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Abstract: This paper addresses the challenge of controlling the formation 

of multi-agent system based only on the relative distances between agents 

obtained individually by local sensors mounted on each autonomous agent 

in the system. Based on the graph rigidity approach, the inter-agent 

sensing and communication topology is presented as a rigid graph, and 

the control model is designed for each agent as a distributed control 

scheme. This study shows the capability of utilizing graph rigidity in 

designing distance-based formation control for multi-agent system. It also 

shows the applicability of the approach to achieve formation control for 

more complex formations in both two and three-dimensional spaces. To 

validate the effectiveness and capability of the proposed formation control 

strategy, three complex formation scenarios are conducted and simulated 

using MATLAB. These scenarios involve both formation acquisition and 

maneuvering problems and consider double-integrator multi-agent 

systems with 5 and 12 agents. The simulation results show the 

effectiveness of the distance-based formation control based on the graph 

rigidity, by demonstrating the exponential stability of the controlled 

system and the convergence of the agents to the desired formation in less 

than 3 seconds even for a system of 12 agents. The system stability proof 

is provided using Lyapunov stability theorem. In addition to ensuring 

system stability, this study shows that the graph rigidity approach 

implicitly ensures inter-agent collision avoidance. This study 

demonstrates the effectiveness of using graph rigidity approach in 

designing formation control of multi-agent system based only on the 

relative distances between agents, which ensures system stability and can 

deal with more complex formations, in both two- and three-dimensional 

spaces, as long as the inter-agent sensing and communication topology 

can be presented by a rigid graph. 
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1. Introduction 
 

Nature has been a good inspiration source for many encountered problems in many fields. 

The collective behavior of group of insects, birds or fish with its capability of performing 

complex tasks beyond individual capabilities, have inspired humans to design such multi-
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agent systems (MAS) with distributed, decentralized, coordinated, and collective behavior. 

This implies that each agent in such systems operates depending on its own local sensing and 

control mechanisms without any global information, to perform complex tasks collectively 

with the other agents in the system acting like one whole organism [1]. Using distributed 

decentralized control method for MASs reduces information processing load through the 

system compared with central control methods. Specially, distributed and decentralized 

control overcome the communication limitations and poor connection accuracy between the 

central controller and each agent in the system which makes distributed control based multi-

agent systems more autonomous [2] and [3]. Furthermore, these multi-agent systems are more 

efficient to accomplish complex tasks compared with one advanced large agent due to their 

scalability based on scaling number of agents, versatility in combining different types of 

agents, robustness as it is not a single point of failure system, lower cost; although a MAS has 

multiple entities not a single one but each agent in the MAS has simpler required capabilities 

and design compared to that advanced single agent system to achieve same complex task [4], 

[5]. However, with more opportunities of a MAS, it has its own challenges: coordinating 

multiple agents cooperatively, avoiding collision between agents in the system, avoiding 

obstacle in static or dynamic environment, designing decentralized controllers suitable for the 

distribution of information independent of any global or central intervention [5]. 

One of the common challenges and considered as a primary challenge for a multi-agent 

system, especially for that deployed to physical interactive tasks, is Formation Control of the 

agent coordination. Here we focus our study on two subproblems of the formation control 

problem for multi-agent system: Formation Acquisition Problem, at which each agent 

control input is designed so that all agents of the system form a predefined geometric shape 

in space keeping this formation throughout the required task, and Formation Maneuvering 

Problem, at which all agents keep predefined formation and simultaneously each agent 

follows a task-related predefined trajectory in space so that the whole system moves as one 

unit in space. Such practical applications that consider formation control problem as an 

essential part of the whole task are large area searching and exploration [6], cooperative 

transportation, surveillance, reconnaissance, as in military purposes, building structures via 

autonomous construction vehicles, agriculture and environmental monitoring via multiple 

unmanned arial vehicles, and improving traffic safety and flow via platoon formation. It 

doesn't only accommodate multiple vehicles or multiple mobile robots but also for robotic 

manipulators as in [7]. It is worthy of mention that formation control can be utilized generally 

for multi-agent system to maintain common relative states between different entities in the 

system, which states that it does not have to be position-related state to be controlled via 

formation control method. For example, controlled system states could be frequency, arrival 

time, voltage, temperature, or pressure. 

