performance (cracking, rutting, and roughness) was conducted at the two input levels.
Moreover, Multiple Linear Regression (MLR) as a modeling tool was used to develop five distress
prediction models for flexible pavements. The five distress performance prediction models that
were developed include longitudinal cracking, alligator cracking, asphalt concrete (AC) rutting,
total rutting, and the international roughness index (IRI). The proposed models predict each distress
as a function of climatic factors and the surface HMA properties. Additionally, different regions'
speed levels and traffic volume levels are also considered in those models. Finally, a validation
process of the proposed MLR prediction models was conducted.
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This study promotes predicting pavement performance to reduce the cost of construction of flexible
pavements and help in preserving roads operated under an acceptable level of service. That may
help decision makers to identify Maintenance and Rehabilitation (M&R) demands by predicting
pavement performance and then plan rational budget and resource allocation in countries
experiencing similar conditions in the future.

2. Background of AASHTOWare Pavement ME Desigh (AASHTOWare PMED)

The new MEPDG represents a comprehensive tool for the analysis and design of new and
rehabilitated flexible and rigid pavement structures based on mechanistic-empirical fundamental
engineering principles [27 and 28]. MEPDG was developed by Applied Research Associates
(ARA) and Arizona State University (ASU) under the National Cooperative Highway Research
Program (NCHRP1-37A and NCHRP 1-40D). A comprehensive set of procedures are provided by
the MEPDG for the analysis of rehabilitated and new flexible and rigid pavements and then
pavements can be designed lately. The MEPDG methodology predicts multiple performance
indicators and provides more reliable predictions of pavement performance compared to the current
design methods. Also, it provides a direct tie between daily, seasonal, and annual changes in local
materials, climate, traffic, structural design, construction, and pavement management systems.
The MEPDG software, which was called “AASHTOWare”, is a tool to analyze and design
pavements using a mechanistic-empirical approach. The stress-strains under various traffic
loadings are determined for different seasonal conditions using the built-in numerical program in
the software to predict different distresses with its service life. When the data for climate, traffic,
materials, and proposed typical structure are start inputted by the designer, the pavement analysis
and design are started. The software can mechanistically over the entire service life of the pavement
calculates the structural responses (stresses, strains, and deflections) and estimates the damage
accumulation, within a pavement system. The software also allows users to input defined
calibration coefficients that reflected certain region conditions.

The AASHTOWare Pavement ME Design software uses a hierarchical approach from three levels

of inputs for most of the parameters of the pavement conditions, traffic, climate, and material. This

approach offers the designer a great deal of flexibility in selecting the project inputs based on their
availability and the criticality of the project. These input levels are defined as follows :

e Input Level 1 input parameter is measured by the detailed testing of specific materials and thus
it is typically the most accurate.

e Input Level 2 input parameter is a determined value from local average values, correlations, or
regression equations with other more standard testing procedures thus it typically provides a
moderate confidence level of performance.

e Input Level 3 input parameter has the lowest level of accuracy, it is the best-estimated national
or regional default values.

3. Objective and Methodology of Study

This study is considered a crucial attempt to develop pavement performance prediction models
using AASHTOWare for the Middle East region due to the lack of resources that led to the
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unavailability of such models in most Middle East countries such as Egypt. So, this study focused

on achieving the following objectives that are directly linked to the proposed implementation plan :

e Investigate the combined effect of climatic conditions, speed, HMA material properties, and
traffic characteristics on pavement performance.

e Predict the pavement distresses for flexible pavements, taking into consideration the combined
effect of the most important and common factors.

e Develop pavement distress prediction models for main roads located in Middle East countries
experiencing the same regional conditions.

e Evaluate the input level in the AASHTOWare PMED on predicted performance to show the
impact of the input level (1 and 2).

The adopted plan in this study is depicted in Fig. 1.

