• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Khalafalla, M. (2024). Numerical analysis of CFRP-Confined Circular Concrete Columns Under Axial Loading. JES. Journal of Engineering Sciences, 52(5), 233-249. doi: 10.21608/jesaun.2024.289228.1335
Mohamed Khalafalla. "Numerical analysis of CFRP-Confined Circular Concrete Columns Under Axial Loading". JES. Journal of Engineering Sciences, 52, 5, 2024, 233-249. doi: 10.21608/jesaun.2024.289228.1335
Khalafalla, M. (2024). 'Numerical analysis of CFRP-Confined Circular Concrete Columns Under Axial Loading', JES. Journal of Engineering Sciences, 52(5), pp. 233-249. doi: 10.21608/jesaun.2024.289228.1335
Khalafalla, M. Numerical analysis of CFRP-Confined Circular Concrete Columns Under Axial Loading. JES. Journal of Engineering Sciences, 2024; 52(5): 233-249. doi: 10.21608/jesaun.2024.289228.1335

Numerical analysis of CFRP-Confined Circular Concrete Columns Under Axial Loading

Article 1, Volume 52, Issue 5, September and October 2024, Page 233-249  XML PDF (1.61 MB)
Document Type: Research Paper
DOI: 10.21608/jesaun.2024.289228.1335
View on SCiNiTO View on SCiNiTO
Author
Mohamed Khalafalla email orcid
Assistant Professor-Construction Research Institute, NWRC-Egypt
Abstract
The axial compression performance of circular columns strengthened with carbon fiber-reinforced polymer (CFRP) was investigated using numerical simulation. The study's objective was to validate a finite element model to match results of experimental testing, to ensure consistent failure modes and load-displacement profiles. The investigation explored the impact of various parameters, including concrete strength, CFRP layer numbers, slenderness ratio, steel reinforcement ratio, and cross-sectional area, on CFRP column behavior. The analysis revealed valuable insights into stress-strain relationships and ultimate load-bearing capacity. This study provides vital information for structure engineering practices and design strategies in the industry, highlighting the significance to utilize CFRP technology to enhance structural performance, especially the consistent stress distribution on the concrete core. To understand the mechanical response of CFRP circular concrete columns, engineers can optimize design and construction techniques to create more efficient and durable structures elements, ultimately to improve public safety and to reduce maintenance processes.
Keywords
Nonlinear analysis; CFRP- Column; Ultimate capacity; Axial stress; Failure mode
Main Subjects
Civil Engineering: structural, Geotechnical, reinforced concrete and steel structures, Surveying, Road and traffic engineering, water resources, Irrigation structures, Environmental and sanitary engineering, Hydraulic, Railway, construction Management.
References
[1]    L.H. Han, W. Li, R. Bjorhovde, Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members, Journal of Constructional Steel Research 100, (2014) 211–228.  http://dx.doi.org/10.1016/j.jcsr.2014.04.016

[2]    L. C. Hollaway, and J. G. Teng. 2008. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. (2008), Hardback ISBN: 9781845694487, eBook ISBN: 9781845694890, Netherlands: Elsevier.

[3]    L. Lam, and J. G. Teng. “Design-oriented stress–strain model for FRP-confined concrete.” Construction and Building Materials, (2003), 471–489. https://doi.org/10.1016/S0950-0618(03)00045-X

[4]    J. G. Teng, G. Lin, and T. Yu. 2015. “Analysis-oriented stress-strain model for concrete under combined FRP-steel confinement. (2014), Journal Composite Construction.: 04014084 (1-14).