According to a review of formation control of multi-agent systems [8], formation control 

methods can be divided into three categories: position-based control methods, displacement-

based control methods, and distance-based control methods, according to sensing capabilities 

of the controlled system and the type of the variables or agent state being controlled. Distance-

based formation control for multi-agent systems considers that inter-agent distances are the 

controlled variables to achieve the required formation given the wanted inter-agent distances. 

And, the sensing capabilities of each agent is to sense the relative position of each neighboring 

agent, according to the communication topology of the system, with respect to its local 

coordinate system [8]. 
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Based on this characteristic of the distance-based formation control, graph theory provides a 

natural tool for modeling the whole system of multiple agents, the formation of the agents, 

and the sensing and communication topology of the system. Utilizing the property of graph 

rigidity, the entire formation system of agents can be controlled as a rigid graph, with the 

desired inter-agent distances being the formation system constraints which ensures achieving 

the desired formation. In addition to obtaining the desired formation, building the formation 

control based on graph rigidity ensures implicit collision avoidance between the agents. 

The first exploitation of rigid graph theory was in 2002 by [9]. Other early work that provided 

formation control of multi-agent systems based on graph theory can be found in: [10], [11], 

[12], [13], [14]. Discussions of rigid graph theory and its application to sensing, 

communication, and control architectures for formations of autonomous vehicles were 

presented in [4], [15]. A lot of the early research on formation control treated the agents as 

masses and examined formation control of the agents based on single integrator model [16], 

[17], [18]. In real life, controlling movable objects needs to be at an acceleration level which 

can be implemented in actuator level controlling the motion of the target object. Here, double-

integrator model was adopted in formation control of multi-agent systems, where the 

displacement and velocity of the agents are controlled via controlling their accelerations. By 

using double-integrator model in multi-agent systems, the agents can be considered as mass 

points whose accelerations are controlled, hence, they can be simply considered as 

omnidirectional dynamic models. 

In [19] and [18], formation maintenance and target interception are achieved using double 

integrator model and single integrator model, respectively. It has been shown that formation control 

of multi-agent system that is based on single integrator model has apparent restrictions in an actual 

implementation when considering the actuator level control of the agent dynamics and its physical 

constraints. In studying formation control of multi-agent systems based on graph rigidity, 

literature [20] introduced an extension of formation control of multi-agent systems designed 

based on single-integrator agent model to obtain multi-agent formation control law based on 

double-integrator model. In the literature [21], an undirected graph with infinitesimal and 

minimum rigidity was used to design decentralized formation control for multi-agent system 

of double-integrator agents, as opposed to the simpler single-integrator agent model. It 

showed that designing formation control law based on infinitesimal and minimum rigidity 

ensures the asymptotic stability of the system formation. Exploiting gradient control systems, 

literature [22] introduced a proof of the local asymptotical stability of undirected formations 

of both; single-integrator and double-integrator modelled agents in 𝑛-dimensional space. 

Considering more complex formation of the multi-agent systems, most of the previous studies 

used simple formations such as triangles and rectangles [23]. For later literatures, more 

complex formations were introduced, studying its robustness comprehensively. Tetrahedral 

formations of multi-agent systems in 3D space were studied in literatures [24] [25], and [26]. 