Data collection

AASHTOware Simulation
Runs

Sensitivity for MEPDG
Inputs

-

Develop the Pavement
Distress Models using

{am:
r
&

Validation Process

Performance Analysis
[ Output (distresses) ]

Fig. 1: A Scheme of this study plan
4. Data collection and processing

To assess the influence of the change in traffic, climate, and mixture properties of the wearing layer
data on ME Design predicted performance, a study was conducted using to predict the field
distresses of the typical flexible pavement cross section for a design life of 20 years. Figure 2 shows
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a typical flexible pavement cross-section used in all AASHTOWare PMED simulation runs. The
required pavement material data of that pavement cross-section were collected by using the
Egyptian code of practice [29] and the Egyptian General Authority for Roads, Bridges, and Land
Transport (GARBLT) specifications [30]. Moreover, more detailed descriptions of the properties of
the investigated AC mixtures in this study are presented in [31,32,33].
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Fig. 2: Typical Flexible Pavement Section Used in the MEPDG Runs

A total of 378 AASHTOWare PMED simulation runs for the level 1 and level 2 analyses were
conducted. In a level 1 analysis, HMA dynamic modulus, binder shear modulus, binder phase
angle, effective binder content, air voids, and mix total unit weight measured in the laboratory were
used. In a level 2 analysis, binder shear modulus, binder phase angle, effective binder content, air
voids, and mix total unit weight measured in the laboratory were used.

The simulation runs were performed at the most three important locations and have a big difference
in climate conditions in Egypt (Alexandria, Cairo, and Aswan) [34]. The depth of the water table
was kept constant at 10ft. (3.048 m). There are nine changes was varied using the three traffic levels
with 2-way annual average daily truck traffic (AADTT) (T1=2000, T2=4000, T3=7000) and 2.0%
annual growth rate at the three different speeds values (S1=10 km/hr), (S2=55 km/hr) and (S3=95
km/hr) for each one of that traffic levels with the rest of the traffic inputs kept at the default values
in AASHTOWare PMED was used in the analysis. Some of the major input data used for the
AASHTOWare PMED simulation runs are summarized and presented in Table 1. After conducting
the simulation runs, their outputs were used for a sensitivity analysis to study the combined effect
and impact of the investigated parameters on AASHTOWare PMED-predicted performance
(cracking, rutting, and roughness) at the two input levels. Then the simulation runs’ outputs were
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divided into two sets; the first set (85% of the data) is used to create the MLR performance
prediction models, and the second set (15% of the data ) is used to validate those MLR models.

Table 1: A Summary of the major input data for the AASHTOWare PMED simulation runs.

Range
Cat | t t Symbol -
ategory nput parameter ymbo i p——"
Aggregate % Aggregates passing #200 sieve %P200 4 5.6
gradation of % Aggregates passing #4 sieve %Ps4 55 62
Material HMA surface "o "Aqgregates passing #3/8” sieve | %P 68 89.5
Characteristics layer % Aggregates passing #3/4" sieve %P4 96 100
% Air voids in the mix %Va 6.05 7.34
Mix
Effective asphalt content V beft 9.81 134
Climate Data Al Mean annual air temperature (°C) Tair 21.75 24.29
Temperature
. Traffic Volume | Annual average daily truck traffic | AADTT 2000 7000
Traffic Data
Traffic Speed Operational speed (km/hr) SPEED 10 95

5. Sensitivity Analysis for AASHTOWare PMED Inputs

Conducting sensitivity analyses is a powerful tool to achieve and facilitate the implementation of
AASHTOWare PMED according to local conditions, understand the behavior of AASHTOWare
PMED in Egypt, and allocate funds for the accurate estimation of the most important input
variables. Several inputs were chosen to be included in this sensitivity analysis based on their high
influence on performance predictions of AASHTOWare PMED. These inputs were Climate
Condition, Traffic volume, Traffic speed, % Air Voids, Effective Binder Content, aggregate
gradation, and HMA total unit weight.

In this study, the sensitivity of each parameter was evaluated according to the adopted sensitivity
evaluation criteria [35]. Each selected AASHTOWare PMED input parameter was changed at 3
values. The sensitivity runs were conducted by varying one input under investigation at a time
while keeping all other inputs under study at a constant level and then the AASHTOWare PMED
predicted performance with these variations was observed in terms of terminal IRI, alligator
cracking, longitudinal cracking, and rutting.The results of the sensitivity analyses and assigned
sensitivity level of each distress for AASHTOWare PMED (Level 1) and (Level 2) runs are
presented in Tables 2 and 3, respectively.

