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Abstract: The quality of phasor data from micro-Phasor Measurement 

Units (μPMUs) is critical for smart grid applications. It plays a key role 

in various aspects of power system management and is essential for the 

transition to a smarter and more sustainable grid. Recent studies imply 

that despite having a high level of monitoring features and accurate 

algorithms, μPMUs are vulnerable to errors in the measurements. 

Traditional methods for error detection in μPMUs typically rely on 

direct analysis of voltage signals. While effective to some extent, these 

methods can struggle with the complex and dynamic nature of power 

system measurements, especially under varying load conditions and in 

the presence of noise. To address these challenges, this paper presents 

a novel approach for error detection in μPMU voltage measurements 

using a combination of continuous wavelet transform (CWT) and a 

convolutional neural network (CNN). The proposed detection approach 

is applied on Assiut university distribution grid sub-feeder. A set of 

evaluation metrics such as accuracy, recall, precision, and F1 score 

were used to compare the error detection performance of the proposed 

CNN model with conventional machine learning (ML) algorithms. The 

results show that the proposed CNN model outperforms the 

conventional ML algorithms for detecting errors in μPMU voltage 

measurements under different load conditions. 
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1. Introduction 

   

The modern structure of distribution grids has become more dynamic due to the rapid 

integration of distributed energy resources (DER) and electric vehicles [1]. These 

developments have introduced new challenges and complexities, transforming the 

traditionally uni-directional power flow into a bi-directional one. Consequently, the 

traditional unidirectional power flow control and protection systems in the distribution grid 

need to be enhanced with smart features, real-time monitoring, and two-way communication 

capabilities to ensure grid stability. The µPMU is the most advanced measurement device 
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currently available for medium and low-voltage distribution grids. It can measure various 

parameters, including three-phase voltage and current phasors, active and reactive power, 

frequency, and the rate of change of frequency (ROCOF), with a reporting rate of up to 120 

samples per second in a 60 Hz system. This high sampling rate provides an angular accuracy 

of ±0.01° and an amplitude accuracy of ±0.05%, resulting in a total vector error (TVE) of 

±0.01% [2]. Additionally, the µPMU features precise timestamps synchronized with phase 

angles across multiple locations, enhancing their reliability and effectiveness in monitoring 

the power system. μPMUs have a wide range of applications in modern distribution grids. 

According to a recent survey [3], these applications include model validation, distribution 

system state estimation, topology detection, phase identification, and transient analysis. Also, 

most studies have focused on detecting the event and anomaly in distribution grids using 

μPMU data [4]–[6]. 

Despite the high accuracy of μPMUs, their measurements are not entirely free from errors, 

which can arise from various sources. Primarily, these errors can be classified into 

synchronization errors and instrumental errors. Synchronization errors occur due to 

inaccuracies in the timing synchronization between the μPMU and the reference time source, 

usually provided by Global Positioning System (GPS). Instrumental errors arise from the 

μPMU hardware itself [7], including components such as current transformers (CTs), voltage 

transformers (VTs), analog filter, Analog to Digital Converter (ADC) sampling, digitization 

process, and other components involved in the measurement process. These errors can be 

either systematic or random. Systematic errors remain constant across successive 

measurements taken over a short period of time, while random errors vary with each 

observation [8]. After applying the proposed approach for error estimation and compensation 

in μPMU in [7], there can still be residual errors resulting from the inaccuracies of CTs and 

VTs. CT and VT errors are external errors introduced to the primary measurement unit of the 

µPMU. In traditional PMUs, these errors are typically minimal and negligible compared to 

the accuracy and resolution required for their applications. However, in distribution systems, 

CT and VT errors are more significant due to higher noise levels [9]. These transducers are a 

significant source of error in the μPMU’s synchrophasor output, and they can drown steady-

state phasor differences between measurements taken at close locations on a distribution 

circuit. This causes difficulties for a number of μPMU applications at distribution level [9].  

Error detection in PMU measurements has evolved significantly over time. Traditional 

methods primarily relied on statistical analysis and redundancy checks, where data from 

multiple PMUs were compared to identify discrepancies. Techniques such as state estimation, 

which use mathematical models to predict expected measurements and compare them with 

actual PMU data, were also commonly employed. In [10], it was presented a method for 

detecting and correcting errors in PMU measurements using the concept of calibration factors. 