After the work introduced in [5] to achieve formation maintenance and target interception 

using rigid graph formation control in velocity level control, an application of distance-based 

formation control based on rigid graphs to achieve flocking and target interception of multiple 

nonholonomic agents was implemented in [27]. In [22], and [12], the distance between the 

second order integrator models is labeled using the Hamiltonian energy system, and 

asymptotic stabilization is accomplished under the gradient control law. 
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In this paper, multi-agent distance-based formation control in two- and three- dimensional 

spaces using double integrator model is investigated. Three different cases will be 

investigated combining different achievements of formation acquisition control and formation 

maneuvering control, both in two- and three-dimensional spaces. The paper is organized as 

follows: in the second section, we introduce some preliminary and concepts of rigid graph 

theory and infinitesimal rigidity. In the third section, we give the problem statement. In the 

fourth section the main result of the paper is demonstrated though the provided simulation 

results. Finally, a conclusion of the work is introduced in the fifth section. 

 

 

2. Notations and basic concepts based on Graph Theory 
 

For the aim of clearance, this section starts with declaring the list of notations that will be 

used throughout of the paper as follows: 

• 𝑥 ∈ ℝ𝑛 or 𝑥 = [𝑥1, … , 𝑥𝑛] denotes an 𝑛 × 1 vector 

• 𝑥 = [𝑥1, … , 𝑥𝑛] where 𝑥𝑖 ∈ ℝ𝑚 denotes an 𝑚𝑛 × 1 vector, in this case, vector 𝑥 will be 

denoted as 𝑥 ∈ ℝ𝑚𝑛 

• ‖𝑥‖ means the Euclidean norm or the second norm of the vector 𝑥 

• For any points 𝑞, 𝑥 ∈ ℝ𝑛 and set 𝑄, dist(𝑞, 𝑄) ≔ inf
𝑥∈𝑄

‖𝑞 − 𝑥‖, is a function that 

determines the smallest distance between point 𝑞 to any point 𝑥 in the set 𝑄. 

• 𝟏𝑚 is the 𝑚 × 1 vector of ones. 

An undirected graph 𝐺 is a pair (𝑉, 𝐸), where 𝑉 = {1,2, … , 𝑛} is the set of 𝑛 vertices, and 

𝐸 = (𝑖, 𝑗) is the set of undirected edges, for all 𝑖, 𝑗 ∈ 𝑉 and 𝑖 ≠ 𝑗, regardless of the order of 

the vertices in the vertex pair, which means that (𝑖, 𝑗) and (𝑗, 𝑖) represent the same edge. For 

any graph 𝐺  with 𝑛  vertices and edge set 𝐸 , there is 𝑙  number of edges that is 𝑙 ∈
{1, … , 𝑛(𝑛 − 1)/2}. Based on graph approach, the set of neighbors of vertex 𝑖 in graph 𝐺 =
(𝑉, 𝐸) , is a set of interest and is denoted by 𝒩𝑖(𝐸) = {𝑗 ∈ 𝑉|(𝑖, 𝑗) ∈ 𝐸} . By assigning 

coordinates for each vertex in an 𝑛-vertices graph 𝐺 with respect to some fixed coordinate 

frame, a pair (𝐺, 𝑞) is obtained where 𝑞 = [𝑞1, … , 𝑞𝑛] ∈ ℝ𝑚𝑛, as 𝑞𝑖 ∈ ℝ𝑚 is the coordinate 

of vertex 𝑖, and 𝑚 is the number of dimensions of the space coordinates. This pair (𝐺, 𝑞) is 

called a framework, denoted by 𝐹 = (𝐺, 𝑞), which is a realization of the graph so that it can 

be used to model a geometric formation of multi-agent system in space. 

Our main concern here in using graph theory for modelling multi-agent system formation is 

utilizing graph rigidity. So that, applying the graph rigidity constraints to our framework 

model will make the multi-agent system behave as one rigid unit with same properties of rigid 

body. For that end, the utilized concepts to analyze graph rigidity such as infinitesimal 

rigidity, minimal rigidity and rigidity matrix of frameworks will be introduced here. 

