[1] F.C.Soon,H.Y.Khaw,J.H.Chuah,J.Kanesan,Hyper parameters optimization of deep CNN architecture for vehicle logo recognition, IET Intelligent Transport Systems 12 (8) (2018) 939–946.
[2] Sinha, H., Awasthi, V., Ajmera, P. K.: Audio classification using braided convolutional neural networks. IET Signal Processing 14(7), 448–454 (2020).
[3] Umar Albalawi, S Manimurugan and R Varatharajan, "Classification of breast cancer mammogram images using convolution neural network", Concurrency and Computation: Practice and Experience, no. 1, pp. 1-12, 2020.
[4] Ferraz, P.A.P.; de Oliveira, B.A.G.; Ferreira, F.M.F.; Martins, C.A.P.d.S. Three-stage RGBD architecture for vehicle and pedestrian detection using convolutional neural networks and stereo vision. IET Intell. Transp. Syst. 2020, 14, 1319–1327.
[5] Shen, C.; Zhao, X.; Fan, X.; Lian, X.; Zhang, F.; Kreidieh, A.R.; Liu, Z. Multi-receptive field graph convolutional neural networks for pedestrian detection. IET Intell. Trans. Syst. 2019, 13, 1319–1328.
[6] Wang Q, Liao J, Lapata M, Macleod M. Risk of bias assessment in preclinical literature using natural language processing. Res Synth Methods. 2021 Oct 28
[7] Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J., Harvey, E., 2016. Fish species classification in unconstrained underwater environments based on deep learning. Limnol. Oceanogr. Methods 14 (9), 570–585.
[8] Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
[9] Laila Ma‟rifatul Azizah, Sitti Fadillah Umayah, Slamet Riyadi, Cahya Damarjati, Nafi Ananda Utama “Deep Learning Implementation using Convolutional Neural Network in Mangosteen Surface Defect Detection”, ICCSCE, ISBN 978-1-5386-3898-9, pp. 242-246, 2017.
[10] Guidelines for the selection and Operation of Jack-ups in the Marine Renewable Energy Industry issue 2 :2013.
[11] G. Clauss, E. Lehmann, C. ÖstergaardOffshore structures, volume I, conceptual design and hydrodynamicsSpringer-Verlag, New York (1992).
[12] Mohamed Elawady. Sparse coral classification using deep convolutional neural networks. arXiv preprint arXiv:1511.09067, 2015.
[13] Ammar Mahmood, Mohammed Bennamoun, Senjian An, Ferdous Sohel, Farid Boussaid, Renae Hovey, Gary Kendrick, and Robert B Fisher. Coral classification with hybrid feature representations. In 2016 IEEE In- ternational Conference on Image Processing (ICIP), pages 519–523. IEEE, 2016.
[14] Hansang Lee, Minseok Park, and Junmo Kim. Plank- ton classification on imbalanced large-scale database via convolutional neural networks with transfer learn- ing. In 2016 IEEE international conference on image processing (ICIP), pages 3713–3717. IEEE, 2016.
[15] Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105.
[16] Nicole Seese, Andrew Myers, Kaleb Smith, and An- thony O Smith. Adaptive foreground extraction for deep fish classification. In 2016 ICPR 2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI), pages 19–24. IEEE, 2016.