This method's effectiveness is heavily dependent on the accuracy of the initial model 

parameters, which may not generalize well across different grid configurations or under 

varying operating conditions. In [11], a phasor-data-based state estimator was proposed to 

correct bias errors in phase angle measurements. However, this method neglects the 

possibility that bias errors could also be present in the magnitude component of 

synchrophasor measurements. In [12], a method was introduced for detecting systematic 
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errors in PMU measurements based on the power system state estimation, but it has several 

limitations. The effectiveness of this method is closely tied to the accuracy of the underlying 

state estimation model, which may be compromised by model assumptions and 

simplifications that do not fully capture the complexities of real-world power systems. 

Additionally, this method primarily addresses systematic errors and may not adequately cover 

random or intermittent errors that could also impact the reliability of PMU data. The reliance 

on state estimation techniques, which require extensive computation and accurate system 

models, might limit the method's practicality for real-time applications in large-scale or 

dynamically changing power grids. In [13], an innovative approach was presented for online 

bias error detection and calibration of PMU measurements using density-based spatial 

clustering. The effectiveness of the density-based spatial clustering method is sensitive to the 

selection of clustering parameters, which may require fine-tuning for different grid conditions 

and might not be universally applicable. Moreover, the reliance on clustering algorithms may 

lead to challenges in distinguishing between genuine measurement errors and anomalies 

caused by transient events or grid disturbances, potentially impacting the reliability of the 

calibration process. In [14], principal component analysis (PCA) was used for detecting bad 

data in PMU measurements by identifying anomalies that deviate from normal system 

behavior. The effectiveness of PCA depends heavily on the assumption that normal system 

behavior is well-captured in the training data, which may not always be the case, particularly 

in dynamically changing power systems. 

Recently, signal processing methods, including Fourier and wavelet transforms, were 

introduced to detect anomalies by analyzing the frequency components of the measurements 

[15]. The wavelet technique is an efficient signal processing technique for PMU data that 

exhibit nonstationary characteristics [16]. In [17], an approach based on wavelet analysis was 

proposed to identify anomalies in PMU measurements, which may indicate potential cyber 

threats to the system. More recently, machine learning (ML) and artificial intelligence 

techniques have been developed to enhance error detection in PMU measurements. These 

modern methods, such as support vector machines (SVM), artificial neural networks (ANN), 

and convolutional neural networks (CNN), leverage large datasets to learn patterns associated 

with both normal and erroneous measurements, allowing for more accurate and real-time 

error detection. In [18], an approach was introduced for identifying outliers in PMU voltage 

measurements using ANN. This approach leverages PCA to extract relevant features from the 

PMU data, which are then used to train an ANN classifier. In [19], Pearson correlation was 

utilized in conjunction with a neural network (NN) classifier to detect errors in μPMU voltage 

measurements. This method provides insights into linear dependencies between data sets, 

aiding in the identification of discrepancies. In [20], a approach based on support vector 

regression (SVR) was presented, which can detect and correct the false data in PMU voltage 

measurements. 

In this study, random errors in μPMU voltage measurements were detected using a hybrid 

approach that integrates signal processing and deep learning (DL) techniques. Initially, the 

distribution grid sub-feeder model is represented using MATLAB/Simulink to generate 

μPMU sample data and simulate error injection scenarios due to the VT of μPMU. CWT is 

then applied to the μPMU data to extract time-frequency coefficients, capturing the intricate 
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patterns associated with both healthy and erroneous measurements under different load 

conditions. These coefficients are fed into a CNN network which focused on extracting spatial 

features, allowing the model to classify and differentiate between healthy and error states. 

The model is trained on a dataset that included different error scenarios, allowing it to learn 

the distinct features associated with each error type. The main contributions of this paper can 

be summarized as follows: 

1- In contrast to existing μPMU error detection methods, the proposed approach in this study 

uses CWT coefficients instead of raw voltage signals, which capture the essential features 

of the signals more effectively. 

2- The combined use of CWT and CNN enables effective pattern recognition, allowing the 

model to distinguish normal operation from the presence of errors in μPMU 

measurements. Also, the combined approach aims to improve the generalization 

capabilities of the model, enabling it to perform well on unseen data. This is crucial for 

robust error detection in different scenarios and under different load conditions. 

3- The performance of the proposed CNN model was compared with other ML models, such 

as SVM and NN, demonstrating superior performance. These methods only require μPMU 

measurements without needing information about the network model. 

4- A time analysis was conducted to address real-time application concerns. This includes 

measuring the time required for data generation for testing, as well as the time taken by 

the model to detect errors. These analyses provide insight into the model's performance 

and potential applicability in real-world smart grid environments. 

 

 

2. Literature review on the nature of errors in PMU measurements 

 

Previous studies have noted that errors in PMU measurements can manifest as 

anomalies. Anomalous data encompasses missing data, outliers [14], [18], and event 

data. Among these, outliers and missing data are classified as bad data, typically 

resulting from erroneous measurements or poor data quality [21]. Fig. 1 shows the 

various types of PMU anomaly data. 