[5]     https://doi.org/10.1061/(ASCE)CC.1943-5614.0000549

[6]    A. Mirmiran, M. Shahawy, Behaviour of concrete columns confined by fiber
composites, J. Structural Engineering, (1997), 123 (5), 583–590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)

[7]    M.N.S. Hadi, W. Wang, M.N. Sheikh, Axial compressive behavior of GFRP tube
reinforced concrete columns, Construction and Building Materials, (2015), 81, 198–207. http://dx.doi.org/10.1016/j.conbuildmat.2015.02.025

[8]    Bernat Csuka, and Laszlo P. Kollár. “FRP-confined circular columns subjected to eccentric loading. Journal of Reinforced Plastics and Composites, (2011), 30 (14): 1167–1178. https://doi.org/10.1177/0731684410397844

[9]    Ghali, K., S. Rizkalla, M. Kassem, T. Fawzy, and M. Mahmoud.2003. “FRP-confined circular columns under small eccentric loading.” In Proc., 5th Alexandria Int. Conf. on Structural and Geotechnical Engineering, 20–22. Alexandria, Egypt: Alexandria University.

[10]      Muhammad N.S. Hadi, and Ida Bagus Rai Widiarsa.. “Axial and flexural performance of square RC columns wrapped with CFRP under eccentric loading.” journal of composites for construction. (2012), 16 (6): 640–649. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000301

[11]      M.N.S. Hadi. “The behavior of FRP wrapped HSC behavior under different eccentric loads.” Composite Structures, (2005), 78 (4): 560–566. doi: 10.1016/j.compstruct.2005.11.018  

[12]      D. Y Wang, Z. Y. Wang, S. T. Smith, and T. Yu. “Size effect on axial stress-strain behavior of CFRP-confined square concrete columns.” Construction and Building Materials, (2016), 118: 116–126.  https://dx.doi.org/10.1016/j.conbuildmat.2016.04.158  

[13]      Concrete Society 2012. Design guidance for strengthening concrete structures using fiber composite materials: Refiber of a Concrete Society Working Party. 3rd ed. Technical Rep. No. 55. Camberley, UK: Concrete Society.

[14]      Alper Ilki1, Onder Peker, Emre Karamuk, Cem Demir, and Nahit Kumbasar. “FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns”. journal of material in civil engineering, FEB-2008, pp 169-188.

[15]      DOI: 10.1061/(ASCE)0899-1561(2008)20:2(169)

[16]      Zhenyu Wang, Daiyu Wang, Scott T. Smith, Dagang Lu. “Experimental testing and analytical modeling of CFRP-confined large circular RC columns subjected to cyclic axial compression” Engineering Structures, (2012), 40, 64–74.

[17]      http://dx.doi.org/10.1016/j.engstruct.2012.01.004   

[18]      Hanan Al-Nimry, Ahmad Soman. “On the slenderness and FRP confinement of eccentrically-loaded circular RC columns” Engineering Structures, (2018), 164, 92–108.

[19]      https://doi.org/10.1016/j.engstruct.2018.02.086  

[20]      Zhong Tao, Zhi-Bin Wang, Qing Yu, Finite element modeling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, (2013), 89, 121–131. http://dx.doi.org/10.1016/j.jcsr.2013.07.001

[21]      Ali Khajeh Samani, Mario M. Attard. A stress–strain model for uniaxial and confined concrete under compression. Engineering Structures, (2012), 41, 335–349. http://dx.doi.org/10.1016/j.engstruct.2012.03.027

[22]      Baris Binici, An analytical model for stress–strain behavior of confined concrete. Engineering Structures, (2005), 27 (7), 1040–1051. Doi :10.1016/j.engstruct.2005.03.002  

[23]      Najwa F. Hany, Elie G. Hantouche, Mohamed H. Harajli, Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity. Engineering Structures, (2016), 125, 1–14. http://dx.doi.org/10.1016/j.engstruct.2016.06.047

[24]      Yan Xiao1, Wenhui He, and Kang-kyu Choi. Confined concrete-filled tubular columns. Journal of Structural Engineering, (2005), 131 (3), 488–497. DOI: 10.1061/(ASCE)0733-9445(2005)131:3(488)

[25]      J.B. Mander, M.J.N. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete”, Journal of Structural Engineering. (1988), 114 (8), 1804-1825.

Statistics
Article View: 224
PDF Download: 463
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.