The following discussion summarizes each factor’s effect based on the results of the sensitivity
analyses at AASHTOWare PMED (Level 1) and (Level 2) runs.

5.1. Climate Condition Effect

The air temperature had a significant effect on the AASHTOWare PMED (Level 2) total rutting, the

AASHTOWare PMED (Level 1) longitudinal cracking, and the AASHTOWare PMED (Level 1

and Level 2) AC rutting predictions. The influence of air temperature was found to be not overly

significant on both levels of the AASHTOWare PMED IRI and the AASHTOWare PMED (Level

1) alligator cracking. The influence of air temperature on the AASHTOWare PMED (Level 1) total
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rutting was found to be less than on AC rutting predictions. It was also found that the air
temperature has an insignificant influence on the AASHTOWare PMED (Level 2) alligator and the
longitudinal cracking predictions.

5.2.  Traffic Volume Effect
At both levels of the AASHTOWare PMED (Level 1 and Level 2), the truck traffic volume had a
significant effect on all distresses except IRI, with an extreme effect on alligator cracking.

5.3.  Traffic Speed Effect

For the AASHTOWare PMED (Level 1), it was found that both alligator and longitudinal cracking
were more sensitive to traffic speed than were the AC rutting and the total pavement rutting.
However, at level 2 the traffic speed was only significant for the AC rutting.

5.4. % Air Voids in Mix Effect

For the AASHTOWare PMED (Level 1), the longitudinal cracking was found to be extremely
sensitive to the percent air voids. Also, the influence of percent air voids was more significant on
the AC rutting and the total rutting than on the IRI predictions and it was insignificant on the
alligator cracking. For the AASHTOWare PMED (Level 2), the influence of percent air voids was
more significant on the longitudinal cracking than on both the alligator cracking and the AC rutting,
however, it was insignificant on both the IRI and the total rutting.

5.5. Binder Content Effect

For the AASHTOWare PMED (Level 1 and Level 2), the influence of binder content was found to
be more significant on the longitudinal cracking than on the AC rutting, and it was insignificant on
the IRI.

5.6. HMA Mixtures Aggregate Gradation Effect

For the AASHTOWare PMED (Level 1 and Level 2), the influence of percent aggregates passing
from the 3/8” sieve and the NO.200 sieve was found to be more significant on the longitudinal
cracking than on the rutting at AC and total pavement and it was insignificant on the IRI. For the
AASHTOWare PMED (Level 1), the longitudinal cracking was found to be very sensitive to the
percent aggregates passing from the NO.4 sieve versus what was found for the AASHTOWare
PMED (Level 2). For the AASHTOWare PMED (Level 1), the influence of the percent aggregates
passing from the NO.4 sieve was found to be not overly significant on the rutting at AC and total
pavement.

5.7. HMA Mix Total Unit Weight Effect

For the AASHTOWare PMED (Level 1 and Level 2), the total unit weight was found to be more
significant on the longitudinal cracking than on the AC rutting and it was found to be insignificant
on the IRI. For the AASHTOWare PMED (Level 2), it was found that the total unit weight is more
sensitive to the alligator cracking than to the total pavement rutting versus what was found for the
AASHTOWare PMED (Level 1).
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Table 2: A summary of the sensitivity analyses results (level 1)

Input Parameter

Performance Models

Terminal IRI
(m/km)

Rutting - total
pavement (mm)

Alligator cracking
(percent)

Longitudinal cracking
(m/km)

Rutting - AC only
(mm)

Climatic Location
(MAAT), ( oC)