 

 
Fig. 1: Different types of PMU anomaly data [21]. 
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Outliers in measured data can result from network disturbances influenced by the system's 

dynamic properties. In PMU data, outliers are data points that deviate significantly from 

expected measurements, often appearing as spikes when no system events occur. Event data, 

on the other hand, arises from system events such as switching operations or sudden load 

changes. Fig. 2 illustrates the variation in the measured voltage magnitude at Bus 1. Bad data, 

including outliers, can be intentionally or unintentionally introduced. For example, as shown 

in Fig. 2, bad data was injected into the voltage measurements at Bus 1 at t = 25.4s. 

 

 
Fig. 2: Voltage magnitude of bus 1 in pu [18]. 

 

Bad data can occur randomly, manifesting as either isolated instances or contiguous 

sequences of erroneous measurements. In [22], a spectral clustering (SC) was proposed for 

detecting both single and contiguous bad data within PMU measurements. For single bad data 

points, the algorithm evaluates each measurement against its neighboring values, employing 

statistical tests to determine anomalies. Contiguous bad data, characterized by a series of 

erroneous measurements, is identified by analyzing temporal correlations between sequential 

data points. Fig. 3 illustrates examples of single and contiguous bad data. These types of errors 

are represented through the three error scenarios developed in this paper. 

 

 
                                        (a)                                                                             (b) 

Fig. 3: Detection results of field data with three methods in a distribution network. (a) in case of 

single bad data, and (b) in case of contiguous bad data [22]. 
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3. Theoretical background 

 

3.1 Continuous wavelet transform 

A practical application of the CWT is real-time monitoring of voltage and current signals for 

the rapid detection and elimination of transient events that may affect the quality of the 

electric service [23]. CWT allows for the representation of signals in different frequency 

components, providing a multiresolution analysis of the data. This is beneficial for capturing 

both high and low-frequency features in the μPMU measurements. CWT allows for time-

frequency analysis, providing insights into the variations of voltage and current signals at 

different scales and time intervals. This is crucial for detecting frequency changes associated 

with errors. Also, CWT allows the localization of features in both time and frequency 

domains. This helps in pinpointing the exact time when errors occur and understanding their 

frequency characteristics. CWT of a function 𝑥(𝑡) is expressed as follows [24]: 

 

                                              𝐶𝑊𝑇 (𝜏, 𝑎) =  
1

√𝑎
 ∫ 𝑥(𝑡) 𝜓∗ (

𝑡 − 𝜏

𝑎
) 𝑑𝑡                                   (1)

∞

−∞

 

 

where 𝐶𝑊𝑇 (𝜏, 𝑎) is the output, which describes the wavelet coefficients. 𝑥(𝑡) shows the 

one-dimensional signal to be transformed. τ is translation (or shifting) parameter, 𝑎 is scale 

(or dilation) parameter of wavelet function. 𝜓∗ is the complex conjugate of mother wavelet. 

This equation allows CWT to compute the array of coefficients for each frequency scale 

parameter, resulting in a detailed representation of the signal's frequency and temporal 

characteristics through the coefficients. 

 

3.2 Convolutional neural networks 

CNNs are a subset of DL models widely used for image processing, video analysis, and 

various other applications involving spatial data [25]. CNNs can be used for both 

classification (e.g., identifying healthy / error states) and regression (e.g., predicting the error 

values in measurements) tasks, providing flexibility in the analysis. CNNs are known for their 

ability to generalize well to new, unseen data.  

This adaptability is crucial for handling different error scenarios and variations in μPMU 

measurements. CNNs are also capable of capturing non-linear relationships, making them 

suitable for identifying errors in μPMU measurements under different load conditions. 

Compared with ML algorithms, the most distinctive characteristic of CNN is its ability to 

automatically extract features via a training process. Hence, CNN can be used to 

automatically recognize and analyze the time-frequency coefficients of signals obtained by 

CWT, enhancing the error detection in μPMU voltage measurements. Generally, CNN 

consists of three different layers: a convolution layer, a pooling layer, and a fully connected 

layer. CNN architecture leverages convolutional operation, a core mechanism for extracting 

features from input data. Convolutional layers in CNNs contain learnable filters, or kernels, 

which perform convolution operations on the input data to generate feature maps. This 

process involves element-wise multiplication of the filter weights with localized regions of 

the input data, followed by a summation to produce the output [25]. The convolution 

operation can be mathematically expressed as follows: 
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                                                         𝑥𝑗
𝑙  = 𝑓 ( ∑ 𝑥𝑖