For a framework 𝐹 = (𝐺, 𝑞)  where 𝐺 = (𝑉, 𝐸) , 𝑞 ∈ ℝ𝑚𝑛 , and its rigidity matrix 

𝑅(𝑞): ℝ𝑚𝑛 → ℝ𝑙×𝑚𝑛 is defined as 

 

𝑅(𝑞) =
1

2

𝜕𝜙(𝑞)

𝜕𝑞
        (1) 

where 𝜙: ℝ𝑚𝑛 → ℝ𝑙 is the edge function and defined as 
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𝜙(𝑞) = [… , ‖𝑞𝑖 − 𝑞𝑗‖
2

, … ],         (𝑖, 𝑗) ∈ 𝐸.    (2) 

 

According to this definition, the edge function is a vector of 𝑙 elements, where each element 

is the square of the Euclidean distance between agent 𝑖 and agent𝑗. The order of the elements 

in the edge function is correspond to the order of the edges in the edge set 𝐸. As the rigidity 

matrix is the partial derivative of the edge function with respect to vector 𝑞 = [𝑞1, … , 𝑞𝑛] ∈
ℝ𝑚𝑛, it has a row for each element in 𝜙(𝑞) which means a row for each edge in the edge set 

𝐸 with the rows being ordered in the same order of edges in 𝐸. Also, it has a column for each 

element in 𝑞 , which means 𝑚  columns for each 𝑞𝑖  in 𝑞  vector, a total of 𝑚  times 𝑛  (the 

number of vertices) columns. 

Note that each edge (𝑖, 𝑗) in the 𝐸 set will have its corresponding row in the rigidity matrix 

𝑅(𝑞) in the following form, which has 𝑛 row vectors, with each vector being a 1 × 𝑚 vector. 

 

[0 ⋯  0 (𝑞𝑖 − 𝑞𝑗)
𝑇

0 ⋯  0 (𝑞𝑗 − 𝑞𝑖)
𝑇

0 ⋯  0]   (3) 

 

Where (𝑞𝑖 − 𝑞𝑗)
𝑇
 is at the columns for 𝑖𝑡ℎ vertex, (𝑞𝑗 − 𝑞𝑖)

𝑇
 is at the columns for 𝑗𝑡ℎ vertex, 

and any other element is equal to zero. 

For two frameworks sharing the same graph 𝐺 = (𝑉, 𝐸) with different vertices coordination 

in ℝ𝑚 , 𝐹 = (𝐺, 𝑞)  and �̂� = (𝐺, �̂�) ; if only their corresponding edges are equivalent in 

lengths, ‖𝑞𝑖 − 𝑞𝑗‖ = ‖�̂�𝑖 − �̂�𝑗‖ for all (𝑖, 𝑗) ∈ 𝐸, they are said to be equivalent frameworks. 

It can be easy to note that if 𝐹 and �̂� are equivalent, then they have their edge functions be 

the same, 𝜙(𝑞) = 𝜙(�̂�) . Furthermore, if the two frameworks have their corresponding 

distances between all vertices are equivalent in lengths, ‖𝑞𝑖 − 𝑞𝑗‖ = ‖�̂�𝑖 − �̂�𝑗‖ for all𝑖, 𝑗 ∈

𝑉, they are said to be congruent frameworks [28-29]. 

Distinguishing between these two concepts is so important here in formation control, as two 

frameworks being equivalent doesn’t guarantee that they are congruent frameworks. Figure 

(1) can illustrate this concept. Here, two frameworks are illustrated, 𝐹 = (𝐺, 𝑞) and �̅� =
(𝐺, �̅�), where 𝐺 = (𝑉, 𝐸), 𝑉 = {1, 2, 3, 4}, and 𝐸 = {(1,2), (1,4), (2,3), (2,4), (3,4)}. They 

share the same coordination for vertices 1, 2, and 4 only, as 𝑞3 ≠ �̅�3. Obviously, these two 

frameworks are not congruent to each other, although they have the same edge function, 