Low Sensitivity

Sensitivity

Low Sensitivity

very Sensitivity

very Sensitivity

Traffic Volume

Low Sensitivity

very Sensitivity

Extremely Sensitivity

very Sensitivity

very Sensitivity

(AADTT)
Traffic Speed,
Kmph Low Sensitivity Sensitivity very Sensitivity very Sensitivity Sensitivity
Airvoids (%): | Low Sensitivity Sensitivity Insensitive Extremely Sensitivity Sensitivity
Effective binder . o . I -
Insensitive Low Sensitivity Insensitive Sensitivity Low Sensitivity
content (%):
%P 3/8" Insensitive Low Sensitivity Insensitive Sensitivity Low Sensitivity
%P #4 Insensitive Low Sensitivity Insensitive very Sensitivity Low Sensitivity
%P #200 Insensitive Low Sensitivity Insensitive Sensitivity Low Sensitivity
Total unit weight . . . L o
Insensitive Low Sensitivity Insensitive Sensitivity Low Sensitivity

(kgf/m3):

Table 3: A summary of the sensitivity analysis results (level 2).

Input Parameter

Performance Models

(MAAT), ( oC)

Terminal IRI Rutting - total Alligator cracking Longitudinal cracking | Rutting - AC only
(m/km) pavement (mm) (percent) {m/km) (mm)
Climatic Location L e s s . -
Low Sensitivity very Sensitivity Insensitive Insensitive very Sensitivity

Traffic Volume

Low Sensitivity

very Sensitivity

Extremely Sensitivity

very Sensitivity

very Sensitivity

content (%):

(AADTT)
Traffic Speed, o o o - I
Kmph Low Sensitivity Sensitivity Low Sensitivity Insensitive very Sensitivity
Air voids (%): Insensitive Insensitive Low Sensitivity Sensitivity Low Sensitivity
Effective binder . . L L I
Insensitive Insensitive Low Sensitivity Sensitivity Low Sensitivity

(kgf/m3):

%P 3/8" Insensitive Low Sensitivity Low Sensitivity Sensitivity Low Sensitivity
%P #4 Insensitive Insensitive Insensitive Low Sensitivity Insensitive
%P #200 Insensitive Insensitive Low Sensitivity Sensitivity Low Sensitivity
Total unit weight . . L L L
Insensitive Insensitive Low Sensitivity Sensitivity Low Sensitivity
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6. MLRs Pavement Distress Prediction Model Development

The multiple regression analysis techniques were applied to develop fatigue cracking, longitudinal
cracking, Terminal IRI, AC, and total pavement deformation prediction models for different climate
zones in Egypt using SPSS software [36].

6.1.  Stepwise Regression:

Several trials were made to identify the independent variables that have the most significant impact
on the various mentioned pavement distresses. Subsequently, reliable prediction models for the
most accurate representation of the pavement distress relationships to the impacted factors were
conducted with the estimated regression coefficients.

Through the analysis results examination, when the P-value for any test was found to be less than
0.05 at a 95% confidence level, this reinforces the significance of the inclusion of each one of the
independent variables as a part of the model. Regarding the overall significance of the regression
model, the F-values from the ANOVA test are less than the risk level (a=5%), meaning the
regression model significance is verified [37].

6.2.  Regression Analysis

6.2.1. Terminal IRI

Based on the P-value for all considered factors, the significance of the inclusion of the %air voids
of the asphalt mix, % passing from the 3/8-in.sieve and No.4 sieve of the asphalt mix, mean annual
air temperature, average annual daily truck traffic, and speed variables as a part of the terminal IRI
model were reinforced, as shown in Table 4.

Table 4: Summary of the hypothesis tests results for the regression coefficients of the terminal IRl model for
(AASHTOWare PMED) level 1 and level 2