𝑙−1 ∗  𝐾𝑖𝑗
𝑙

𝑖∈𝑀𝑗

+  𝑏𝑗
𝑙)                                  (2) 

 

where 𝑓(. )is activation function, 𝐾𝑖𝑗
𝑙  is the convolutional kernel at position (𝑖, 𝑗) of the 𝑙-th 

layer. 𝑏𝑗
𝑙 represents the bias, 𝑥𝑖

𝑙−1 the feature mapping of the previous layer, 𝑀𝑗 the set of 

feature mappings and 𝑥𝑗
𝑙 represents the feature map of the current layer. These convolutional 

layers are followed by batch normalization, which normalizes the output of each 

convolutional layer to enhance network stability and convergence [26]. Activation functions 

are also applied in this stage to introduce non-linear characteristics, enabling the network to 

learn complex data relationships. Common activation functions include sigmoid, tanh, and 

Rectified Linear Unit (ReLU). ReLU is widely adopted as it significantly enhances CNN 

performance and accelerates training compared to other activation functions [27]. The ReLU 

function is defined as follows: 

 

                                                                  𝑓(𝑥)𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(0, 𝑥)                                          (3) 

 

where 𝑥 is the output of the previous neuron. After the image features are obtained from the 

convolutional layer, a pooling layer is added in order to reduce the size of the feature 

parameters of the images and maintain important features while reducing computational 

complexity. Common pooling operations include max pooling and average pooling. The 

pooling layer is defined as the following form, 

 

                                                             𝑥𝑗
𝑙  = 𝑓(𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑥𝑖

𝑙−1) +  𝑏𝑗
𝑙)                                       (4) 

 

Here, pooling(.) denotes the pooling function. Finally, the classification occurs in the fully 

connected (FC) layer, which consolidates the results from the convolutional and pooling 

processes to predict and classify the images. Dropout layers are then employed to randomly 

deactivate a fraction of neurons during training, reducing overfitting and improving the 

network's generalization capabilities [28]. The final layer in the CNN is the softmax layer, 

which calculates the probability distribution over the classes based on the features extracted 

by the convolutional layers. The softmax function is defined as follows: 

 

                                                                   softmax(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑛
𝑗=1

                                        (5) 

where 𝑦𝑖 represents the 𝑖-th output in the fully connected layer, and softmax(𝑦𝑖) is the 

corresponding probability of the 𝑖-th output converted by softmax function. 

 

 

3. Proposed approach for error detection 

 

The proposed approach for error detection in µPMU voltage measurements leverages a 

combination of advanced signal processing and deep learning techniques to achieve precise 
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and reliable results. The process begins with the generation of µPMU datasets using a 

Simulink model of a distribution grid sub-feeder. Next, CWT is employed to extract 

meaningful features from the µPMU voltage signals, capturing the essential characteristics 

needed for effective error detection. The core of the approach lies in the CNN architecture, 

which is designed to detect errors in µPMU voltage measurements with high accuracy. The 

CNN is responsible for effectively extracting relevant features from the voltage 

measurements, capturing the spatial patterns and signal characteristics. The model's 

performance was evaluated on a separate test dataset that was not used during training, 

ensuring robustness and generalization of new data. Finally, the effectiveness of the proposed 

approach is evaluated using a set of metrics that assess the overall performance of the model 

in detecting errors under different load conditions. 

 

4.1 Sub-feeder modeling 

To collect a dataset of µPMU measurements, the sub-feeder 𝑁𝐵𝑆8 of Assiut university grid 

is used. A three-phase unbalanced distribution grid sub-feeder consists of 5 buses. 𝐵𝑢𝑠1 is 

the slack bus of the system, while the other four remaining buses are pure load buses. 

Distribution grid cables are used to connect the buses, modelled by their equivalent π-Model. 

Two µPMUs are installed at buses 1 and 4, providing full observability of the feeder while 

minimizing the number of units and current channels required, taking operational costs into 

account [29]. The interring branch current, load current, and low voltage side measurements 

are obtained from µPMUs at the two buses. The data from the µPMU are received at 50-Hz 

sampling frequency. At each sampling time, three-phase voltage and three-phase current of 

two µPMUs have been obtained with a reporting rate of one measurement/cycle. Therefore, 

1 sample has been extracted every 0.02s (50 samples in one second). The feeder is assumed 

to be unbalanced with random loads change within 10%. The load's transformers are 

connected in 𝐷𝑦11𝑔 configuration and of 11/0.4 KV voltage transformation ratio. The sub-

feeder is modelled using MATLAB/Simulink software with the µPMU Simulink model. Fig. 

