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Abstract: Distribution network planning is critical to meet load growth 

and ensure the reliability of the network. the load demands of electrical 

distribution networks is increased gradually over time, which raises 

active and reactive power losses and lowers bus voltages below 

allowable levels. The modern power system has experienced significant 

structural modifications as a result of the annual expansion in load. This 

paper presents the operation of distribution networks with dispatch able 

mix of different types of distributed energy resources (DERs) units 

considering load growth up to planning period based on Multi Variant 

Differential Evolution algorithm (MVDE). The electric power system is 

supplied by numerous capacity resources including renewable and non-

renewable power resources like photovoltaic system (PV), wind turbine 

system (WT), fuel cell (FC), and micro-turbine (MT). The main 

objectives of DERs allocation are to maximize technical, economic and 

environmental benefits by reducing the power losses, annual cost, and 

greenhouse gas. The WT, PV, MT, and FC units' capacity is increased 

by capacity expansion planning in the radial distributed network, which 

is carried out over a five-year planning horizon. A comprehensive 

stochastic strategy is offered for a number of uncertainties, such as load 

increase and output power from renewable energy sources. Two IEEE 

bus networks are used to illustrate the suggested method's efficacy. The 

optimization results based on proposed algorithm are compared with 

some existing algorithms. 
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1. Introduction 

  

According to BP Energy Outlook, the demand for power has grown dramatically on a global 

scale, ranging from 0.9% to 1.3%, the annual load growth is important for distributed system 

planning since it has caused the distribution system to add new distributed energy resources 

to expand its capacity [1, 2]. Renewable or nonrenewable resources, such as wind turbines 

(WT), solar systems (PV), micro-turbines (MT), fuel cells (FC), hydroelectric generators, and 

diesel generators, can be used as distributed energy units [3-5]. Globally, there has been a 
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recent trend toward the usage of renewable energy sources, which offer long-term economic 

and technical advantages. Better performance, more economy, less energy losses, and cleaner 

energy production are all achieved with the integration of renewable energy resources [6, 7]. 

Both wind and solar energy are significant and good sources of renewable energy resources, 

which are efficient, non-polluting, and renewable. This helps to lower global carbon dioxide 

emissions [8, 9]. They are effective in solving load growth problems and reducing system 

operation cost. Traditional passive power distribution systems become active systems when 

distributed energy resources (DERs) are integrated. The quality of the power supply that 

distribution networks provide is significantly impacted by DERs. By lowering active and 

reactive power losses, enhancing the node voltage profile, and lowering line loads, deciding 

on the ideal size and placement of distributed energy resources (DERs) is crucial to enhancing 

system efficiency, dependability, and power quality. When DERs are assigned incorrectly, 

power losses increase, which raises the system's overall cost [10]. In order to reduce power 

loss, voltage deviation, total harmonic distortion, operating expenses, and CO2 emissions, as 

well as to increase voltage stability, system reliability, and stability margin, distributed energy 

resources have been optimized for a number of objective functions [10].  

Optimization techniques are constantly being developed to maximize the benefits of 

distributed energy resources. The current algorithms are primarily concerned with 

determining the ideal DER unit types, locations, and operating power factors. Typically, this 

is accomplished by creating appropriate objective functions that optimize different aspects of 

the distribution system, like actual and reactive power losses. Conventional methods, 

intelligent search methods, and hybrid heuristic approaches are the three primary groups into 

which optimization techniques fall. Numerous numerical techniques have been proposed in 

[11] to determine the optimal location and capacity of the DERs unit in the radial distribution 

network. It is evident that these algorithms are best suited for solving linear problems and not 

for nonlinear ones, and that choosing the right initial convergence value is necessary to find 

a global solution. 

To get around the limitations of the numerical methods, many optimization strategies have 

been devised. The ideal size and placement of DER units in a radial distribution network have 

been determined in [12] using the BAT optimization technique. In [13], the best allocation of 

inverter-based distributed energy resources (DERs) in distribution networks were chosen 

using the non-dominated sorting genetic algorithm II to solve the suggested multi-objective 

issues. Additionally, a Monte Carlo simulation was used to address the uncertainty of the load 

and electricity produced by each DER using a time-series-based probabilistic technique. The 

primary objectives of this allocation and sizing challenge are to decrease voltage variance, 

short-circuit currents, and investment and operational costs. 

 

 

1.1. Literature State of the Art 
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Sunflower optimization algorithm (SOA), salp swarm method (SSA), and enhanced coyote 

optimization algorithm (ECOA) have been considered used to determine the best distribution 

of DERs while decreasing operating cost, minimizing power loss, and improving voltage 

stability [14].  

In [15] different algorithms have been used to study the effect of the wind turbine (WT) 

generator’s uncertainty on radial distribution systems. The modeling of PV system 

components has been discussed in [16], optimization techniques used to select the best size 

of PV cell. Hybrid renewable energy systems based on WT and PV units has been integrated 

with other units like: micro turbine (MT), fuel cell (FC), biomass, and battery storage system 

(BSS), to increase benefits of these hybrid combinations [17, 18]. An energy storage system 

(ESS), heat pump, and an electric vehicle were used to maximize profits and minimize 

electricity charges based on multi-objective optimization problem considering residential 

homes [19].  

The authors concentrated on analyzing the system,  PV and WT uncertainty to determine the 

distribution of renewable energy while optimizing a hybrid WT, PV, and MG system using 

the multi-objective salp swarm method. [20]. Yang, M et al. [21] used Monte Carlo method 

to research how the generation of renewable energy is affected by uncertainty on microgrid 

dispatching. By using a mathematical optimization algorithm that takes into account 

generation and demand uncertainties, Hadi Abdulwahid et al. [22] looked into how best to 

operate a hybrid WT/PV system, the goals of this allocation and sizing problem are to 

minimize energy losses, the HS cost, and the voltage profile as well as to increase reliability 

in the form of the energy-not-supplied (ENS) index. One possible approach has been used to 

reduce carbon emissions is the multi-energy complementary integrated energy system 

(MCIES) [23]. To handle the optimization problem with uncertainties, the non-dominated 

sorting genetic algorithm-II (NSGA-II) is taken into consideration and integrated with other 

methods. The results show the benefits of the proposed approach over the traditional 

deterministic optimization approach for comprehensive economic analysis. 

Nooriya A et al. [24] creates an enhanced Artificial Neural Networks (ANNs) model that uses 

an Adaptive Back propagation Algorithm (ABPA) to anticipate electrical load demand over 

the long term, following best practices. The purpose of this study is to present an Adaptive 

Backpropagation Algorithm (ABPA) for long-term forecasts that are more reliable and 

accurate. To handle the impact of accumulated errors created over extended periods of 

prediction, the standard Backpropagation Algorithm (BPA) algorithm's forecasting 

component is further improved to reach this precision. An overview of optimization 

approaches used to identify the most effective placement and size of DERs units in electric 

power systems is presented below Table 1. 

 

 

 

 

 

Table.1  Summarizes the strategies used to allocate distributed energy resources (DERs) in 
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electric distribution networks. 

Ref Optimization algorithms 

IEEE 

bus 

System 

objective 

function 

Renewable energy 
Uncertainty 

effect 

Load 

growth WT PV WT&PV 

[15] MODA and MODE 
33, and 

69-bus 
      

[16] 

A Review of Criteria, 

Constrains, Models, 

Techniques, and Software 

Tools 

Different 

systems 
      

[17] 
adaptive weighted particle 

swarm optimization 
 MO      

[18] 
Mixed-Integer Linear 

Programming (MILP) 

small 

Japanese 

island 

MO      

[20] PSO and GA algorithms 
33, and 

69-bus 
MO      

[21] 
Monte Carlo method and 

PSO 

Different 

systems 
MO      

[22] 
improved escaping-bird 

search algorithm (IEBSA) 
33-bus MO      

[25] 

Improved Wild Horse 

Optimization algorithm 

(IWHO) 

33, 69, 

and 119-

bus 

SO      

[26] 
An improved escaping-bird 

search algorithm (IEBSA) 
33-bus 

MO 

(PSM) 
     

[27] 
Multi-objective Backtracking 

search algorithm (PMBSA) 

67, and 

118-bus 

MO 

(PSM) 
     

[28] Bee algorithm 33-bus 
MO 

(PSM) 
     

[29] 

Multi-objective Particle 

swarm optimization (PSO) 

technique 

94-bus 
MO 

(PSM) 
     

[30] 
Art Evolutionary Algorithms 

(EAs) 

33 and 

118 bus 

MO 

(PSM) 
     

[31] 
The multi-objective salp 

swarm algorithm (MSSA) 

33, 69, 

and 119 
MO      

[32] 
Artificial hummingbird 

algorithm (AHA) 

33, and 

69-bus 
MO      

[33] 
The Equilibrium Optimizer 

(EO) 

69, and 

94-bus 
MO      

[34] Bee algorithm 33-bus MO      

[35] 
Mixed-integer linear 

programming (MILP) 
Microgrid SO      

[36] ALO 
33, 69, 

and 119 
MO      

[37] 
the dingo optimization 

algorithm (DOA) 

33, and 

62-bus 
MO      

[38] PSO 
34, and 

69-bus 
MO      

[39] MOALO 69-bus SO      

* Proposed algorithm 33, 69 MO       
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1.2. Research Gap  

According to the literature study, load growth research continues to play a major role in the 

electric power system, which may be having an effect on distributed network management 

and operation. In order to determine the best position, sizes, and operational power factor of 

distributed energy resource (DERs) units while taking into account the increase in load, the 

Multi Variant Differential Evolution Algorithm (MVDE) is introduced in this work for the 

simultaneous optimization of DERs penetration level and network performance index. There 

are three objective functions developed. These include the following: (I) pollution index, (II) 

DG penetration level, and (III) network performance indicator. The voltage profile is 

improved and network losses are decreased by minimizing the third goal. A distribution 

network owner (DNO) can lower the capital investment, operational, and maintenance costs 

of implementing DERs by minimizing the first and second goal. The suggested algorithm's 

optimization results are contrasted with those of a few other algorithms. A radial distribution 

system with IEEE 33 and 69 is used to validate the method.  

 

1.3. Article Contribution and Organization 

The following points represent the work contributions, which are: 

i. An increase in load was planned for 5 years, and  

ii. The amount of energy required during each year was determined. 

iii. The best location of different type of DGs has been determined during each year. 

iv. Impact of renewable energy resource, such as wind turbine and photovoltaic system 

on the performance of the network is covered. 

v. New WT, PV, FC, and MT units with suitable capacity, location, and operating power 

factor are integrated. 

vi. The optimal location and size of WT, PV, FC, and MT units is obtained by Multi 

Variant Differential Evolution algorithm (MVDE).  

vii. Annual load growth for electrical distribution systems is covered. 

viii. The technique guarantees satisfactory solution for all possible operating conditions. 

ix. Single and multi-objective planning is covered. 

x. The technical, economic and environmental benefits of DERs are presented. 

xi. Several IEEE power systems have tested the suggested approach. 

xii. The different algorithms are qualitatively compared (MVDE, WOA, and GA).  

xiii. a comparison is done between proposed Algorithm and other Algorithm such as SA, 

EAs, GA-PSO, ABC-CSO, ABC-BAT, ALO and PSO method. 

xiv. Model of Uncertainties based on PEM Method is presented. 