Parameters Level NO. Coefficients Standard t-stat P-value
Error
Int ¢ level 1 -0.38 2.23E-01 -1.699 9.14E-02
ntercep level 2 20,01 2.23E-01 20,031 9.76E-01
level 1 0.07 1.76E-02 3.894 1.46E-04
Air voids (%V,)
[N I B e e [
level 1 -0.007 1.23E-03 -5.754 4 52E-08
%P3/8"
level 2 -0.01 1.40E-03 -7.196 2.45E-11
%Pt 4 level 1 0.005 1.91E-03 2.809 5.62E-03
level 2 0.005 2.16E-03 2.306 2.24E-02
Mean annual air level 1 0.12 6.81E-03 16.976 3.46E-37
temperature (Tair) level 2 0.14 7.98E-03 17.016 2.22E-37
level 1 9.03E-05 3.51E-06 25.739 7.64E-58
AADTT
level 2 1.01E-04 4.11E-06 24.634 1.22E-55
level 1 -0.004 2.08E-04 -19.133 1.18E-42
SPEED
level 2 -0.005 2.43E-04 -18.802 6.14E-42
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Also, it was noticed that the terminal IRI model significance was verified due to the F-values from
the ANOVA test being less than the risk level (0=5%), as shown in Table 5.

Table 5: ANOVA results for terminal IRI regression model for (AASHTOWare PMED) level 1 and level 2

Level NO. SS df MS F Significance F
Regression level 1 12 6 1.938 230 1.71E-74
level 2 15 5 3.009 261 8.45E-74
Residual level 1 1 155 0.008
level 2 2 156 0.012
Total level 1 13 161
level 2 17 161

6.2.2. Rutting /deformation Distress

Based on the P-values for all considered factors, the inclusion of %air voids of asphalt mix, %
effective binder content, % passing from the 3/8-in.sieve and No.4 sieve of asphalt mix, mean
annual air temperature, average annual daily truck traffic and traffic speed variables as a part of one
of the rutting/deformation distress model type were reinforced, as shown in Table 6.

Table 6: Summary of the hypothesis tests results for the regression coefficients of the rutting model for
(AASHTOWare PMED) level 1 and level 2

Parameters Distress Type LI\%EI Coefficients Sté?gjrrd t Stat P-value
Total Rutting level 1 -113.84 8.70E+00 -13.091 7.59E-27

Intercept level 2 -08.59 9.51E+00 -10.364 1.78E-19
AC Rutting level 1 -148.49 7.65E+00 -19.400 1.99E-43

level 2 -152.36 8.65E+00 -17.621 4,92E-39

Effective binder AC Rutting level 1 1.32 2.17E-01 6.079 8.94E-09
content (Vietr) level 2 2.23 2.91E-01 7.667 1.73E-12
Total Rutting |- oo 20— O0oEOL | 9724 | RMEDL

Arvoids OOV | ac uting | -ove 2345 OEOL | 4%0  LOIE00
. . level 1 -0.28 4.77E-02 -5.790 3.80E-08
6P3/8 Total Rutting = 0o -0.45 5.95E-02 7572 3.02E-12
. level 1 0.22 7.44E-02 3.010 3.05E-03

YoPit 4 Total Rutting = 0o 0.24 9.22E-02 2581 1.08E-02
Total Rutting level 1 5.84 2.65E-01 22.015 1.43E-49

Mean annual level 2 6.72 3.40E-01 19.756 2.64E-44
air temperature AC Ruttin level 1 5.79 2.56E-01 22.590 4.77E-51
(Tair) g level 2 6.67 3.46E-01 19.288 2.90E-43
Total Rutting level 1 3.053E-03 1.37E-04 22.334 2.62E-50

level 2 3.501E-03 1.75E-04 19.987 7.17E-45

AADTT AC Rutting level 1 2.869E-03 1.32E-04 21.712 5.25E-49
level 2 3.304E-03 1.78E-04 18.559 1.98E-41

Total Rutting level 1 -0.15 8.09E-03 -18.248 1.94E-40

level 2 -0.17 1.04E-02 -16.787 8.75E-37

SPEED AC Rutting level 1 -0.14 7.82E-03 -18.231 1.69E-40
level 2 -0.17 1.05E-02 -16.009 8.09E-35
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It was noticed that the rutting/deformation distress model significance was verified due to the F-
values from the ANOVA test being than the risk level (a=5%), as shown in Table 7.