4 shows the sub-feeder model.  

 

4.2 CWT-based feature extractor 

In this study, a matrix 𝑥 is constructed, consisting of six signals. The signals included are 

three-phase low voltage signals of two µPMUs. Then, the CWT is applied separately on each 

signal to extract coefficients. At each time, a window of length w = 64 is applied to six signals 

and the window is shifted by 16 samples in each step. For each signal, the CWT is computed 

using an analytic Morlet wavelet (amor) with a filter bank, obtaining the wavelet coefficients. 

A matrix 𝑥 is represented as follows: 

 

                                     𝑥 =  [𝑉𝑎1
𝜇𝑃𝑀𝑈1

, 𝑉𝑏1
𝜇𝑃𝑀𝑈1

, 𝑉𝑐1
𝜇𝑃𝑀𝑈1

, 𝑉𝑎4
𝜇𝑃𝑀𝑈2

, 𝑉𝑏4
𝜇𝑃𝑀𝑈2

, 𝑉𝑐4
𝜇𝑃𝑀𝑈2

]                 (6) 

 

The coefficients obtained by CWT are size of  32x64x6. These coefficients are then input to 

the trained CNN that determines which class it belongs to. Fig. 5 shows examples of voltage 

signals under healthy conditions and three different error scenarios, along with their 

corresponding CWT spectrogram images. 
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Fig. 4: The sub-feeder model in MATLAB Simulink 

 

4.3 Classification-based CNN approach 

Fig. 6 shows the classification-based CNN configuration developed for multiclass error 

detection tasks. For the classification task, the network learns to distinguish between seven 

classes: class 0, class 1, class 2, class 3, class 4, class 5, and class 6 corresponding to healthy, 

error in Va1, error in Vb1, error in Vc1, error in Va4, error in Vb4, and error in Vc4, 

respectively. 

The proposed CNN architecture is designed for a CWT coefficient input of dimensions [32 

64 6] without normalization. The network comprises multiple layers to perform classification 

tasks effectively. Table I shows detailed information about the proposed CNN architecture. 

As given in Table 1, the architecture includes three convolutional layers. The first 

convolutional layer (Conv1) applies 16 filters of size 5x5 with padding to preserve the input 

dimensions, followed by a batch normalization layer to stabilize the learning process and a 

ReLU activation layer to introduce non-linearity. The second convolutional layer (Conv2) 

uses 32 filters of size 3x3, with a stride of 2, reducing the spatial dimensions by half. It is also 

followed by batch normalization and a ReLU activation layer. The third convolutional layer 

(Conv3), with 64 filters of size 3x3, further increases the feature extraction capability, and 

similarly, it is followed by batch normalization and ReLU activation. A dropout layer with a 

0.5 dropout rate is added to prevent overfitting by randomly deactivating neurons during 

training. Finally, a fully connected layer (FC) with 7 output neurons maps the extracted 

features to the 7 classes, followed by a softmax layer for probability distribution, and a 

classification layer to determine the final class label. This architecture is designed to 

effectively extract features from the input data while minimizing overfitting and maximizing 

classification accuracy. 
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(a)                                                                                                   (b) 

 

 
                                             (c)                                                                                              (d) 

     

 
    (e)                                                                                                   (f) 

Fig. 5: Voltage signals of phase a under healthy conditions and the three error scenarios, along with 

their corresponding CWT spectrogram images. Subfigures (a) and (b) illustrate examples from the 

first error scenario. Subfigures (c) and (d) depict examples from the second error scenario. 

Subfigures (e) and (f) present examples from the third error scenario. 
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Fig. 6: Classification-based CNN configuration developed for multiclass error detection tasks. 

 

Table 1: CNN configuration of each layer. 

Layer Type Filter Size / #Cells Input Size Output Size 

2D Conv1 + Batch Norm + ReLU 5x5, 16 filters 32×64×6 32×64×16 

2D Conv2 + Batch Norm + ReLU 3x3, 32 filters 32×64×16 32×64×32 

2D Conv3 + Batch Norm + ReLU 3x3, 64 filters 32×64×32 32×64×64 

Dropout 0.5 32×64×64 32×64×64 

FC + Softmax 7 cells 131072x1 7x1 

 

 

5. Experiments and Results  

 

5.1 Dataset Preparation 

To simulate various loading conditions, the loads at four buses were varied at increments of 

[20%, 40%, 60%, 80%, and 100%], creating diverse operating conditions. Given the five 

possible load levels at each of the four buses, this setup resulted in a total of 54=625 unique 

cases, covering a comprehensive range of load combinations across the feeder. To address 

overfitting concerns, 625 distinct runs were generated using MATLAB/Simulink, with each 

run lasting 3 seconds. During each run, load variations were introduced randomly over time 

to simulate realistic changes. From these runs, 80% (500 runs) were used for training, and 

20% (125 runs) were reserved for testing. Each run is entirely independent, with separate 

readings, ensuring no data leakage occurred between the training and testing sets. 