This paper is structured as follows: Section 2 discusses the formulation of the problem, which 

encompasses the objective functions and the constraints of the system. Modeling of DERs is 

explained in section 3.  Section 4 provides a comprehensive description of the Model of 

Uncertainties using the PEM method. The MVDE algorithm is detailed in Section 5. The 

results of the simulation and the discussion, which are based on standard test systems, are 

illustrated in Section 6. Finally, the conclusions of this work are presented in Section 7. 
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2. Problem Formulation 

 

Determining the best distribution of hybrid renewable energy systems is the major goal of the 

suggested method for power losses, cost and emission minimization to maximize economic, 

technical and environmental benefits by reducing the power losses, annual cost, and 

greenhouse gas with satisfying the system constraints. 

 

2. 1 Objective Function Definition 

a) Power loss minimization 

Fig. 1 shows a single line diagram of a radial distribution system. According to a predefined 

growth rate, the system's load under the impact of annual growth is proportionate to the 

original loads as follows [40]: 

 

 
Fig 1.  Single line diagram of a radial distribution system. 

 

 𝑃𝐿𝑖(𝑦)  = 𝑃𝐿𝑖(0) ×  (1 + 𝑔)
𝑦 (1) 

𝑄𝐿𝑖(𝑦)  = 𝑄𝐿𝑖(0) ×  (1 + 𝑔)
𝑦 (2) 

The following is the active and reactive power: 

𝑃𝑖 = 𝑃𝑖+1 + 𝑃𝐿𝑖(𝑦) + 𝑟𝐽 (
𝑃𝑖
2 + 𝑗𝑄𝑖

2

|𝑉𝑖|2
) (3) 

𝑄𝑖 = 𝑄𝑖+1 + 𝑄𝐿𝑖(𝑦) + 𝑥𝐽 (
𝑃𝑖
2 + 𝑗𝑄𝑖

2

|𝑉𝑖|2
) (4) 

The magnitude of the voltage is given as 

follows: 
 

Vi+1
2   = Vi

2 − 2(rPi + xQi)  + (rJ
2 + xJ

2) (
Pi
2 + jQi

2

|Vi|2
) (5) 

The following shows the active and reactive power flow after DG installation at bus i+1: 

Pi = Pi+1 + PLi(y) + rJ (
Pi
2 + jQi

2

|Vi|2
) − PDG (6) 

Qi = Qi+1 + QLi(y) + xJ (
Pi
2 + jQi

2

|Vi|2
) − QDG (7) 

rJ+jxJ
Pi+jQi

Pi+1+jQi+1

PL,i+1+jQL,i+1PL,i+jQL,i

i i+1

IJ
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The active power losses can be calculated as shown:  

Ploss(J) = rJ (
Pi
2 + jQi

2

|Vi|2
) (8) 

The reactive power losses can be finding as shown: 

Qloss(J) = xJ (
Pi
2 + jQi

2

|Vi|
2
) 

 

(9) 

Reducing the voltage deviations in the following ways will enhance the voltage profile:                                                                                                                                    

VD =  ∑ (Vn − V1)
2

nbus 

n=1

 
         

(10) 

The following is a formulation of the generalized objective functions: 

f = ∑(Ploss(i))

nl

i=1

 (11) 

 

b) Minimization of Cost 

The following is the objective function for cost minimization [41]: 

𝐹𝑜𝑏𝑗2 = 𝐶𝑜𝑠𝑡 = 𝐶𝑜𝑠𝑡𝑔𝑟𝑖𝑑 +∑ 𝐶𝐷𝐸𝑅𝑠,𝑖
𝑁𝐷𝐸𝑅𝑠

𝑖=1
 

(12) 

𝐶𝑜𝑠𝑡𝑔𝑟𝑖𝑑 = 𝑃𝑔𝑟𝑖𝑑. 𝜋𝑔𝑟𝑖𝑑 (13) 

𝐶𝐷𝐸𝑅𝑠,𝑖 = 𝐶𝑜𝑠𝑡𝐷𝐸𝑅𝑠𝑖
𝐹𝑋 + 𝐶𝑜𝑠𝑡𝐷𝐸𝑅𝑠,𝑖. 𝑃𝐷𝐸𝑅𝑠,𝑖 (14) 

The formula below can be used to determine a fixed cost: 

𝐶𝑜𝑠𝑡𝐷𝐸𝑅𝑠,𝑖
𝐹𝑋 =

𝐶𝑐𝑎𝑝,𝑖.  𝑃𝑐𝑎𝑝,𝑖.  𝑟𝑏

𝑇 ∗ 365 ∗ 24 ∗ 𝐾𝐷𝐸𝑅𝑠,𝑖
 

(15) 

A variable cost can be calculated by: 

𝐶𝑜𝑠𝑡𝐷𝐸𝑅𝑠,𝑖 = 𝐶𝑂&𝑀,𝑖 + 𝐶𝐹,𝑖 (16) 

Where 𝐶𝑂&𝑀,𝑖 is the DERs operation & maintenance cost, 𝐶𝐹,𝑖  is the Cost of fuel for DERs. 

The cost of the suggested technologies is presented in Table 2. 

 

Table.2  The cost of the suggested technologies 

Generation Capacity 

(kW) 

Capacity 

Factor 

Life 

Time 

(Year) 

Capital 

Cost 

($/kW) 

Maintenance 

Cost 

($/kWh) 

Annual 

Conversion 

Factor 

FC 400 0.4 10 3674 0.001 0.1006 

MT 250 1 10 750 0.039 0.2152 

PV 300 0.25 20 6675 0.005 0.0543 

WT 300 0.2 20 1500 0.005 0.1006 



JES, Vol. 53, No. 1, Pp. 38-81, Jan 2025 DOI: 10.21608/JESAUN.2024.329451.1377 Part B: Electrical Engineering 
 

43 

 

c) Minimization of Emission 

Reducing emissions from various power sources and the grid is the main aim of this project. 

The three most significant pollutants—carbon dioxide (CO2), nitrogen oxides (NOx), and 

sulfur dioxide (SO2)—are taken into account. The following is an expression for the equation 

used to lower emissions [42]: 

𝐹𝑜𝑏𝑗3 = ∑ 𝐸𝑀𝑇𝑖 +

𝑁𝑀𝑇

𝑖=1

∑𝐸𝐹𝐶𝑖

𝑁𝐹𝐶

𝑖=1

+ ∑ 𝐸𝑊𝑇𝑖

𝑁𝑊𝑇

𝑖=1

+∑𝐸𝑃𝑉𝑖

𝑁𝑃𝑉

𝑖=1

+ 𝐸𝐺𝑟𝑖𝑑 
(17) 

𝐸𝑀𝑇𝑖 = (𝐶𝑂2
𝑀𝑇 + 𝑁𝑂𝑥

𝑀𝑇 + 𝑆𝑂2
𝑀𝑇) ∗ 𝑃𝑀𝑇𝑖 (18) 

𝐸𝐹𝐶𝑖 = (𝐶𝑂2
𝐹𝐶 + 𝑁𝑂𝑥

𝐹𝐶 + 𝑆𝑂2
𝐹𝐶) ∗ 𝑃𝐹𝐶𝑖 (19) 

𝐸𝑊𝑇𝑖 = (𝐶𝑂2
𝑊𝑇 + 𝑁𝑂𝑥

𝑊𝑇 + 𝑆𝑂2
𝑊𝑇) ∗ 𝑃𝑊𝑇𝑖 (20) 

𝐸𝑃𝑉𝑖 = (𝐶𝑂2
𝑃𝑉 + 𝑁𝑂𝑥

𝑃𝑉 + 𝑆𝑂2
𝑃𝑉) ∗ 𝑃𝑃𝑉𝑖 (21) 

𝐸𝐺𝑟𝑖𝑑 = (𝐶𝑂2
𝐺𝑟𝑖𝑑 + 𝑁𝑂𝑥

𝐺𝑟𝑖𝑑 + 𝑆𝑂2
𝐺𝑟𝑖𝑑) ∗ 𝑃𝐺𝑟𝑖𝑑𝑖 (22) 

The different values of the grid and the DERs parameters are listed in Table 3. 

 

Table.3  Emission related to grid and resources 

Emission 

type 

Emission factors (lb/MW h) 

Grid MT FC WT PV 

NOX 5.06 0.4 0.03 0 0 

SO2 11.6 0.008 0.006 0 0 

CO2 2031 1596 1078 0 0 

 

2. 2 Constraints 

When using the optimization process to find the best DG installation, the following operating 

limitations in RDS must be considered: 

 

a) Equality constraints 

The constraint presents the balance between consumption side and supply side. Here, the 

consumption power is shown by the sum of total load power and total losses in all branches 

and the supply power is the sum of power generated at slack bus and power generated by all 

DGs, which constraint can be computed as:  

𝐴𝑃𝐺𝑟 + ∑ 𝐴𝑃𝐷𝐸𝑅𝑠,𝑘

𝑁𝐷𝐺

𝑘=1

=  ∑𝐴𝑃𝐿𝑜,𝑖

𝑘

𝑖=1

+ 𝑇𝐴𝑃𝐿𝐷𝐸𝑅𝑠 (23) 

𝑅𝑃𝐺𝑟 + ∑ 𝑅𝑃𝐷𝐸𝑅𝑠,𝑘

𝑁𝐷𝐺

𝑘=1

=  ∑𝑅𝑃𝐿𝑜,𝑖

𝑘

𝑖=1

+ 𝑇𝑅𝑃𝐿𝐷𝐸𝑅𝑠 
   

(24) 

 

b) Inequality constraints.  

Bus voltage constraints: Once the ideal placement and size of DERs have been established, 

each bus's bus voltage should be limited as follows: 
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𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥 ,    𝑖 = 1, 2, … . , 𝑁𝑏𝑢𝑠 (25) 

DERs sizing limits: The size of all the DERs shouldn't exceed the distribution network's load 

demand. The DERs have the following size:  

𝐴𝑃𝐷𝐸𝑅𝑠
𝑚𝑖𝑛 ≤ 𝐴𝑃𝐷𝐸𝑅𝑠,𝑘 ≤ 𝐴𝑃𝐷𝐸𝑅𝑠

𝑚𝑎𝑥  (26) 

𝑅𝑃𝐷𝐸𝑅𝑠
𝑚𝑖𝑛 ≤ 𝑅𝑃𝐷𝐸𝑅𝑠,𝑘 ≤ 𝑅𝑃𝐷𝐸𝑅𝑠

𝑚𝑎𝑥   

DERs location limits: The location of DERs cannot be slack bus (Bus 1) and follows the 

inequality below: 

2 ≤ RPDERs,k ≤ Nbus (27) 

Line capacity limits: The current in some branches is increased after integrating DERs with 

best location and size, so the branch current must be limited as follows: 

Ib ≤ Ib
max (28) 

Power factor limits: The power factor of each DG is limited to the range from 0.85 lagging 

to 0.99.  