Table 7: ANOVA results for the rutting regression model for (AASHTOWare PMED) level 1 for
(AASHTOWare PMED) level 1 and level 2

D_II_S;;SS L’\Téél SS df MS F Significance F
Total level 1 17618 6 2936.264 230 1.82E-74
. Rutting level 2 23706 5 4741.110 226 1.56E-69
Regression
AC level 1 3332986 6 555497.623 73 1.38E-42
Rutting level 2 5292146 4 1323036.501 783 1.43E-102
Total level 1 1981 155 12.779
Rutting level 2 3274 156 20.984
Residual AC level 1 1182610 | 155 7629.743
Rutting level 2 265173 157 1689.001
Total level 1 19598 161
Rutting level 2 26979 161
Total AC level 1 4515596 | 161
Rutting level 2 5557319 | 161

6.2.3. Fatigue Cracking

Based on the P-values for all considered factors, the inclusion of % passing from the 3/8-in.sieve of
asphalt mix, mean annual air temperature, average annual daily truck traffic, and speed variables as
a part of the alligator cracking model and the inclusion of % effective binder content, %air voids of
asphalt mix, % passing from the N0.200 sieve of asphalt mix in addition to the previous variables as
a part of the longitudinal cracking model were reinforced, as shown in Table 8.

Table 8: Summary of the hypothesis tests results for the regression coefficients of the alligator cracks model
for (AASHTOWare PMED) level 1 and level 2

Parameters Distress Level NO. | Coefficients Standard t Stat P-value
Type Error

Alligator level 1 -2.39 6.74E+00 -0.355 7.23E-01

Intercept cracking level 2 5.58 3.99E+00 1.398 1.64E-01

longitudinal level 1 290.38 2.46E+02 1.180 2.40E-01

cracking level 2 101.87 5.74E+01 1.775 7.78E-02

Effective binder longitudinal level 1 -54.97 8.06E+00 -6.822 1.90E-10

content (Vuefr) cracking level 2 -63.89 2.58E+00 -24.773 | 4.08E-56

S longitudinal level 1 53.91 1.61E+01 3.351 1.01E-03

Air voids (%Vs) cracking level 2 143.09 756E+00 | 18.919 | 2.45E-42

%P3/8" Alligator level 1 -0.08 3.97E-02 -2.131 3.46E-02

cracking level 2 -0.27 2.35E-02 -11.493 | 1.44E-22

6P 200 Iongitusjinal level 1 -68.59 1.92E+01 -3.567 4.80E-04
cracking level 2 |  —omememee | e

Alligator level 1 0.60 2.53E-01 2.376 1.87E-02

Mean annual air cracking level 2 0.67 1.50E-01 4.494 1.35E-05

temperature (Tair) longitudinal level 1 29.53 6.48E+00 4.554 1.06E-05
cracking level 2 | —omemeemeee | e
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Table 8: Summary of the hypothesis tests results for the regression coefficients of the alligator cracks model
for (AASHTOWare PMED) level 1 and level 2 (Continue)

Parameters Distress Level NO. | Coefficients Standard t Stat P-value
Type Error

Alligator level 1 3.387E-03 1.30E-04 25.975 1.02E-58

AADTT cracking level 2 3.595E-03 7.73E-05 46.525 9.61E-94
longitudinal level 1 5.873E-02 3.34E-03 17.585 9.37E-39

cracking level 2 7.369E-02 1.57E-03 46.895 3.01E-94

Alligator level 1 -0.04 7.72E-03 -4.836 3.13E-06

SPEED cracking level 2 -0.05 4.57E-03 -10.148 | 6.38E-19
longitudinal level 1 -1.37 1.98E-01 -6.938 1.02E-10

cracking level 2 -0.45 9.30E-02 -4.868 2.72E-06

It was noticed that the fatigue cracking model significance was verified due to the F-values from the
ANOVA test being less than the risk level (a=5%), as shown in Table 9.