Error is injected into µPMU voltage measurements through three distinct scenarios. In the 

first scenario, an error is injected into a single measurement. In the second scenario, an error 

is introduced at a specific measurement and persists until the end of the signal. In the third 

scenario, an error is injected during a specified period within the signal. After injecting errors, 

the CWT was applied to the signal to extract time-frequency features. The resulting CWT 

coefficients will be used to effectively train and test the classification models. 

 

5.2 Offline training and online error detection 

The problem of error detection in µPMU measurements can recast as a classification problem 

based on the CWT coefficients which are obtained by the µPMUs measurements. In the 
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proposed methodology, the process of offline training and online error detection plays a 

crucial role in detecting errors in µPMU measurements. Initially, the offline training phase 

begins with data collection, where healthy measurements of voltage signals are gathered from 

the µPMU. To simulate various error scenarios, errors are systematically injected into these 

healthy measurements to create a comprehensive dataset representing both healthy and 

erroneous states. After the error injection, CWT is applied to the signals to extract time-

frequency features, which serve as the input for the classifier models. The entire dataset 

comprises 4800 coefficients.  

Specifically, of the 4000 coefficients, 3200 coefficients for each class have been used for 

training the classifier models, while 800 coefficients for each class were set aside for 

validation, and an additional 800 coefficients have been reserved exclusively for testing. This 

approach ensures that the testing data remains separate from the training and validation 

phases. During offline training, ML models like SVM, NN and DL model like CNN are 

trained using the extracted CWT coefficients. These coefficients are reshaped according to 

the model requirements. For CNN model, 3D input is utilized, while 2D feature vectors are 

used for traditional ML models. Stochastic Gradient Descent Method (SGDM) has been used 

as optimizer for training CNN and hyperparameters such as learning rate, batch size, and 

epochs are tuned to optimize performance. Table 2 shows the training parameters of CNN. 

The training data is randomly shuffled before each epoch. 

 

Table 2: Training parameters of CNN. 

Optimizer Sgdm 

Learning rate 0.0003 

Epoch 10 

Batch size 64 

Loss function Cross entropy 

 

For the SVM model, it was trained using a linear kernel function with standardized input data. 

The fitcecoc function was used to handle the multi-class classification task. For the NN 

model, a network with three fully connected layers is employed. The first fully connected 

layer comprises 128 units, followed by a second fully connected layer with 64 units. ReLU 

activation functions are applied after each of these layers to introduce non-linearity. The final 

fully connected layer is designed to match the number of output classes, which is then 

followed by a softmax layer for classification. The network is trained using SGDM and its 

performance is validated on the test subset. Classifier models have been trained using a 

personal laptop having 8 GB RAM and Intel(R) Core (TM) Intel i5 processor with 3.11 GHz 

speed using single GPU environment. This work has been implemented using MATLAB 

R2022a. Once the offline training is complete, the online error detection phase begins. In this 

phase, unseen data is fed into the trained models to evaluate their ability to classify and detect 

errors in real-time. The models process the incoming µPMU data, extract features using the 

same CWT methodology, and then predict whether the signal is healthy or erroneous. The 

performance of the classifiers in this phase is assessed using metrics such as accuracy, 

precision, recall, and F1-score. By comparing the predicted outputs with the actual labels, the 
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effectiveness of the error detection system is evaluated. Fig. 7 shows the flowchart of the 

proposed CNN-based error detection approach. The µPMUs data is first used for offline 

training of the classifier models. The trained models are then used for online detection 

procedures. The approach for detecting errors in µPMU voltage measurements is outlined as 

follows: 

1- First, the data measurements are obtained from the two µPMUs under different load 

conditions. Then, the error is injected into the voltage magnitude measurements randomly. 

2- The measurements are divided into small windows (64 measurements per window). CWT 

is then applied to each window of µPMU measurements to obtain the wavelet coefficients 

using morlet. 

3- Such coefficients with their corresponding classes are then inputted into the classifier 

models. Next, data partitioning is used to split the data into training data and test data. 

4- For SVM and NN, the 4D data is then reshaped into a 2D array suitable for SVM and NN 

input. 

5- Once the model is trained using training data, additional µPMU measurements are used 

beyond the training set to verify the classifier models accuracy. Through comparison, the 

confusion matrix is evaluated. 