 0.85 ≤ pfDRs,i ≤ 0.99 (29) 

 

 

3.  Modeling of hybrid energy system components  

 

The HRES employed in this study includes fuel cells (FC), wind turbines (WT), micro-

turbines (MT), and photovoltaic arrays (PV). 

 

3.1. Wind energy subsystem modeling 

The wind speed determines how much electricity is produced by WT. Eq. (30) presents the 

formula for the electric power produced by WT [43]: 

 

𝑃𝑤(𝑉𝑤𝑖𝑛𝑑) =

{
 

 
0                   𝑣𝑤𝑖𝑛𝑑 < 𝑣𝑐𝑖   𝑜𝑟 𝑣𝑐𝑜 ≤ 𝑣𝑤𝑖𝑛𝑑

𝑝𝑅 .
(𝑣𝑤𝑖𝑛𝑑 − 𝑣𝑐𝑖)

(𝑣𝑟 − 𝑣𝑐𝑖)
𝑣𝑐𝑖 ≤ 𝑣𝑤𝑖𝑛𝑑 < 𝑣𝑟

𝑝𝑅                           𝑣𝑟 ≤ 𝑣𝑤𝑖𝑛𝑑 < 𝑣𝑐𝑜

 

(30) 

The equation of the Probability Density Function fpw(Pw)for the power generated by WES is 

presented in (31): 

𝑓𝑝𝑤(𝑃𝑤)

{
 
 

 
 

1 − [𝐹𝑣(𝑣𝑐𝑜) − 𝐹𝑣(𝑣𝑐𝑖)]𝑝𝑤 = 0    

(
(𝑣𝑟 − 𝑣𝑐𝑖)

𝑝𝑅
)(

𝜋

2𝑉𝑚2
) ∗ (𝑣𝑐𝑖 + (𝑣𝑟 − 𝑣𝑐𝑖).

𝑝𝑤
𝑝𝑅
) ∗ 𝑒𝑥𝑝

[
 
 
 

−(
𝑣𝑐𝑖 + (𝑣𝑟 − 𝑣𝑐𝑖).

𝑝𝑤
𝑝𝑅

2

√𝜋
𝑉𝑚

)

2

]
 
 
 

 0 < 𝑝𝑤 < 𝑝𝑅

𝐹𝑣(𝑣𝑐𝑜) − 𝐹𝑣(𝑣𝑟)𝑝𝑤 = 𝑝𝑅

 (31) 
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3.2. Photovoltaic system modeling (PVS) 

The following is a model of the behavior of solar irradiation using the Beta PDF and CDF 

equations [43].  

 𝑓𝐵(𝑠𝑖) = {
ᴦ(𝛼 + 𝛽)

ᴦ(𝛼)ᴦ(𝛽)
. 𝑠𝑖

(𝛼−1)(1 − 𝑠𝑖)
(𝛽−1)        𝑓𝑜𝑟 0 ≤ 𝑠𝑖 ≤ 1 , 𝛼 ≥ 0, 𝛽 ≥ 0

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(32) 

𝐹𝐵(𝑠𝑖) = ∫
ᴦ(𝛼 + 𝛽)

ᴦ(𝛼)ᴦ(𝛽)
. 𝑠𝑖

(𝛼−1)(1 − 𝑠𝑖)
(𝛽−1)𝑑𝑠𝑖

𝑠𝑖

0

 

(33) 

Eq. (34) shows the Probability Density Function f_pw (P_w) equation for the power produced 

by PVS. 

𝑓𝑃𝑝𝑣(𝑃𝑝𝑣) = {
ᴦ(𝛼 + 𝛽)

ᴦ(𝛼)ᴦ(𝛽)
. (𝐴𝑐. 𝜂. 𝑠𝑖)

(𝛼−1)(1 − 𝐴𝑐. 𝜂. 𝑠𝑖)
(𝛽−1)        𝑖𝑓 𝑃𝑝𝑣 ∈ [0, 𝑃𝑝𝑣(𝑠𝑖)]

0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(34) 

 

3.3. Full Cell Unit (FC) Model 

Here is the equation for the electric power produced by FC [44]: 

𝐶𝐹𝐶 = 𝐶𝑔𝑎𝑠𝐹𝐶 ∗
𝑃𝐹𝐶
𝜂𝐹𝐶

 
(35) 

 

3.4. Micro Turbine Unit (MT) Model 

The following is the equation for the electric power produced by MT [44]: 

𝐶𝑀𝑇 = 𝐶𝑔𝑎𝑠𝑀𝑇 ∗
𝑃𝑀𝑇
𝜂𝑀𝑇

 
(36) 

 

 

4. Model of Uncertainties based on PEM Method 

 

A convenient tool for dealing with uncertainties is Point estimate method (PEM). This 

method's specifics are drawn from [45–46]. The load uncertainty is represented in this study 

by applying (2m + 1) Hong's PEM scheme to three buses in each distribution network. To 

estimate the load-flow solution based on the PEM technique, the optimization methods in each 

case study carried out (2×3+1) load-flow calculations, taking into account three uncertain 

system parameters in each test system. The Point Estimate Method's general steps [6]: 

Step 1: The input variables' statistical data is founded. 

Step 2: Each input variable's concentration is computed. 

Step 3: The weighted probability factor evaluates the F function at the positions 

(p1;  p2;  . . . ; X1,k;  . . . ;  pm−1; pm)). 
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Where p1 is the input variable's mean valueX1. The kth location X1,kand the mean value of m-

1 remaining input variables (p1;  p2;  . . . ; 𝑝𝑙−1; 𝑝𝑙+1 ;  pm−1; pm) are included in the 

points (p1;  p2;  . . . ; X1,k;  . . . ;  pm−1; pm) 

Step 4: The output variable (Z)'s statistical data are ascertained as follows: 

F (Z =  F(p1;  p2;  . . . ; pl;  . . . ;  pm;  c)) (37) 

Step 5: The mean value (𝜇𝑝𝑙) and variance value (𝜎𝑝𝑙) of each random variable p1are 

calculated for the three locations. 

𝑝𝑙𝑘 = 𝜇𝑝𝑙 + 𝜀𝑙𝑘𝜎𝑝𝑙                            𝑘 = 1, 2, 3  (38) 

Step 6: The weighting factor wlk and standard location of the unknown parameters can be 

computed using: 

𝜀𝑙𝑘 =
𝜆13
2
+ (−1)3−𝑘√𝜆13 −

3𝜆14
2

4
      𝑘 = 1, 2  𝜀𝑙3 = 0 

(39) 

𝑤𝑙𝑘 =
(−1)3−𝑘

𝜀𝑙𝑘(𝜀𝑙1−𝜀𝑙2)
, 𝑤𝑙3 =

1

𝑚
−

1

𝜆14−𝜆13
2                𝑘 = 1, 2  𝜀𝑙3 = 0 (40) 

Step 7: This step will compute the F function at this moment and its new weighting factor 

(w0)  by: 

𝑤0 =∑𝑤13

𝑚

𝑙=1

= 1 −∑
1

𝜆14 − 𝜆13
2

𝑚

𝑙=1

 
(41) 

In this work, PV and WT output power are modeled under the influence of uncertainties using 

(K = 3, 𝜀𝑙𝑘= 0). Following the computation of two sets of locations and weights for every 

point (pl, k, ωl, k, k=1, 2), the output function for every variable and concentrated point Z(l, 

k), Z will be determined using F(Mp1, Mp2, . . . , plk, . . . , Mpm), which is computed using: 

𝐸(𝑍𝐽) ≅∑∑𝑤𝑙𝑘

𝑘

𝑘=1

∗ [𝐹(𝑀𝑝1, 𝑀𝑝2, . . . , 𝑝𝑙𝑘, . . . , 𝑀𝑝𝑚)]
𝑗

𝑚

𝑙=1

 
(42) 

 

 

5. Proposed Method 

 

The proposed framework is a generalized method for finding feasible solutions to locate the 

DERs based on optimization algorithms 

 

5.1. Multi-Variant Differential Evolution (MVDE) method 

The optimal DERs allocation problem that was previously discussed is connected to the large-

scale optimization problems. To overcome this obstacle, a successful search method is 

needed. One potentially helpful method for managing challenging, high-dimensional 

scenarios while improving search features is the Differential Evolution (DE) strategy. The DE 

method has been utilized as a search engine in this work due to its quick convergence, 

robustness, and effectiveness in identifying high-scale problems.  In this regard, Multi-Variant 
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Differential Evolution (MVDE) is recommended as an essentially parameter-free 

optimization method. The main objective of the proposed approach was to prevent early 

convergence, reduce the probability of local optima trapping, and enhance the original DE's 

capability for global search.   

The suggested MVDE integrates two high random scaling factors (based on logistic and 

cosine distributions) with five distinct mutation techniques in order to preserve population 

variety throughout the optimization process. The main stages of MVDE algorithm are listed 

below [47]. 

 

a) Initialization 

In order to distribute the limited search space as widely as possible, it starts by solving the d-

dimensional optimization problem using initial solutions (, initial candidate population) 

generated at random as follows: 

xij = rand[0,1] ∙ (xj
max − xj

min) + xj
min     ∀  i ∈ {1,2, … , NP};   j ∈ {1,2, … , d} (43) 

  

b) Proposed distributions 

The two parametric distributions with completely distinguishable tail thicknesses are the 

logistic and cosine distributions. Based on the advancement of optimization operations, the 

probability of choosing each random generator is proposed. 

F is highly likely to have developed in the first generations, according to the cosine 

distribution. The logistic distribution is more likely to be used at the end of optimization, 

though. These two distributions are so used. 

 

c) Crossover 

A crossover is suggested in order to broaden the variety of the perturbed variable factors. In 

the end, the crossover probability constant is selected to rise linearly from zero to 0.5 

iterations using the subsequent formula: 

 

CR = 𝑔/(2𝐺) (x) (44) 

The following is a presentation of the binary crossover mapping matrix A of dimension n×d: 

Aij = 𝐼𝑛𝑑 𝑖𝑗 ≥ 𝐶𝑅 (45) 

The 0-1 matrix A is used for mapping the above-mentioned continuous scaling factor as 

follows; 

Fij = 𝐴𝑖𝑗 .∗ 𝐹𝑖𝑗 (46) 

 

d) Selection 

Based on the adaptive crossover rate, the following criteria are used to choose the qualified 

parents of size Np from the top-ranked solutions: 

Np = 𝑛 ∗ (1 − 𝐶𝑅) (47) 

The main steps of MVDE algorithm are listed below 

1. Establish the population number NPop (k=1….NPop), the number of decision variables 
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D (j=1….D), the higher MaxVar and lower MinVar boundaries of the decision variables, 

and the maximum number of iterations MaxIt(i=1…. MaxIt). 