𝜙(𝑞) = 𝜙(�̅�) , as ‖𝑞𝑖 − 𝑞𝑗‖ = ‖�̅�𝑖 − �̅�𝑗‖  for all (𝑖, 𝑗) ∈ 𝐸  only, and this doesn’t include 

(𝑖, 𝑗) = (1,3), where ‖𝑞1 − 𝑞3‖ ≠ ‖�̅�1 − �̅�3‖. In this case, 𝐹 and �̅� are equivalent but not 

congruent, and they are called ambiguous frameworks [4]. In general, this is called flip 

ambiguity and can be occurred when a set of vertices of a graph 𝐺 ∈ ℝ𝑚 lays in a lower 

dimensional subspace of the 𝑚-dimensional space, which is (𝑚 − 1)-dimensional space it is 

also called a hyperplane in ℝ𝑚. As the framework 𝐹 illustrated in figure (1) with its four 

vertices laying in 2D space can lead to a flip ambiguity occurrence in 3D space. In this work, 

𝐴𝑚𝑏(𝐹) will be used as a notation of a set of all ambiguous frameworks to a framework𝐹. 

As opposed to the ambiguous frameworks that are equivalent to each other but don’t have to 

be congruent, there is the concept of isometric frameworks or isomorphic frameworks. 

Isomorphic frameworks are all frameworks that are related to each other by an isometry 

inℝ𝑚, which is defined as a bijective map 𝑇: ℝ𝑚 → ℝ𝑚 [30], where 
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‖𝑇(𝑞𝑖) − 𝑇(𝑞𝑗)‖ = ‖𝑞𝑖 − 𝑞𝑗‖,       ∀𝑞𝑖 , 𝑞𝑗 ∈ ℝ𝑚.     (4) 
 

 
Figure 1 Ambiguous frameworks: (a) Framework 𝐹. (b) Framework �̅� ∈ 𝐴𝑚𝑏(𝐹) in dashed line with 𝐹 in solid line. 

 

This means that vector 𝑞𝑖 − 𝑞𝑗 is translated and/or rotated in the 𝑚-dimensional space with 

preserving the Euclidean distance between points 𝑖 and𝑗. So, when there are two frameworks 

𝐹 and �̂� that are said to be isomorphic frameworks, this means that the coordination of one 

of them can be obtained by translating and/or rotating the other framework. This implies that 

𝐹 and �̂� are congruent to each other. Hence, a set of all frameworks that are congruent to 

framework 𝐹 ∈ ℝ𝑚, are isomorphic to 𝐹 in ℝ𝑚, and will be denoted throughout this work by 

𝐼𝑠𝑜(𝐹).  

Practically, the capability of preserving the formation of multi-agent system using distance-

based control method is directly related to the rigidity of the framework that represents the 

sensing and communication network between agents. This is simply the purpose of using 

graph rigidity.  A framework 𝐹 = (𝐺, 𝑞), with 𝑛 number of vertices that is more than three, 

and the coordination of the vertices 𝑞 construct an 𝑀 dimensional convex hull {𝑞1, … , 𝑞𝑛}, is 

infinitesimally rigid framework in 𝑚-dimensional space if and only if 𝑅𝑎𝑛𝑘(𝑅(𝑞)) = 𝑚𝑛 −
(𝑀+1)(2𝑚−𝑀)

2
. For the case of (𝑀 = 𝑚) which means that the vertices of the framework are 

distributed to construct a convex hull that occupies 𝑚-dimensional space, the rank of rigidity 

matrix, that implies 𝐹 is infinitesimally rigid, will be as  

 

𝑅𝑎𝑛𝑘(𝑅(𝑞)) = 𝑚𝑛 −
(𝑚+1)(𝑚)

2
 [30],                               [22]. 