 

5.3 Evaluation metrics 

Evaluation metrics in deep learning tasks are essential for optimizing classifiers [30]. In data 

classification problems, these metrics are applied at two key stages: the training stage and the 

testing stage. During the training stage, evaluation metrics guide the optimization of the 

classification model, helping to identify the best solution for improving the model’s accuracy 

in predicting future outcomes. In the testing stage, the metrics serve as evaluators, measuring 

the effectiveness of the trained classifier when applied to new, unseen data. To assess the 

performance of the classifier models, commonly used metrics include accuracy, recall, 

precision, and F1 score [28]. These metrics, often applied in multiclass classification tasks, 

are defined as follows: 

 

                                                           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                   (7) 

                                                                𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                         (8) 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                         (9) 

                                                         𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                           (10) 

 

where true negative (TN) and true positive (TP) are the correctly predicted negative 

and positive values, respectively, which are successfully classified. In addition, false 

negative (FN) and false positive (FP) are the incorrectly predicted negative and positive 

values, respectively. 
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Fig. 7: The flowchart of the proposed technique for error detection in µPMU measurements. 

 

5.4 Results and discussion 

The proposed method has been tested on the test system described in section 4. A multi-class 

classification problem of 7-class has been presented for error detection in µPMU voltage 

measurements. Three classifier models have been trained using the CWT coefficient dataset, 

alongside their corresponding labels. The same training, validation and testing sets have been 

used for 7-way classification across all three models, as summarized in Table 3. 
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Table 3: Training, validation and testing dataset used for three models. 

Class label Class code Training set Validation set Testing set 

Healthy signal Class 0 3200 800 800 

Error in Va1 Class 1 3200 800 800 

Error in Vb1 Class 2 3200 800 800 

Error in Vc1 Class 3 3200 800 800 

Error in Va4 Class 4 3200 800 800 

Error in Vb4 Class 5 3200 800 800 

Error in Vc4 Class 6 3200 800 800 

Total  22400 5600 5600 

 

The number of epochs used for CNN training is set to 10 and the maximum number of 

iterations is 3,500 where 350 iterations have been used for one epoch. Over a single GPU, the 

CNN model parameters are adjusted using SGDM with back-propagation through time. The 

training progress curve for the CNN model, shown in Fig. 8, highlights the model’s 

performance in terms of accuracy and loss across 10 epochs. From the first epoch, the model 

achieved high accuracy, indicating that it effectively learned relevant features early in the 

training process. This rapid improvement suggests that the model architecture and parameter 

settings are well-suited for the task. However, training was set to run for a full 10 epochs to 

ensure the model’s stability and convergence, allowing any potential minor fluctuations to be 

smoothed out. By the final epoch, the validation accuracy reached 99.71%, with minimal loss 

observed, confirming the model’s strong generalization and robustness across both training 

and validation datasets. In addition, the total number of parameters in the CNN model is 

943,287, which reflects the model's complexity and capacity to capture detailed features for 

accurate error detection in µPMU voltage measurements. The confusion matrices for three 

models are presented in Fig. 9, providing insight into the models’ ability to classify the 

different classes accurately. While the model consistently identified all healthy cases 

correctly, it confused some of the error cases in the voltage measurements by misclassifying 

them as healthy cases.  

The confusion matrix for the NN model shows a high overall classification accuracy, with all 

instances in Class 0 being correctly classified. However, the model makes some minor 

misclassifications in other classes, where certain instances are incorrectly labeled as Class 0. 

The highest misclassification rate was observed in Class 2 and Class 5, where 9 instances 

from each class were incorrectly classified as Class 0. This indicates that while the model 

performs well overall, there is a tendency to misclassify instances. The SVM confusion matrix 

illustrates the model's strong classification performance across all classes. SVM achieves high 

accuracy, with minimal misclassifications, particularly in Class 2 and Class 5, where a few 

instances are incorrectly classified as Class 0. 

The CNN confusion matrix reveals the model's exceptional performance, with nearly perfect 

classification accuracy across all target classes. CNN correctly classifies almost all instances 

in each class, achieving 100% accuracy for Class 0 and Class 6. In Class 2, 4 instances are 
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misclassified as Class 0, resulting in a slight reduction in accuracy for this class to 99.5%. 