2. For every population member, choose the starting values of the position vector 𝑢𝑘 and the 

associated objective function 𝑂𝐹𝑘 

3. Compute the optimal values of the objective function (𝑂𝐹𝑘
𝑏𝑒𝑠𝑡 )  and the position (𝑢𝑘

𝑏𝑒𝑠𝑡 ) 

for i = 1 

4. For (𝑖 = 2;  𝑖 + +; 𝑖 ≤ 𝑀𝑎𝑥𝐼𝑡) do, use (x) to Compute the crossover factor CR 

5. For (𝑘 = 2;  𝑘 + +; 𝑘 ≤ 𝑁𝑃𝑜𝑝) do, if (𝑟𝑛𝑑 > 3 ∗ 𝐶𝑅), Use the cosine distribution to 

calculate the self-adaptive scaling factor [𝑆𝐹]𝑘,𝐷. Use the logistic distribution to calculate 

the self-adaptive scaling factor [𝑆𝐹]𝑘,𝐷 as follow: 

[𝑆𝐹]𝑘,𝐷 =

{
 

 
2

𝜋
𝑠𝑖𝑛−1(2 ∗ [𝑟𝑎𝑛𝑑]𝑘,𝐷 − 1), 𝑐𝑜𝑠𝑖𝑛𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜

[𝑟𝑎𝑛𝑑]𝑘,𝐷 − 0.1 ∗ log (
1

[𝑟𝑎𝑛𝑑]𝑘,𝐷
− 1) , 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

(48) 

 

6. Calculate the binary matrix by utilizing:  

[𝐵]𝑘,𝐷 = [𝑟𝑎𝑛𝑑]𝑘,𝐷 > 𝐶𝑅 (49) 

7. use the equation for the self-adaptive scaling factor [SF]k,D: 

[𝑆𝐹]𝑘,𝐷 = [𝐵]𝑘,𝐷 > [𝑆𝐹]𝑘,𝐷 (50) 

8. In each iteration, determine the parent selection using:  

𝑁𝑃𝑜𝑝𝑝 = 𝑘 ∗ 1 − 𝐶𝑅) (51) 

9. Calculate the location   

▪ If (i < 0.2 ∗ MaxIt)  

xig = xr1g
i + F. (xr2g

i − 𝑥𝑟3𝑔
𝑖 ) + 𝐹. (𝑥𝑟4𝑔

𝑖 − 𝑥𝑟5𝑔
𝑖 ); //DE/rand/2 (52) 

▪ If (t < 0.4 ∗ MaxIt)  

xig = xr1g
i + F. (xr2g

i − 𝑥𝑟3𝑔
𝑖 ); /DE/rand/1 (53) 

▪ If (t < 0.6 ∗ MaxIt)  

x𝑖𝑔 = 𝑥𝑖𝑔 + 𝐹. (𝑥𝑏𝑒𝑠𝑡.𝑔 − 𝑥𝑖𝑔) + 𝐹(𝑥𝑟2𝑔
𝑖 − 𝑥𝑟3𝑔

𝑖 ); //DE/target-to-best/1 (54) 

▪ If (t < 0.8 ∗ MaxIt)  

x𝑖𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹(𝑥𝑟1𝑔
𝑖 − 𝑥𝑟2𝑔

𝑖 ) + 𝐹(𝑥𝑟3𝑔
𝑖 − 𝑥𝑟4𝑔

𝑖 ); //DE/ best/2 (55) 

▪ Else 

x𝑖𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹(𝑥𝑟1𝑔
𝑖 − 𝑥𝑟2𝑔

𝑖 ; //DE/ best/1 (56) 

10. Compute 𝑂𝐹𝑘
𝑖+1 = 𝐹[𝑢]𝑘,𝐷

𝑖+1 

11. Update the best values of (𝑢𝑘
𝑏𝑒𝑠𝑡 ) and (𝑂𝐹𝑘

𝑏𝑒𝑠𝑡 ) 

12. End 

Pseudocode of the Multi-Variant Differential Evolution Algorithm is shown in Table 4 [48] 
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Table.4  Pseudo-codes of the Multi-Variant Differential Evolution Algorithm (MVDE) method 

Method: MVDE method 

1. Generate an initial uniformly distributed random population consisting of n 

solutions containing d variables using: 

xij = rand[0,1] ∙ (xj
max − xj

min) + xj
min     ∀  i ∈ {1,2, … , NP};   j ∈ {1,2, … , d} 

2. Compute Xbest 

3. Until the termination condition is not met 

4. For t=2 to g 

5.    Slope=t/2/g;//mutation 

6.    For i < n 

7.       If rand > 3 ∗ Slope  

8.          Fij = 𝐹𝑖𝑗 . 𝐼𝑛𝑑𝑖𝑗; 

9.       End if 

10.          CR = 𝑔/(2𝐺) // 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 

11.     if CR > Slope 

12.         Fij = 𝐶𝑅.∗ 𝐹𝑖𝑗 

13.     Else 

14.        Np = 𝑛 ∗ (1 − 𝐶𝑅) // selection 

15.    End if 

16. If t < 0.2 ∗ g 

17.      xig = xr1g
i + F. (xr2g

i − 𝑥𝑟3𝑔
𝑖 ) + 𝐹. (𝑥𝑟4𝑔

𝑖 − 𝑥𝑟5𝑔
𝑖 ); //DE/rand/2 

18. Else If t < 0.4 ∗ g 

19.       xig = xr1g
i + F. (xr2g

i − 𝑥𝑟3𝑔
𝑖 ); /DE/rand/1 

20. else If t < 0.6 ∗ g 

21.       x𝑖𝑔 = 𝑥𝑖𝑔 + 𝐹. (𝑥𝑏𝑒𝑠𝑡.𝑔 − 𝑥𝑖𝑔) + 𝐹(𝑥𝑟2𝑔
𝑖 − 𝑥𝑟3𝑔

𝑖 ); //DE/target-to-best/1 

22. Else If t < 0.8 ∗ g 

23.      x𝑖𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹(𝑥𝑟1𝑔
𝑖 − 𝑥𝑟2𝑔

𝑖 ) + 𝐹(𝑥𝑟3𝑔
𝑖 − 𝑥𝑟4𝑔

𝑖 ); //DE/ best/2 

24. else 

25.       x𝑖𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹(𝑥𝑟1𝑔
𝑖 − 𝑥𝑟2𝑔

𝑖 ; //DE/ best/1 

26. End if 

27. End for 

28. End while 

29. Return the best solution 

 

 

6. Simulation results based on MVDE method 

 

Optimal allocation problem of mix of different types of distributed energy resources (DERs) 

units is solved based on Multi-variant differential evolution (MVDE) in different test cases 

for exploring. An analytical software tool has been created in MATLAB to perform load flow 

analysis and identify the best locations and sizes of Distributed Energy Resources (DERs). 

The study scenarios based on the annual growth load and numbers of objective functions are 

tabulated in Table 5. The network implemented in this work consists of 33 and 69 buses with 
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a base voltage of 12.66 kV, this system is optimized based on single objective functions, and 

multi-objective functions. Fig. 2 displays the subject's overall trend. 

 

Table.5  Different cases studies investigated in this paper. 

Scenario # DERs Case # Y Value System 

1 PVs 

Case 1 0 

IEEE 33 

bus 

Case 2 1 

Case 3 2 

Case 4 3 

Case 5 4 

Case 6 5 

2 WTs 

Case 7 0 

Case 8 1 

Case 9 2 

Case 10 3 

Case 11 4 

Case 12 5 

3 PVs &WTs &MTs &FCs 

Case 13 0 

Case 14 1 

Case 15 2 

Case 16 3 

Case 17 4 

Case 18 5 

4 WTs 

Case 19 0 

IEEE 69 

bus 

Case 20 1 

Case 21 2 

Case 22 3 

Case 23 4 

Case 24 5 

 

▪ IEEE 33 bus radial distribution system 

[49, 50] The IEEE 33 bus system, a typical small electrical energy network with 33 buses and 

32 branches, is the system under discussion. It has a total load demand of 3.715 MW and 

2.300 MVAR at 12.6 KV. Figure 3 illustrates a radial distribution network using IEEE 33-bus 

[51]. 

Over a five-year period, the impact of yearly increases in system load demand on bus voltages 

and power loss for every branch is examined. Figure 4 illustrates this effect without the 

integration of DERs units. It shows that when the system load demand increases annually, the 

voltage at each bus decreases and the branch losses rise. 
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Fig 2.  Overall solution procedure. 

 

 
Fig 3.  IEEE 33-bus radial distribution network  

 
(a) Voltage profile 

 
(b) Power loss 

Fig 4.  System performance under annual load growth without integration DERs 
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6.1 Scenario 1: Allocating PV power generation system 

a) Case 1 at y = 0 

This instance uses MVDE methodologies to examine a system's performance for the base 

year. Table 6 shows the optimization results with and without PV units. It is evident that the 

minimum voltage raised to 0.96867 (33) p.u. and the power loss was reduced by 64.721%. 

The overall emissions are now 6129.4803 Ib/h instead of 8022.1 Ib/h. The 301st, 13th, and 

24th buses are the best places to integrate three PV modules.   

 

Table.6  Optimization results obtained at y=0 
Case 

# 

 PV sizes MW, (location 

(bus no)) 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

1 

 

Without 

DERs 
- 202.7 135.2 0.1171 0.9131(18) 8022.1 

With DERs 
1.058(30)      0.78813(13) 

1.0932(24) 
71.51 49.42 0.01357 0.96867(33) 6129.4803 

 

Figure 5 shows the improvement in the voltage profile and the decrease in power losses. With 

reference to Table 7, the suggested method may select the best placement and size for PV 

units while significantly reducing power losses and improving the voltage profile compared 

to the WOA, GA, SA, EAs, GA-PSO, ABC-CSO, ABC-BAT, ALO, and DOA algorithms that 

have been explored. The convergence curves, where MVDE achieves the least network power 

loss, are displayed in Fig. 6. 

