[1] Y. Pan, C. E. Ventura, and M. M. S. Cheung, “Performance of highway bridges subjected to blast loads,” Eng Struct, vol. 151, pp. 788–801, Nov. 2017, Doi: 10.1016/j.engstruct.2017.08.028.
[2] J. Lee, K. Choi, and C. Chung, “Numerical analysis-based blast resistance performance assessment of cable-stayed bridge components subjected to blast loads,” Applied Sciences (Switzerland), vol. 10, no. 23, pp. 1–19, Dec. 2020, Doi: 10.3390/app10238511.
[3] R. Mudragada and S. S. Mishra, “Effect of blast loading and resulting progressive failure of a cable-stayed bridge,” SN Appl Sci, vol. 3, no. 3, Mar. 2021, Doi: 10.1007/s42452-021-04145-y.
[4] S. Trélat, I. Sochet, B. Autrusson, K. Cheval, and O. Loiseau, “Impact of a shock wave on a structure on explosion at altitude,” J Loss Prev Process Ind, vol. 20, no. 4–6, pp. 509–516, Jul. 2007, Doi: 10.1016/j.jlp.2007.05.004.
[5] S. Trélat, I. Sochet, B. Autrusson, O. Loiseau, and K. Cheval, “Strong explosion near a parallelepipedic structure,” Shock Waves, vol. 16, no. 4–5, pp. 349–357, May 2007, Doi: 10.1007/s00193-006-0069-3.
[6] J. Lellep and K. Torn, “Shear and bending response of a rigid-plastic beam subjected to impulsive loading,” Int J Impact Eng, vol. 31, no. 9, pp. 1081–1105, Oct. 2005, Doi: 10.1016/j.ijimpeng.2004.07.008.
[7] S. Peng, L. Jun Cai, T. Hua Jiang, and X. Kai, “Experimental study on blast damage of RC T-beam bridge,” Sensor Review, vol. 41, no. 4, pp. 397–405, Oct. 2021, Doi: 10.1108/SR-03-2021-0086.
[8] G. Gholipour, C. Zhang, and A. A. Mousavi, “Loading rate effects on the responses of simply supported RC beams subjected to the combination of impact and blast loads,” Eng Struct, vol. 201, Dec. 2019, Doi: 10.1016/j.engstruct.2019.109837.
[9] G. D. Williams and E. B. Williamson, “Response of Reinforced Concrete Bridge Columns Subjected to Blast Loads,” Journal of Structural Engineering, vol. 137, no. 9, pp. 903–913, Sep. 2011, Doi: 10.1061/(asce)st.1943-541x.0000440.
[10] S. M. Anas, M. Shariq, M. Alam, A. M. Yosri, A. Mohamed, and M. AbdelMongy, “Influence of Supports on the Low-Velocity Impact Response of Square RC Slab of Standard Concrete and Ultra-High Performance Concrete: FEM-Based Computational Analysis,” Buildings, vol. 13, no. 5, May 2023, Doi: 10.3390/buildings13051220.
[11] S. M. Anas, M. Alam, and M. Umair, “Experimental and numerical investigations on performance of reinforced concrete slabs under explosive-induced air-blast loading: A state-of-the-art review,” Structures, vol. 31, pp. 428–461, Jun. 2021, Doi: 10.1016/J.ISTRUC.2021.01.102.
[12] S. K. Hashemi, M. A. Bradford, and H. R. Valipour, “Dynamic response of cable-stayed bridge under blast load,” Eng Struct, vol. 127, pp. 719–736, Nov. 2016, Doi: 10.1016/j.engstruct.2016.08.038.
[13] S. K. Hashemi, M. A. Bradford, and H. R. Valipour, “Dynamic response and performance of cable-stayed bridges under blast load: Effects of pylon geometry,” Eng Struct, vol. 137, pp. 50–66, Apr. 2017, Doi: 10.1016/j.engstruct.2017.01.032.
[14] E. K. C. Tang and H. Hao, “Numerical simulation of a cable-stayed bridge response to blast loads, Part I: Model development and response calculations,” Eng Struct, vol. 32, no. 10, pp. 3180–3192, Oct. 2010, Doi: 10.1016/j.engstruct.2010.06.007.
[15] H. Hao and E. K. C. Tang, “Numerical simulation of a cable-stayed bridge response to blast loads, Part II: Damage prediction and FRP strengthening,” Eng Struct, vol. 32, no. 10, pp. 3193–3205, Oct. 2010, Doi: 10.1016/j.engstruct.2010.06.006.
[16] C. D. Tetougueni and P. Zampieri, “Structural response of cable-stayed bridge subjected to blast load,” in Procedia Structural Integrity, Elsevier B.V., 2019, pp. 765–774. Doi: 10.1016/j.prostr.2019.08.225.