However, compared to the NN and SVM models, the CNN model demonstrates the highest 

overall performance. Table 4 presents a comparison of evaluation metrics for the three 

models. CNN achieved the highest accuracy, recall, F1-score, and precision among the three 

models. This indicates that the CNN model is highly effective for detecting errors in µPMU 

voltage measurements, demonstrating minimal misclassifications and strong consistency 

across all metrics. The time analysis revealed that generating the CWT coefficients took 2 

ms, while testing each sample using the CNN model required 5 ms, equivalent to 320 ms per 

batch. Consequently, the total time for data generation and testing amounts to 7 ms, 

demonstrating the model's efficiency and suitability for real-time error detection in µPMU 

voltage measurements. 

 

 
Fig. 8: Training progress of the CNN model. 

 

Table 4: Evaluation metrics for three models for error detection in µPMU voltage 

measurements. 

Models Accuracy (%) Recall (%) F1-Score (%) Precision (%) 

NN 99.4107 99.434 99.415 99.411 

SVM 99.75 99.754 99.751 99.75 

CNN 99.821 99.824 99.822 99.821 
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(a)                                                                                       (b) 

 
(c) 

Fig. 9: The confusion matrices of classifier models for error detection in voltage measurements of 

two μPMUs a) NN, b) SVM, and c) CNN. 

 

 

6. Conclusions and future work 

 

This paper presents a novel approach for error detection in µPMU voltage measurements 

using a combination of CWT and CNN. By utilizing CWT coefficients instead of raw voltage 

signals, the proposed method effectively captures the distinguishing characteristics of the 

signals, leading to improved feature extraction and pattern recognition. Based on the results 

presented in this study, the proposed CNN-based approach for error detection in µPMU 

voltage measurements demonstrates superior performance, achieving a high classification 

accuracy of 99.821%, which surpasses other machine learning models like SVM and NN due 

to its powerful capability of extracting features and latent information. This means that CNN 

not only has an outstanding capability in dealing with the image but also has the potential to 

deal with CWT coefficients. The effectiveness of the model is further validated through 
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metrics such as precision, recall, and F1-score, which consistently confirm its robust 

classification capabilities across all seven classes. The model’s ability to generalize is evident, 

as it was tested on a separate dataset not included in the training set, confirming its robustness 

on unseen data. A time analysis was conducted to address real-time application concerns, 

measuring the time required for data generation and testing, with a total time of 7 ms. These 

results provide insight into the model’s performance and potential applicability in real-world 

smart grid environments. Therefore, combining CWT coefficients with a CNN model has 

shown promising results in detecting and classifying errors in µPMU voltage measurements, 

contributing to more accurate and stable monitoring in modern power grids. In future work, 

this approach will be extended to error detection in µPMU current measurements. Given the 

difficulty in distinguishing between error occurrences and load variations in current 

measurements, more complex architectures, such as Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory (LSTM) networks, may be necessary. These advanced models 

could improve error detection in current measurements by better capturing temporal patterns 

and dependencies in the data. 

 

APPENDIX A 

The cable, transformer and load data for three-phase unbalanced distribution grid sub-feeder 

𝑁𝐵𝑆8 of Assiut university are given in Table 5, Table 6 and Table 7, respectively. 

 

Table 5: Cable data for unbalanced NBS8 sub-feeder. 

Cable Data 

From To 𝑍𝑠  (Ω) 𝑍𝑚 (Ω) 𝑌𝑠 (µS) 𝑌𝑚 (µS) 

NBS8 46 0.13521+ 0.412i 0.0077+ 0.3604i 19.733i -3.867i 

46 47 0.0311+ 0.0873i 0.00053+ 0.0751i 4.767i -0.933i 

47 48 0.1071+ 0.3238i 0.00517+ 0.2829i 15.83i -3.067i 

48 49 0.1211+ 0.3675i 0.00641+ 0.3215i 17.767i -3.433i 

 

Table 6: Transformer data for unbalanced NBS8 sub-feeder. 

Transformer Data 

Transformer 𝑍𝑡𝑟𝑙𝑣
𝑎 =𝑍𝑡𝑟𝑙𝑣

𝑏 = 𝑍𝑡𝑟𝑙𝑣
𝑐  in (Ω) 

46tr 0.001435+0.0081791i 

47tr 0.0033144+0.012761i 

48tr 0.0033144+0.012761i 

49tr 0.001435+0.0081791i 

 

Table 7: Load data for unbalanced NBS8 sub-feeder. 

Load Data 

Bus No. Sa (MVA) Sb (MVA) Sc (MVA) p.f.a p.f.b p.f.c 

46l 0.144 0.145 0.146 0.91 0.91 0.91 

47l 0.11 0.111 0.112 0.89 0.89 0.89 

48l 0.112 0.113 0.111 0.9 0.90 0.9 

49l 0.144 0.145 0.146 0.92 0.92 0.92 
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