 

Table.7  comparison for IEEE 33 bus radial distribution system obtained for case 1 

Algorithms PVs sizes MW, (location (bus no)) 𝑷𝒍𝒐𝒔𝒔 KW 𝑽𝒎𝒊𝒏 (location) 

MVDE 1.058(30); 0.78813(13); 1.0932(24) 71.51 0.96867(33) 

WOA 1.2901(29); 0.57671(25);  0.72267(14) 74.5 0.96899(33) 

GA 0.9464(11);  0.85462(25);  1.0196(30) 72.99 0.96594(18) 

SA [25] 2.9356 70.189 0.95904(18) 

EAs [30] 2.786 71.7 - 

GA-PSO [36] 1496.7(30);  596.9(13);  234.6(10) 90.53 0.9689 

ABC-CSO [36] 1265.7(30);  609.8(13);  198.4(10) 89.66 0.9701 

ABC-BAT [36] 1360.8(30);  520.8(13);  148.5(10) 88.07 0.9742 

ALO [36] 1323.5(30);  415.2(13);  130.2(10) 86.40 0.9767 

DOA [37] 532(25); 866(33); 833(13) 78.62 0.96004(18) 
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(a) Voltage profile 

 
(b) Power loss 

Fig 5.  System performance under annual load growth with integration DERs for base year  

 

 
Fig 6.  Performance comparisons of single-objective methods for case 1 

 

b) Case 2 at y = 1 

The annual growth of load demand at the first year is presented in this case; the annual load 

growth was handled via MVDE. From optimization results in Table 8, It is evident that the 

minimum voltage has been increased from 0.9059(18) p.u to 0.96628(33) p.u. The losses were 

decreased to 83.02 KW by installing total PV capacity of 3.2083 MW. The grid emission is 

reduced to 83.02 KW and 6598.3849 Ib/h. 

In order to study the feasibility of the proposed solutions, voltage at each system bus and the 

power losses dissipated at each branch are presented in Fig. 7(a, b), respectively. 

 

Table.8  The performance analysis of the proposed method results obtained at y=1 

Case 

# 

 PV size MW, (location (bus 

no)) 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

2 

 

Without 

DERs 
- 237.1 158.1  0.9059 (18) 8663 

With DERs 
1.3081(30)      0.78998(13)    

1.1102 (24) 
83.02 57.39 0.01571 0.96625 (33) 6598.3849 
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(a) Voltage profile 

 
(b) Power loss 

Fig 7.  System performance under annual load growth with integration DERs for first 

year  

 

c)   Case 3 at y = 2 

The annual growth in system load demand through the second year (y=2) is displayed in this 

case. The optimization techniques at y=2, as tabulated in Table 9, it is also understood that 

the capacity of the best DG installations at the right site increases in direct proportion to the 

growth in load power demand. The inclusion of DERs is crucial for raising the minimum 

voltage to 0.99172 p.u. at bus 8 over the minimum permissible limits, since the bus voltages 

are lowered below the lowest allowable limits (Vmin = 0.8982 p.u. at bus 18). There was a 

65.28% decrease in power loss. The amount of emissions dropped to 7112.4424 Ib/h. 

After two years, it is found that the suggested algorithm significantly reduces power loss and 

enhances the voltage profile. Fig. 8(a, b) displays the voltage profile and power loss at each 

bus under the annual growth in system load demand. 

 

Table.9  Optimization results obtained for second year 

Case # 
 PV size MW, 

(location (bus no)) 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

3 

 

Without 

DERs 
- 277.6 185.1  0.8982 (18) 9359.3 

With 

DERs 

1.2451(30) 

0.87376(13)    

1.2763 (24) 

96.38 66.63 0.01814 
0.96373 

(33) 
7112.4424 
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(a) Voltage profile 

 
(b) Power loss 

Fig 8.  System performance under annual load growth with integration DERs for second year  

 

d)   Case 4 at y = 3 

A suggested approach for determining the optimal distribution of three PV units based on 

third years (y=3) is offered. Table 10 displays the optimization results from the optimization 

algorithm at y=3. It is clear that both the overall power loss and emissions are dropping to 

122 KW and 7659.5978 Ib/h, respectively. Because of the yearly increase in network load 

requirement during the third year, the sizes of PV units are growing to 94.061, 1341, and 

1374.5 KW. In order to study the feasibility of the proposed method for minimizing power 

loss and improving voltage profile, the voltage at each bus and power loss at each branch after 

integrating PVs units with good size and location are plotted in Fig. 9(a) and Fig. 9(b), 

obviously, the proposed method achieves a good performance for improving voltage profile 

and reducing power loss. 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 9.  System performance under annual load growth with integration DERs for third year  
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Table.10  Optimization results obtained at y=3 

Case 

# 

 PV size MW, (location (bus 

no) 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

4 

 

Without 

DERs 
- 325.4 217.1  0.8897 (18) 10117 

With DERs 
1.341(30)      0.94061(13)    

1.3745(24) 
112 77.44 0.02105 0.6092 (33) 7659.5978 

 

e) Case 5 at y = 4 

This case illustrates the annual growth of load demand at fourth year. The proposed multi-

objective optimization methods are employed to reduce the total system power loss, total 

emission and voltage deviation, simultaneously, by allocating three PV units. After combining 

three units of PVs with a total size of 3.9562 MW, it is evident from the optimization findings 

in Table 11 that the minimum voltage increased from 0.8803 p.u. to 0.95794 p.u. The best 

location for PV is close to buses (13, 24, 30). The power losses have been reduced by 34 %, 

and voltage deviation is reduced to 0.02439p.u. the minimum value of three objective 

functions (F1 = 130.22 KW , F2 = 0.02439p. uand F3 = 8248.8276 Ib/h),  

The feasibility of the proposed solutions is illustrated in Fig. 10(a), and Fig. 10(b), where 

system power loss minimization and voltage deviation reduction are shown, respectively. 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 10.  System performance under annual load growth with integration DERs for forth year  

 

Table.11  Optimal allocation of PVs units for case 5 

Case 

# 

 PV size MW, (location 

(bus no)) 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

5 

 

Without 

DERs 
- 382.1 255  0.8803 (18) 10941 

With DERs 
1.446(30)      1.029(13)     

1.4811 (24) 
130.22 90.04 0.02439 0.95794 (33) 2024.0761 

 

f) Case 6 at y = 5 

In this case, the effectiveness of the MVDE technique has been evaluated and demonstrated 

considering load growth at fifth year (5th year), the voltage profile and the loss of the network 
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are shown in Fig 11(a) and Fig. 11(b), respectively. The behavior of the system at y=5 is 

depicted in Table 12, the power loss is reduced from 449.5 KW to 151.47 KW, and the 

minimum voltage increased from 0.8701 p.u. at 18th bus to 0.95472 p.u at 33th bus. The total 

emissions are reduced from 11841 Ib/h to 8884.8029 Ib/h. 

 

Table.12  Optimization results obtained for fifth year 

Case 

# 

 PV size MW, (location 

(bus no)) 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

6 

 

Without 

DERs 
- 449.5 300  0.8701 (18) 11841 

With DERs 
1.5592(30)      1.0908(13)   

1.5967(24) 
151.47 104.75 0.02827 0.95472(33) 8884.8029 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 11.  System performance under annual load growth with integration DERs for fifth year  

 

6.2 Scenario 2: Allocating WT power generation system 
In this scenario, MVDE algorithm determines the best placement and size of the three WT 

units taking into account the ability to reduce power losses.  

 

a) Case 7 at y = 0 

This case uses MVDE methodologies to examine a system's performance for the base year. 

Table 13 shows the optimization results with and without the use of WT units. It is evident 

that the minimum voltage increases from 0.9131 (18) p.u. to 0.99289 (8) p.u. and the power 

loss decreases from 202.7 KW to 14.42 KW. The overall emissions are lowered to 1571.1554 

Ib/h from 8022.1 Ib/h. Because WT units produce both active and reactive power, the 

minimum voltage and overall size obtained in this example are higher than the results obtained 

in scenario 1. The 301st, 13th, and 24th buses are the best places to add three WTs units, the 

improvement in voltage profile and the reduction in power losses are illustrated in Fig.12. 

Referring to Table 14, the proposed approach (MVDE) is able to choose the optimal location 

and size of WTs units operating at the optimum power factor with a significant saving of 

power losses, and improvement of voltage profile enhancement than studied GA-PSO, ABC-

CSO, ABC-BAT and ALO algorithms. 
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(a) Voltage profile 

 
(b) Power loss 

Fig 12.  System performance under annual load growth with integration DERs for base year  

 

Table.13  Optimization results obtained at y=0 

Case 

# 

 WT size MW, (location (bus 

no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

7 

 

Without 

DERs 
- 202.7 135.2 0.1171 0.9131(18) 8022.1 

With 

DERs 

1.2094(30)/0.85      

0.7502(13)/0.86698    

1.0025(24)/0.8587 

14.4 11.75 0.00057 0.99289(8) 1571.1554 

 

Table.14    Performance comparison with multiple WTs units 
Algorithms MVDE GA-PSO [36] ABC-CSO [36]  ABC-BAT [36] ALO[36] 

WT size 

MW, 

(location 

(bus no))/ 

PF 

1.2094(30)/0.85      

0.7502(13)/0.86698    

1.0025(24)/0.8587 

1425.7(30)/0.866 

639.6(13)/0.866 

168.4(10)/0.866 

1394.1(30)/0.866 

553.1(13)/0.866 

296.8(10)/0.866 

1336.2(30)/0.866 

465.9(13)/0.866 

201.2(10)/0.866 

1225.2(30)/0.866 

610.4(13)/0.866 

269.1(10)/0.866 

𝑃𝑙𝑜𝑠𝑠 

KW 
14.4 37.08 36.61 34.43 

31.65 

𝑉𝑚𝑖𝑛 

(location) 
0.99289(8) 0.9712 0.9763 0.9798 

0.9802 

 

b) Case 8 at y = 1 

In this case an increase in the load level raises all objective values and boosts the WT units' 

overall capacity. In comparison to case 7, the WT units' size grew from 2.9621 MW to 3.20825 

MW.  The total losses reduced to 16.64 MW refer to optimization results in Table 15. The 

minimum voltage reduced from 0.9131p.u at the base year to 0.9059 p.u without integrating 

WTs units, after integrating WTs units this value increased to 0.99242 p.u, grid emission is 

reduced to 1642.1158 Ib/h. The feasibility of the proposed solutions is illustrated in Fig. 13 

(a) and Fig. 13 (b), where the improvements in the voltage profile and system power loss are 

shown, respectively. 
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(a) Voltage profile 

 
(b) Power loss 

Fig 13.  System performance under annual load growth with integration DERs for first year  

 

Table.15  Optimization results obtained at y=1 

Case # 

 WT size MW, 

(location (bus no))/ 

PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

8 

 

Without 

DERs 
- 237.1 158.1  0.9059 (18) 8663 

With 

DERs 

1.3081(30)/0.85      

0.78998(13)/0.85715    

1.1102 (24)/0.87105 

16.64 13.6 0.010246 
0.99242 

(25) 
1642.1158 

 

c)   Case 9 at y = 2 

This case displays the annual growth in system load demand through the second year (y=2). 