[17] J. Son and H. J. Lee, “Performance of cable-stayed bridge pylons subjected to blast loading,” Eng Struct, vol. 33, no. 4, pp. 1133–1148, Apr. 2011, Doi: 10.1016/j.engstruct.2010.12.031.
[18] W. Zhu, Y. Xiao, J. Yu, J. Jia, and Z. Li, “Damage modes and mechanism of steel-concrete composite bridge slabs under contact explosion,” J Constr Steel Res, vol. 212, p. 108223, Jan. 2024, Doi: 10.1016/J.JCSR.2023.108223.
[19] J. F. Hassan, A. A. A. Rahman, and D. M. Al-Tarafany, “Prestressed bridge deck responses to blast loads,” IOP Conf Ser Mater Sci Eng, vol. 1067, no. 1, p. 012003, 2021, Doi: 10.1088/1757-899x/1067/1/012003.
[20] A. Filice, M. Mynarz, and R. Zinno, “Experimental and Empirical Study for Prediction of Blast Loads,” Applied Sciences (Switzerland), vol. 12, no. 5, Mar. 2022, Doi: 10.3390/app12052691.
[21] Prof. J. G. C. Suryakant S. Birajdar, “Analysis of Blast Loading on Structural Components,” International Journal of Scientific Engineering and Research (IJSER), 2017.
[22] Gilbert F. Kinney and Kenneth J. Graham, EXPLOSIVE SHOCKS IN AIR. 1985.
[23] H. L. Brode, “Numerical solutions of spherical blast waves,” J Appl Phys, vol. 26, no. 6, pp. 766–775, 1955.
[24] N. M., and R. J. Hansen. Newmark, Design of blast resistant structures. 1961.
[25] H. L. Brode, “Blast wave from a spherical charge,” Physics of Fluids, vol. 2, no. 2, pp. 217–229, 1959, Doi: 10.1063/1.1705911.
[26] C. N. Kingery, Air blast parameters versus distance for hemispherical TNT surface bursts. 1966.
[27] Vasilis. Karlos, George. Solomos, Bernard. Viaccoz, and European Commission. Joint Research Centre. Institute for the Protection and the Security of the Citizen. Calculation of blast loads for application to structural components. Publications Office, 2013.
[28] M. Hasan, E. Khalil, W. Attia, and A. Turkey, “Influence of deck longitudinal prestressing on cable-stayed bridges,” Structural Engineering International, vol. 25, no. 3, 2015.
[29] J. Yang, J. Wang, S. Zhang, and Z. Wang, “Behavior of eccentrically loaded circular CFRP-steel composite tubed steel-reinforced high-strength concrete columns,” J Constr Steel Res, vol. 170, 2020, Doi: 10.1016/j.jcsr.2020.106101.
[30] J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical StressāStrain Model for Confined Concrete,” Journal of Structural Engineering, vol. 114, no. 8, pp. 1804–1826, 1988, Doi: 10.1061/(asce)0733-9445(1988)114:8(1804).
[31] A. KAMAL, M. RABEI, A. El-ATTAR, M. KUNIEDA, and H. NAKAMURA, “Ambient Vibration Test of Aswan Cable Stayed Bridge,” J Appl Mech, vol. 9, 2006, Doi: 10.2208/journalam.9.85.
[32] N. N. Fedorova, S. A. Valger, and A. V. Fedorov, “Simulation of blast action on civil structures using ANSYS Autodyn,” AIP Conf Proc, vol. 1770, 2016, Doi: 10.1063/1.4963939.
[33] Y. Shi, H. Hao, and Z. X. Li, “Numerical simulation of blast wave interaction with structure columns,” Shock Waves, vol. 17, no. 1–2, pp. 113–133, 2007, Doi: 10.1007/s00193-007-0099-5.
[34] K. Ali, A. Javed, A. E. Mustafa, and A. Saleem, “Blast-Loading Effects on Structural Redundancy of Long-Span Suspension Bridge Using a Simplified Approach,” Practice Periodical on Structural Design and Construction, vol. 27, no. 3, 2022, Doi: 10.1061/(asce)sc.1943-5576.0000699.
[35] Fema and DHS, “Buildings and Infrastructure Protection Series Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings Homeland Security Science and Technology FEMA,” 2011.
[36] H. Hao, Y. Hao, J. Li, and W. Chen, “Review of the current practices in blast-resistant analysis and design of concrete structures,” Advances in Structural Engineering, vol. 19, no. 8. 2016. Doi: 10.1177/1369433216656430.
[37] A. K. M. Anwarul Islam and N. Yazdani, “Performance of AASHTO girder bridges under blast loading,” Eng Struct, vol. 30, no. 7, 2008, Doi: 10.1016/j.engstruct.2007.12.014.