Table 9: ANOVA results for the alligator cracks regression model for (AASHTOWare PMED) level 1 and
level 2

Distress Level SS df MS F Significance F
Type NO.
Alligator level 1 8239 4 2059.725 177 4.23E-57
Regression cracking level 2 9882 4 2470.461 605 3.03E-94
longitudinal level 1 | 3332986 6 555497.623 73 1.38E-42
cracking level 2 | 5292146 4 1323036.501 783 1.43E-102
Alligator level 1 1826 157 11.632
Residual cracking level 2 641 157 4.084
longitudinal level 1 1182610 | 155 7629.743
cracking level 2 265173 | 157 1689.001
Alligator level 1 10065 161
Total cracking level 2 10523 | 161
longitudinal level 1 | 4515596 | 161
cracking level 2 5557319 | 161

6.3.  Regression models

6.3.1. Terminal IRI

The R? of the terminal IRI models were 0.895 and 0.890 based on AASHTOWare PMED data
inputs at levels one and two, respectively. According to all the above, the proposed distress models
of terminal IRI could be presented as follows:

Level (1) of AASHTOWare PMED data inputs:

Terminal IRI (m/km) = - 0.38 + 0.07 %Va - 0.007 %P3g- + 0.005 %Pss + 0.12 Tair + 0.09%1073
AADTT - 0.004 SPEED

Level ( 2) of AASHTOWare PMED data inputs:
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Terminal IRI (m/km) = - 0.01 - 0.01 %P3g + 0.005 %P4 + 0.14 Tair + 0.101*10° AADTT - 0.005
SPEED

6.3.2. Total Pavement Rutting/deformation Distress

The R? of the rutting models were 0.895 and 0.875 for AASHTOWare PMED data inputs at levels
one and two, respectively. The proposed distress models of the total pavement rutting/deformation
distress are presented as follows:

Level (1) of AASHTOWare PMED data inputs:

Total Rutting (mm) = - 113.84 + 2.55 %Va - 0.28 %Pag + 0.22 %P4 + 5.84 Tair + 3.053*1072
AADTT - 0.15 SPEED

Level (2) of AASHTOWare PMED data inputs:

Total Rutting (mm) = - 98.59 - 0.45 %Pag- + 0.24 %Ps4 + 6.72 Tair + 3.501*10° AADTT - 0.17
SPEED

6.3.3. Alligator Cracks

The R? of the alligator cracks models were 0.814 and 0.938 for AASHTOWare PMED data inputs
at levels one and two, respectively. The proposed distress models of fatigue cracking could be
presented as follows:

Level (1) of AASHTOWare PMED data inputs:
Alligator Cracking (percent) = - 2.39 - 0.08 %P3g* + 0.6 Tair + 3.387*10° AADTT - 0.04 SPEED

Level ( 2) of AASHTOWare PMED data inputs:

Alligator Cracking (percent) = 5.58 - 0.27 %P3 + 0.67 Tair + 3.595*10° AADTT - 0.05 SPEED

6.3.4. Longitudinal Cracks

The R? of the longitudinal cracks model = 0.728 and 0.951 of AASHTOWare PMED data inputs at
levels one and two, respectively. The proposed distress models of longitudinal cracks could be
presented as follows:

Level (1) of AASHTOWare PMED data inputs:

Longitudinal Cracking (m/km) = 290.38 - 54.97 Vpett + 53.91 %Va - 68.59 %Ps200 + 29.53 Tair
+58.731*10° AADTT - 1.37 SPEED

Level ( 2) of AASHTOWare PMED data inputs:

Longitudinal Cracking (m/km) = 101.87 - 63.89 Vierr + 143.09 %Va + 73.691 *10° AADTT -
0.45 SPEED

6.3.5. Rutting/deformation Distress on AC only
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The R? of the AC rutting/deformation models = 0.895 and 0.865 of AASHTOWare PMED data
inputs based on levels one and two, respectively. The proposed distress models of AC
rutting/deformation distress could be presented as follows:

Level (1) of AASHTOWare PMED data inputs:

AC Rutting (mm) = - 148.49 + 1.32 Vperr + 3.15 %Va + 5.79 Tair + 2.869%10° AADTT - 0.14
SPEED

Level (2) of AASHTOWare PMED data inputs:

AC Rutting (mm) = - 152.36 + 2.23 Veff + 6.67 Tair + 3.304*10° AADTT - 0.17 SPEED.