The performance of network at y=2 is found in Table 16, from the optimization result, the bus 

voltages are reduced below the minimum allowable limits (Vmin = 0.8982 p.u at bus 18), 

Inclusion of DERs is important for increasing minimum voltage to 0.99172 p.u at bus 8 upper 

the minimum allowable limits. The power loss and emissions reduced by 93.08 % and 80.759 

%, respectively. Figure 14(a) and Figure 14(b) show the voltage profile and power loss under 

the annual growth in system load demand during the second year, respectively. It is found that 

the MVDE algorithm significantly improves the voltage profile and reduces power loss. 
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(a) Voltage profile 

 
(b) Power loss 

Fig 14.  System performance under annual load growth with integration DERs for second year  

 

Table.16  Simulation Results after WTs units Placement for y=2 

Case 

# 

 WT size MW, (location (bus 

no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

9 

 

Without 

DERs 
- 277.6 185.1  0.8982 (18) 9359.3 

With 

DERs 

1.40363(30)/0.85002      

0.85249(13)/0.86194    1.1742 

(24)/0.86119 

19.2 15.75 0.20367 0.99172 (8) 1800.7619 

 

d)   Case 10 at y = 3 

MVDE method is presented to find the best allocation of three units of WTs units based on 

third years (y=3). The optimization results obtained from the optimization algorithm at third 

year are tabulated in Table 17, it's evident that the total power loss and emission are decreasing 

and the WTs unit sizes are increasing due to annual growth in network load demand during 

the third year. Figure 15(a) and Figure 15(b) illustrate the bus voltage and the power loss 

following the use of WT units of appropriate size and location in order to assess the viability 

of the suggested approach. It is clear that the MVDE method performs well in terms of 

improving the voltage profile and lowering power loss. 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 15.  System performance under annual load growth with integration DERs for third year  
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Table.17  The best allocation of three units of WTs units based on third years 

Case 

# 

 WT size MW, (location (bus 

no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

10 

 

Without 

DERs 
- 325.4 217.1  

0.8897 

(18) 
10117 

With 

DERs 

1.518(30)/0.85      

0.91337(13)/0.85674    

1.28911(24)/0.87323 

22.22 18.2 0.00085 0.9913 (8) 1894.0644 

 

e) Case 11 at y = 4 

In this case, the proposed method is used to determine the optimal location and size of three 

WT units considering minimization of the network power losses, emission, and voltage 

deviation. It is seen that the proposed algorithm achieves remarkable in minimizing the total 

system power losses with acceptable minimum voltage, as shown in Table 18. The minimum 

voltage increased from 0.8803 p.u to 0.99073 p.u, after integrating three units of WTs, power 

loss and grid emission are reduced to 25.75 KW and 2024.0761 Ib/h, respectively.  Figure 

16(a) shows the voltage profile at each bus, and Figure 16(b) shows the power loss at each 

bus. 

 

Table.18  Optimization results for fourth year  

Case 

# 

 WT size MW, (location (bus 

no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

11 

 

Without 

DERs 
- 382.1 255  0.8803 (18) 10941 

With 

DERs 

1.6349(30)/0.85      

0.98041(13)/0.85495    1.3832 

(24)/0.8736 

25.75 21.07 0.00096 0.99073 (8) 2024.0761 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 16.  System performance under annual load growth with integration DERs for forth year  

 

f) Case 12 at y = 5 

In this case, the optimal optimization results are obtained for the fifth year (5th year), The 

feasibility of the proposed solutions is illustrated in Fig. 16 (a) and Fig. 16 (b), where the 

improvements in the voltage profile and system power loss are shown, respectively. The final 
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simulation results are listed in Table 18, the power loss is reduced from 449.5 KW to 29.79 

KW, and the minimum voltage deviation is increased to 0.99017 p.u. The total emissions are 

reduced from 11841 Ib/h to 2145.0529 Ib/h. 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 17.  System performance under annual load growth with integration DERs for fifth year  

 

Table.19  Optimization results obtained at y=5 

Case 

# 

 WT size MW, (location (bus 

no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

12 

 

Without 

DERs 
- 449.5 300  0.8701 (18) 11841 

With 

DERs 

1.756(30)/0.85      

1.063(13)/0.85693    1.4966 

(24)/0.87718 

29.79 24.36 0.00107 0.99017 (8) 2145.0529 

 

6.3 Scenario 3: Allocating Hybrid Renewable Energy Resources 
In this scenario, the planning of hybrid power system model is presented with the load growth. 

A hybrid renewable energy resources (RERs) like photovoltaic system (PV), wind turbine 

system (WT) and nonrenewable energy resources (N-RERs) such as micro-turbine (MT), and 

fuel cell (FC) are integrated in a system to supply energy demand based on proposed methods 

to maximize technical, economic, and environmental benefits of DERs. The results optimized 

by the suggested method are listed in Table 20, It is clearly seen that the total capacity of each 

unit of DERs increases due to increase in the load demand through five years.  

The three objective functions together in 3-dimensional space, power losses dissipated at each 

branch and voltage at each system bus due to annual growth in network load demand through 

five years are investigated in Fig.18, Fig.19 (a), and Fig.19 (b), respectively. From Fig.18, 

Fig.19 (a), it is observed that the different objectives and loss at each branch increase with 

annual load growth. Referring to Fig.19 (b), it is obvious that the network voltages decrease 

with the load growth. 

 

 

 

Table.20  The performance analysis of the proposed method for scenario 3 
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Y 𝑭𝟏 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑭𝟐  

$/h 

𝑭𝟑  

Ib/h 

FC size 

(bus no) 

MT size 

(bus no) 

PV size 

(bus no) 

WT size 

(bus no) 

Y=0 75.0668 51.1182 0.6555 180.4155

3 

5115.7994

7 

0.20148(12

)        

0.25(27)     

0.21055(33

)       

0.25(3) 

0.21283(17)         

0.4(32)         

0.4(20)      

0.3706(26) 

0.16293(16

)     

0.14248(5) 

0.058379(29

)    

0.061469(13

) 

Y=1 92.7146 62.1109 0.7501 191.4882 6095.2141

4 

0.23544(16

)      

0.2013(33)     

0.23923(26

)     

0.19552(31

) 

0.16456(27)     

0.35062(7)     

0.28445(10)     

0.20382(13) 

0.13624(17

)     

0.16842(21

) 

0.058768(8)    

0.063903(28

) 

Y=2 113.0259 75.7030 0.9998 205.5143

7 

6690.0264

9 

0.23541(10

)    

0.067581(8

)        

0.25(15)     

0.18685(20

) 

0.4 (31)    

0.15324(15)     

0.32815(30)     

0.34226(26) 

0.16682(3)     

0.17615(27

) 

0.059204(17

)    

0.049254(12

) 

Y=3 127.3115 85.4744 1.0639 222.0746

5 

7245.4279

8 

0.25(6)        

0.25(26)        

0.25(30)     

0.09412(4) 

0.4(25)   

0.0063001(3

)         

0.4(17)         

0.4(9) 

0.14643(15

)     

0.16128(33

) 

0.067911(32

)    

0.05896(19) 

Y=4 167.6739 111.5440 1.2903 234.5660

0 

8359.0868

5 

0.25(8)        

0.25(29)     

0.22004(12

)        

0.25(32) 

0(30)     

0.18611(6)     

0.28386(31)     

0.26313(14) 

0.17549(2)     

0.17135(33

) 

0.06198(10)       

0.065(11) 

Y=5 194.2980 128.0921 1.3345 257.0981

9 

8971.3818

2 

0.25(12)     

0.18392(16

)     

0.18355(7)     

0.20066(10

) 

0.30756(31)     

0.39763(32)     

0.19744(33)     

0.23201(19) 

0.15561(15

)     

0.13337(11

) 

 

0.061067(14

)     

0.06187(21) 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig 18.  Pareto frontiers and 2-D projections for scenario 3 

 
(a) Power loss 

 
(b) Voltage profile 

Fig 19.  Performance of the system over load growth 

 

a) Case 13 at y = 0 

From Table 19 at base year the power losses are reduced from 202 KW to 75.0668 KW, the 

minimum voltage deviation is increased to 0.6555 p.u. The total emissions are reduced from 

8022.1 Ib/h to 5115.79947 Ib/h. The optimal locations for inclusion PV renewable energy 

resources are the 16th and 5th bus, for inclusion PV renewable energy resources are the 29th 

and 13th bus.  

Fig. 20 (a, and b) indicates the three objectives and the sizes of each energy resource at base 

case (y=0). The minimum loss is 72.57 KW, the cost and emissions related to this loss are 

180.7 4 $/h, and 5258 Ib/h, respectively. To reduce power loss the cost and emissions in this 

case, the sizes of PV and WT units must be equal to 171.3, 143, 59.31, and 57.05, respectively. 
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(a) 

 
(b) 

Fig 20.  The three objectives and the sizes of each energy resource at Y=0 

 

b) Case 14 at y = 1 

From Table 19 the power losses are increased from 75.0668 KW at base year to 92.7146 KW 

at first year, the total cost is increased from 180.41553 $/h at base year to 191.4882 $/h at first 

year p.u. The total emissions are increased from 5115.79947 Ib/h at base year to 6095.21414 

Ib/h at first year. The optimal sizes for inclusion PV renewable energy resources are 136.24 

and 168.42 KW, for inclusion WT renewable energy resources are 58.768 and 63.903 KW.  

Fig. 21 (a, and b) indicates the three objectives and the sizes of each energy resource at first 

case (y=1). It is observed that, after one year the values of all objectives and the sizes of 

energy resource increased with the increasing in the load. The minimum loss and the cost and 

emissions related to this loss are 84.28 KW, 193.4 $/h, and 5710 Ib/h, respectively. The sizes 

of PV and WT units are 146.8, 173.2, 59.2, and 63.93 KW, respectively. 

 

 
(a) 

 
(b) 

Fig 21.  The three objectives and the sizes of each energy resource at Y=1 

 

c) Case 15 at y = 2 

After two years, the proposed algorithm achieves best performances for minimizing power 

loss, cost and emissions in addition to improving the voltage profile, as given in Table 19.The 
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power losses, the total cost, and the total emissions are reduced to 113.0259 KW, 205.51437 

$/h and 6690.02649 Ib/h. The optimal sizes for inclusion PV renewable energy resources are 

increased from 136.24 and 168.42 KW at first years to 166.82 and 176.15 KW at second 

years, for inclusion WT renewable energy resources are changed from 58.768 and 63.903 KW 

at first years to 59.204 and 49.25 KW at second years.  

The three objectives and the sizes of each energy resource at second year (y=2) are illustrated 

in Fig. 22 (a, and b). It is observed that the minimum loss and the cost and emissions related 

to this loss are increased to 104.9 KW, 210.8 $/h, and 6663 Ib/h, respectively. The sizes of PV 

and WT units are 140.6, 155.2, 60.32, and 60.13 KW, respectively. large sizes of PV 2and the 

small sizes of PV 1 leads to minimize power losses and WT sizes are in the range [0.056 - 

0.07] MW. 

 
(a) 

 
(b) 

Fig 22.  The three objectives and the sizes of each energy resource at Y=2 

 

d) Case 16 at y = 3 

Optimally incorporating the DERs using the proposed method can maximize technical, 

economic and environmental benefits by reducing the power losses to 127.3115 KW, annual 

cost to 222.07465 $/h , and greenhouse gas to 7245.42798 Ib/h refer to Table 19.   

The three objectives at third year (y=3) are shown in Fig. 23 (a). It is observed that the 

minimum loss and the cost and emissions related to this loss are 125.2 KW, 225.7 $/h, and 

7145 Ib/h, respectively. The PV and WT sizes shown in Fig. 23 (b) are 176.8, 156.7, 51.98, 

and 63.9 KW, respectively. It is clear that the power loss will be reduced when the sizes of 

PV 1 and WT 2 are large, and the sizes of PV 2 and WT 1 are small. 
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(a) 

 
(b) 

Fig 23.  The three objectives and the sizes of each energy resource at Y=3 

 

e) Case 17 at y = 4 

From Table 19 the power losses, the total cost, and the total emissions at 4th year equal to 

167.6739 KW, 234.56600 $/h and 8359.08685 Ib/h, respectively. The optimal sizes and 

locations for inclusion renewable energy resources are 175.49, 171.35, 61.98, and 65 KW at 

2nd, 33th, 10th, and 11th buses, respectively.  

Fig. 24 (a, and b) shows the three objectives and the renewable energy resource sizes at fourth 

year (y=4). It is observed that the minimum loss and the cost and emissions related to this loss 

are increased to 152.4 KW, 244.3 $/h, and 7919 Ib/h, respectively. The sizes of PV and WT 

units are changed from 171.3, 143, 59.31, and 57.05 KW at base case (y=0) to 144.7, 144, 

52.72, and 57.33 KW at fourth year (y=4), respectively. 

 

 
(a) 

 
(b) 

Fig 24.  The three objectives and the sizes of each energy resource at Y=4 

 

f) Case 18 at y = 5 

The optimal sizes and location of DERs obtained by the proposed optimization algorithm are 

tabulated in Table 19. It is observed that the proposed method is capable of selecting the 

optimal location and size of DERs with a significant saving of power losses and cost, and 
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reducing emission of the system. The power losses, annual cost, and greenhouse gas are 

194.2980 KW, 257.09819 $/h, and 8971.38182 Ib/h.   

The three objectives at fifth year (y=5) are shown in Fig. 25 (a). It is observed that the 

minimum loss and the cost and emissions related to this loss are 190.6 KW, 261 $/h, and 8778 

Ib/h, respectively. The PV and WT sizes shown in Fig. 25 (b) are 156.6, 130.1, 61.08, and 

62.53 KW, respectively, leads to improve the system performance. 

 
(a) 

 
(b) 

Fig 25.  The three objectives and the sizes of each energy resource at Y=5 

 

▪ IEEE 69 bus radial distribution system 

The second study system is IEEE 69 bus-system, which is a standard and small electrical 

power network consists of 69 buses and 68 branches.  The total real and reactive power loss 

of this case is 225 kW and 102.2 kVA respectively. The bus data and line data of this system 

are taken from [52]. IEEE 69-bus radial distribution network is shown in Fig. 26. 

 

 
Fig 26.  IEEE 69-bus radial distribution network  

 

6.4 Scenario 4: Allocating WT power generation units 

The effect of annual growth in system load demand on bus voltages and power loss for each 

branch over five years are investigated. This effect without the integration of WT units are 
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demonstrated in Figs. 27, it is observed that the voltage at each bus decreases and the branches 

losses increase with the annual growth in system load demand.  

 
(a) Voltage profile 

 
(b) Power loss 

Fig 27.  System performance under annual load growth without integration DERs 

 

a) Case 19 (y = 0) 

This case analyzes the performance of a system for the base year based on ALO methods. The 

optimization results with and without WT units are given in Table 21, it's clear that the power 

loss is reduced by from 225 KW to 4.98 KW, the minimum voltage is increased from 

0.9092(65) p.u to 0.99426(50) p.u. The optimal locations for inclusion three WTs units are 

the 61th, 11th, and 18th bus, the improvement in voltage profile and the reduction in power 

losses are illustrated in Fig.28.  

Referring to Table 22, MVDE approach is able to choose the optimal location and size of WTs 

units operating at the optimum power factor with a significant saving of power losses, and 

improvement of voltage profile enhancement than studied PSO, GA-PSO, ABC-CSO and 

ABC-BAT algorithms. 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 28.  System performance under annual load growth with integration DERs for base year 

(y=0) 
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Table.21  Simulation results for y=0 
Case 

# 

 WT size MW, (location (bus 

no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

19 

 

Without 

DERs 
- 225 102.2  0.9092(65) 8245.7 

With 

DERs 

1.7547(61)/0.85      

0.50986(11)/0.85    

0.38986(18)/0.85 

4.98 7.07 0.0001 0.99426(50) 2359.7363 

 

Table.22    Performance comparison for IEEE 69 bus radial distribution system with multiple 

WTs units 

algorithms 
WT size MW, (location 

(bus no))/ PF 
𝑃𝑙𝑜𝑠𝑠 KW 𝑉𝑚𝑖𝑛 (location) 

MVDE 

1.2094(30)/0.85      

0.7502(13)/0.8669          

1.0025(24)/0.8587 

14.4 0.99289(8) 

PSO [38]        2.293/0.81(61) 24.00 - 

GA-PSO [36] 

     

1425.7(30)/0.866 

     639.6(13)/0.866 

    168.4(10)/0.866 

37.08 0.9712 

ABC-CSO [36] 

     

1394.1(30)/0.866 

   553.1(13)/0.866 

   296.8(10)/0.866 

36.61 0.9763 

ABC-BAT [36] 

    1336.2(30)/0.866 

  465.9(13)/0.866 

  201.2(10)/0.866 

34.43 0.9798 

 

b) Case 20 (y = 1) 

The annual growth of load demand at the first year is presented in this case. From optimization 

results in Table 23, It is clear that the minimum voltage reduced from 0.9092(65) p.u at the 

base year to 0.9016 (56) p.u, after integrating WTs units this value increased to 0.99383(50) 

p.u, power loss and grid emission are reduced to 5.76 KW and 2532.7471 Ib/h, respectively. 

The power losses were decreased to 5.76 KW using the suggested strategy, in contrast to other 

algorithms. Fig 29(a) and Fig. 29(b) depict the voltage profile at each bus and the power loss 

at each bus, respectively.   
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(a) Voltage profile 

 
(b) Power loss 

Fig 29.  System performance under annual load growth with integration DERs for first year (y=1) 

 

Table.23  The best simulation results after WTs units’ allocation at y=1 
Case 

# 

 WT size MW, (location 

(bus no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

20 

 

Without 

DERs 
- 263.7 119.6  0.9016 (56) 8908.8 

MVDE 

1.8852(61)/0.85      

0.55451(11)/0.85    

0.41622(18)/0.85 

5.76 8.17 0.00012 0.99383(50) 2532.7471 

MOALO 

[39] 

2(61)/0.8, 0.721(17)/0.83 
11.259 - - 0.98605(65) - 

 

c)   Case 21 (y = 2) 

This case displays the annual growth in system load demand through the second year (y=2). 

The performance of network at y=2 is found in Table 24, from the optimization result, the bus 

voltages are reduced below the minimum allowable limits (Vmin = 0.8933 p.u at bus 25), 

Inclusion of DERs is important for increasing minimum voltage to 0.99336 p.u at bus 50 

upper the minimum allowable limits. The power loss is reduced by 97.848 %. The voltage 

profile at each bus and the power loss at each bus under the annual growth in system load 

demand during the second year are illustrated in Fig 30(a) and Fig. 30(b), respectively, it is 

observed that the MVDE algorithm has a great effect in reducing power loss and improving 

the voltage profile. 

 

Table.24  Optimal WTs allocation in the 69-bus system (case 21) 

Case 

# 

 WT size MW, 

(location (bus no))/ 

PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

21 

 

Without 

DERs 
- 309.5 140.3  

0.8933 

(225) 
9630.3 

MVDE 

2.0271(61)/0.85      

0.44768(18)/0.85    

0.59621 (11)/0.85 

6.66 9.45 0.00014 
0.99336 

(50) 
2721.8442 
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MOALO 

[39] 

61(2.156(61)/0.8 

17(0.775(17)/0.83 
12.896 - - 0.98522(65) - 

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 30.  System performance under annual load growth with integration DERs for 

second year (y=2) 

 

d)   Case 22 (y = 3) 

MVDE method is presented to find the best allocation of three units of WTs units based on 

third years (y=3). The optimization results obtained from the optimization algorithm are 

tabulated in Table 25, it's evident that the total power loss and emission are decreasing and 

the WTs unit sizes are increasing due to annual growth in network load demand during the 

third year. 

In order to study the feasibility of the proposed method, the voltage at each bus and power 

loss at each branch after using WT units with suitable size and location are shown in Fig. 

31(a) and Fig. 31(b), obviously, the MVDE method achieves a good performance to improve 

the voltage profile and reduce power loss. 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 31.  System performance under annual load growth with integration DERs for third 

year (y=3) 
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Table.25  Simultaneous WTs allocation for evaluating environmental, and technical benefits at y=3 

Case 

# 

 WT size MW, 

(location (bus no))/ 

PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

22 

 

Without 

DERs 
- 363.9 164.8  0.8842 (65) 10416 

MVDE 

2.1819(61)/0.85      

0.48377(18)/0.85001    

0.63763(11)/0.85 

7.7 10.92 0.00016 
0.99286 

(50) 
2922.9708 

MOALO 

[39] 

2.343(61)/0.8 

0.830(17)/0.83 
14.369 - - 0.98500(65) - 

 

e) Case 23 (y = 4) 

This case illustrates the annual growth of load demand at fourth year. From optimization 

results in Table 26, It is clear that the minimum voltage increased from 0.8743 (65) p.u to 

0.99232 (50) p.u, after integrating three units of WTs, power loss and grid emission are 

reduced to 8.9 KW and 3138.1771 Ib/h, respectively. The results show that the MVDE 

algorithm performs better than the MOALO algorithm in terms of controlling power losses 

and enhancing the voltage profile.  

The power loss at each bus and the voltage profile at each bus are visualized in Fig 32(a) and 

Fig. 32(b), respectively. 
 

Table.1  Optimization results obtained at y=4 

Case 

# 

 WT size MW, 

(location (bus no))/ 

PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

23 

 

Without 

DERs 
- 428.7 197  0.8743 (65) 11274 

MVDE 

2.3454(30)/0.85      

0.53161(18)/0.85    

0.67668(11)/0.85 

8.9 12.63 0.00018 
0.99232 

(50) 
3138.1771 

MOALO 

[39] 

2.556(61)/0.8 

0.887(17)/0.83 
15.859 - - 0.98516(65) - 
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(a) Voltage profile 

 
(b) Power loss 

Fig 32.  System performance under annual load growth with integration DERs for fourth year (y=4) 

f) Case 24 (y = 5) 

In this case, the optimal optimization results are obtained for the fifth year (5th year), the 

voltage profile and the loss of the network are shown in Fig 33(a) and Fig. 33(b), respectively. 