7. Models Validation Process

To ensure the robustness of each proposed model, the model’s validation is considered a crucial
process that starts once these models are developed. For all model validation processes in this
study, the renaming database which represents 15% of all data was used to achieve this insurance.
The model’s validation process is explained in subsections as presented below:

7.1. Validation of predicted IRl Models
For the AASHTOWare PMED (Level 1) and (Level 2) predictions, the results of measured and
predicted IRI values are presented in Fig. 3.
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Fig. 3: The results of measured and predicted IRI values for the model validation

The results indicated that the goodness-of-fit statistics in terms of R? are 0.9042 and 0.9088 for the
AASHTOWare PMED (Level 1) and (Level 2) predictions, respectively. So, it can be indicated that
the proposed models of IRI yield acceptable IRI predictions, asserting the robustness of the
proposed models.

7.2. Validation of predicted pavement rutting Models
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For the AASHTOWare PMED (Level 1) and (Level 2) predictions, the results of measured and
predicted pavement rutting values for the model validation are presented in Fig. 4 and Fig. 5.
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Fig. 5: The results of measured and predicted AC rutting values for the model validation

The results indicate that the goodness-of-fit statistics in terms of R? are 0.9082, 0.9087, 0.9057, and
0.9059 for the AASHTOWare PMED (Level 1 and Level 2) rutting predictions, respectively, for
both types of pavement rutting. So, it can be indicated that the proposed models of pavement rutting
yield an acceptable rutting prediction, asserting the robustness of the proposed models.

7.3.

Validation of predicted fatigue cracking Models
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For the AASHTOWare PMED (Level 1) and (Level 2) predictions, the results of measured and
predicted each type of fatigue cracking (alligator and longitudinal) values are presented in Fig. 6
and Fig. 7.
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Fig. 6: The results of measured and predicted alligator cracking values for the model validation
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Fig. 7: The results of measured and predicted longitudinal cracking values for the model validation

The results indicate that the goodness-of-fit statistics in terms of R? are 0.8219, 0.9679, 0.9516, and
0.987 for the AASHTOWare PMED (Level 1) and (Level 2) predictions, respectively. So, it can be
indicated that the proposed models of fatigue cracking (alligator and longitudinal) yield an
acceptable cracking prediction, asserting the robustness of the proposed models.

8. Discussions and Conclusions :

Based on the results and analyses, the main observations and conclusions of this research can be

summarized as presented below:

1. The AASHTOWare PMED (Level 1) longitudinal cracking predictions were found to be more
sensitive to most of the investigated parameters than the AASHTOWare PMED (Level 2)
longitudinal cracking predictions.
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2.

The AASHTOWare PMED (Level 1), alligator cracking was very sensitive to the traffic speed.
While, at both levels (1 and 2), the AASHTOWare PMED alligator cracking was very sensitive
to the truck traffic volume, the remaining investigated parameters have little effect on the
alligator cracking.

It was found that total pavement rutting was more sensitive to traffic volume and speed than to
other parameters.

Among all investigated parameters, it was found that the Average Annual Daily Truck Traffic is
the most influencing input on the AASHTOWare PMED (Level 1 and Level 2) predicted
performance of flexible pavements. The traffic speed and the Mean Annual Air Temperature
were also the most influencing inputs on the AASHTOWare PMED (Level 1) predicted
performance of flexible pavements.

Five MLR prediction models were proposed for the AASHTOWare PMED Levell and Level2
performance predictions.

For all proposed AASHTOWare PMED (Level 1) and (Level 2) MLR distress prediction
models, the R? values were more than 0.70 indicating a good model performance.

The results of the validation process reveal that the predicted values were close to the measured
ones for the developed models with R? values greater than 0.8.

Despite the good quality of the developed prediction models using the MLR approach, other
techniques such as machine learning can produce more precise prediction models for pavement
performance.

To increase the applicability of the proposed process, more parameters need to be considered
such as; the thickness of both asphalt and base layers and properties of asphalt underneath
layers (base and subgrade).
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