The performance of the system is listed in table 27, it is evident that the MVDE algorithm 

reduces power losses and voltage variation better than the MOALO method, the power loss 

is reduced from 506.2 KW to 10.28 KW, the minimum voltage is increased to 0.99174 (50) 

p.u. The total emissions are reduced from 12213 Ib/h to 3368.9948Ib/h.  

 

 
(a) Voltage profile 

 
(b) Power loss 

Fig 33.  System performance under annual load growth with integration DERs for fifth 

year (y=5) 

 

Table.2  The best solutions obtained at y=5 

Case 

# 

 WT size MW, (location 

(bus no))/ PF 

𝑷𝒍𝒐𝒔𝒔 

KW 

𝑸𝒍𝒐𝒔𝒔 

KVA 

𝑽𝑫 

(PU) 

𝑽𝒎𝒊𝒏 

(location) 

E_grid 

(Ib/h) 

24 

 

Without 

DERs 
- 506.2 228.7  0.8632 (65) 12213 

MVDE 

2.5212(61)/0.85      

0.55367(18)/0.85    

0.74823(11)/0.8504 

10.28 14.61 0.00021 
0.99174 

(50) 
3368.9948 
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MOALO 

[39] 

2.812(61)/0.8 

0.944(17)/0.83 
17.131 - - 0.98630(65) - 

 

 

7. Conclusions 

 

In this study, Multi-Variant Differential Evolution (MVDE) method is introduced to obtain 

the optimal allocation of different type of DERs like PV, WT, MT, and FC in radial distribution 

networks considering load growth up to planning period. The proposed paradigm has been 

applied on IEEE 33-bus, and IEEE 69-bus radial distribution system 

In order to make the analysis more reliable, The Point Estimate Method (PEM) is used to 

model the stochastic behavior of the renewable power generation including PV and WT. 

Robust Optimization (RO) is applied for modeling the load uncertainty formulated by 

Gaussian distribution. From the optimization results, it is clear that  

▪ The objective functions and size of DERs are changed with the load growth up to planning 

period and type of RES units considering probabilistic energy management.  

▪ The overall impact of integrating renewable energy sources on technical, economic, and 

environmental benefits of the network with load growth is positive and proportionate. 

▪ In addition, DERs from WT type given better results than DERs from PV type in terms of 

reduction power loss, and cost while improving voltage profiles.  

▪ The optimal WTs size obtained are increased as compared to PVs size; whereas, PV type 

covered a wider portion of decision maker preferences.  

▪ The proposed paradigm is effective for loss reduction in single objective, especially with 

increasing the system size.  

➢ For 33 bus system 

▪ at y=0, the power loss is reduced by 64.721%, the minimum voltage increased to 0.96867 

(33) p.u  after using the PV distribution generator, and these results are improved to 14.42 

KW and 0.99289 (8) p.u. respectively respectively after the integration of the WT generating 

system.  

▪ After first year, with using PV units, the minimum voltage has been increased from 

0.9059(18) p.u to 0.96628(33) p.u. The losses were decreased to 83.02 KW. with using WT 

units The total losses reduced to 16.64 MW The minimum voltage increased to 0.99242 p.u 

▪ considering y=2 and PV DGs types The power loss reduced by 65.28 % .The emissions 

reduced to 7112.4424 Ib/h , these value was improved after using DGs from WT type. 

▪ After three years from planning and integrating PV units, the total power loss and emission 

are decreasing to 122 KW and 7659.5978 Ib/h. 

▪ The power losses were reduced by 34 %, and voltage deviation was reduced to 0.02439 p.u 

in fourth year under planning for the PV power generation system. after planning the WT 

types these results were changed to 0.99073 p.u minimum voltage, and 25.75 KW power 

loss, 

▪ At the fifth year, the best optimization results were obtained after using WT units where the 

power loss was reduced from 449.5 KW to 29.79 KW, the minimum voltage deviation was 

increased to 0.99017 p.u. 

➢ Under the planning of hybrid power system model to reduce power loss the cost and 
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emissions 

▪ in base year, the sizes of PV and WT units must be equal to 171.3, 143, 59.31, and 57.05, 

respectively. 

▪ At y=1, The sizes of PV and WT units are increased to146.8, 173.2, 59.2, and 63.93 KW, 

respectively. 

▪ at second year, the sizes of PV and WT units are 140.6, 155.2, 60.32, and 60.13 KW, 

respectively. large sizes of PV 2 and the small sizes of PV 1 leads to minimize power losses 

and WT sizes are in the range [0.056 - 0.07] MW. 

▪ the sizes of PV 1 and WT 2 are large, and the sizes of PV 2 and WT 1 are small at y=3. 

▪ The sizes of PV and WT units are changed from 171.3, 143, 59.31, and 57.05 KW at base 

case (y=0) to 144.7, 144, 52.72, and 57.33 KW at fourth year (y=4), respectively. 

▪ At fifth year, The PV and WT sizes are 156.6, 130.1, 61.08, and 62.53 KW, respectively, 

leads to improve the system performance. 

➢ For 69 bus system 

▪ the total capacity of each unit of DERs increases due to increase in the load demand through 

five years 
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NOMENCLATURE 

𝐴𝑐 Surface areas of the arrays (m2) P𝑔𝑛𝑗 Active power generated by DG at bus 

nj 

APDERs,k,  the active of the kth DERs Pgnj
min The upper limit of the real power 

delivered by new electric units at bus 

nj 

APGr 𝑡ℎ𝑒 active powers that is taken 

from grid. 

Pgnj
max The lower limit of the real power 

delivered by new electric units at bus 

nj 

APLo,i the active powers at the ith load.  𝑃𝑔𝑟𝑖𝑑 Active power from the main 

substation 

𝛽𝑤 Shape parameter 𝑝𝑙𝑜𝑠𝑠 Active power losses 

𝐶𝑐𝑎𝑝,𝑖 The capital cost of DG  𝑃𝑝𝑣(𝑠𝑖) Power produced from Photovoltaic 

system (kW) for the amount of 

irradiance s 

𝐶𝐹,𝑖 Cost of fuel for DG  𝑃𝑤𝑡 Power produced from WT  

𝐶𝐹𝐶 Fuel consumption expenses in FCs 

($/h). 

𝑝𝑅 Rated power of the turbine = 15 KW. 

𝐶𝑔𝑎𝑠𝐹𝐶 Natural gas price feeding the FC PVS Photovoltaic system 

𝐶𝑔𝑎𝑠𝑀𝑇 Natural gas price feeding the MT Qdnj Reactive load power at bus nj 

𝐶𝑀𝑇 Fuel consumption expenses in MT 

($/h). 

Qgnj
min The upper limit of the imaginary 

power delivered by new electric units 

at bus nj 

𝐶𝑂&𝑀,𝑖 DES operation & maintenance cost 𝑄gnj Imaginary power delivered by new 

electric units at bus nj 

𝐶𝑜𝑠𝑡𝐷𝐸𝑅𝑠,𝑖
𝐹𝑋  The initial cost of DES Qgnj

max The lower limit of the imaginary 

power delivered by new electric units 

at bus nj 

𝐶𝑜𝑠𝑡𝐷𝐸𝑅𝑠,𝑖 The cost of DES connected in bus i 𝑄𝑙𝑜𝑠𝑠 Reactive power losses 

𝑐𝑜𝑠𝑡𝑔𝑟𝑖𝑑 The cost at which energy was 

purchased from the main substation 

QL(0)  The initial reactive power loads 

DERs Distributed energy resource QL(y) The reactive power load at y year 

𝑑𝑚𝑎𝑥
𝑖  controls the search intensity near 

the sea 

Qi  The reactive powers flow from buses 

i to bus  i + 1 

FC Full cell unit rJ  The resistance of the branch J  

EMTi Emission produced from MT RDN Radial distribution network 
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EFCi Emission produced from FC RPDERs,k  𝑇ℎ𝑒 reactive powers of the kth DERs 

EWTi Emission produced from WT RPLo,i  The reactive powers at the ith load.  

EPVi Emission produced from PV RPGr  The reactive powers that is taken 

from grid. 

EGrid Emission produced from main 

substation 

𝑟𝑏 The annual rate of benefit 

g The annual growth rate of system 

loads 

𝑠𝑖 Solar irradiance (kW/m2) 

𝐾𝐷𝐸𝑆,𝑖 DES i Capacity Factor SO Single objective 

𝐿𝐵 lower bounds defined by the given 

problem 

TAPLDERs,  𝑇ℎ𝑒 total active power losses of the 

System after integrating DERs 

MOWC

A 

Multi Objective Water cycle 

Algorithm 

TAPLDERs  The total reactive power losses of the 

system after integrating DERs 

MO Multi-objective t Number of current iteration 

MT Micro turbine 𝑇 DG life time 

𝑛𝑏𝑢𝑠 Total number of buses Vi
min Minimum voltage of bus i 

nbr Total number of branches. Vi
max Maximum voltage of bus i 

𝑁𝐷𝐸𝑆 Total number of new electrical units 𝑣𝑐𝑖 Cut-in wind turbine speed  

𝑁𝑀𝑇 Total number of MT 𝑣𝑐𝑜 Cut-off  wind turbine speed = 18 m/s 

𝑁𝐹𝐶 Total number of FC 𝑉𝑚 Average wind speed for a specific 

location 

𝑁𝑊𝑇 Total number of WT Vi  The voltage magnitudes of bus i  

𝑁𝑃𝑉 Total number of PV Vi+1  the voltage magnitudes of bus i + 1 

Npop Number of population 𝑣𝑟 Appraised speed of the wind turbine 

= 3.5m/s 

𝑁𝑠𝑟 The summation of number of rivers 𝑉𝑤𝑖𝑛𝑑 Actual wind turbine speed =17.5 m/s 

𝑁𝑠𝑛 The number of streams which flow 

to the specific rivers and sea. 

𝑟𝑎𝑛𝑑 An uniformly distributed random 

number between0 and 1 

𝑃𝑐𝑎𝑝,𝑖 DG capacity xJ  𝑡ℎ𝑒 reactance of the branch J  

Pdnj Active load power at bus nj Ynj Admittance between bus ni and bus 

mi 

PDERs,i The real power offered by the new 

electrical units at bus ni 

y The number of year 

𝑃𝐹𝐶 Power produced from FC 𝜂 Efficiency of the PV system 

PL(y) The active and reactive power load 

at y year 

𝜂𝑀𝑇 Efficiency of MT 

PL(0) The initial active power loads 𝜂𝐹𝐶 Efficiency of FC 

Pi  The active powers flow from buses 

i to bus  i + 1 

δmj  Phase angle of voltage at bus mj 

𝑃𝑀𝑇 Power produced from MT δnj  Phase angle of voltage at bus nj 

𝜋𝑔𝑟𝑖𝑑 Energy price from the main 

substation 

θnj Phase angle of Yj 

 