 

For an infinitesimally rigid framework 𝐹 = (𝐺, 𝑞) with (𝑛 > 3) number of vertices, if 𝐹 is 

minimally rigid framework then its number of edges must be 𝑙 = 𝑚𝑛 −
(𝑚+1)(𝑚)

2
 [4]. Hence, 

it can be concluded that for an infinitesimally and minimally rigid framework 𝐹 = (𝐺, 𝑞), its 

rigidity matrix must satisfy that 𝑅𝑎𝑛𝑘(𝑅(𝑞)) = 𝑙 which means it has a full row rank. 

 

 

3. Problem Statement 
 

In this paper, two formation control problems are being addressed starting with Formation 

Acquisition, as it is considered the primary objective of formation control. Then, the 

Formation Maneuvering of multi-agent systems is being demonstrated. Consider a multi-
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agent system of 𝑛 agents with 𝑢𝑖 being the acceleration-level control input for the 𝑖𝑡ℎ agent 

where its relative position to an earth-fixed coordinate frame is 𝑞𝑖 ∈ ℝ𝑚. Exploiting the graph 

rigidity, the desired inter-agent distances is denoted by an infinitesimally and slightly rigid 

framework 𝐹∗ = (𝐺∗, 𝑞∗)  where 𝐺∗ = (𝑉∗, 𝐸∗)  is the desired formation graph, with 𝑛 

vertices representing agents and 𝑙 edges representing the only inter-agent distances that need 

to be controlled, and 𝑞∗ = [𝑞1
∗, … , 𝑞𝑛

∗ ] is the agents desired coordination that achieve the 

desired formation. The desired distances between agents will be denoted by the vector 𝑑 =

[… , 𝑑𝑖𝑗 , … ] ∈ ℝ𝑙 , where 𝑑𝑖𝑗  is the desired distance between agent 𝑖  and agent 𝑗  and is 

obtained based on the agent desired coordination by 

 

𝑑𝑖𝑗 = ‖𝑞𝑖
∗ − 𝑞𝑗

∗‖ > 0, 𝑖, 𝑗 ∈ 𝑉∗     (5) 

 
Let’s build our problem statements based onto the following assumptions: 

• Assumption 1: Each edge (𝑖, 𝑗) ∈ 𝐸∗ in the desired formation graph always has its 

corresponding sensing capability and communication between 𝑖𝑡ℎ agent and 𝑗𝑡ℎ agent. In 

other words, to add or select an edge (𝑖, 𝑗) to be in the desired formation graph, there must 

be an inter-agent sensing capability beteen the corresponding agents 𝑖 and 𝑗. 

• Assumption 2: The inter-agent sensing, and communication network is always 

maintained so that agent 𝑖 is always in the sensing and communication range of its 

neighbours in the desired formation framework 𝐹∗. This means that there is no temporary 

loss of any sensing or communication connection represented by an edge in the desired 

framework which in turn guarantees preventing flex ambiguity occurrence. 

• Assumption 3: The only position information being measured is the proportional position 

of agent pairs in 𝐸∗ set, defined in the desired formation. This means that the global 

position of the agents, 𝑞∗ = [𝑞1
∗, … , 𝑞𝑛

∗ ] is not available for the controllers, only the 

proportional position of agent pairs, 𝑞𝑖 − 𝑞𝑗 for (𝑖, 𝑗) ∈ 𝐸∗. 

Based on these assumptions and the background of graph rigidity previewed in the 

introduction, the formation acquisition problem and the formation maneuvering problem can 

be detailed as follows. 

Formation Acquisition Problem: The agents are required to form and maintain a predefined 

formation in space. The formation acquisition control objective, which is considered the 

primary objective of the formation control problems, is designing control input 𝑢𝑖 such that 

 

𝐹(𝑡) → 𝐼𝑠𝑜(𝐹∗) as 𝑡 → ∞.       (6) 
 

In the terms of the inter-agent distances, which is the only position information being 

measured in the system, the control objective can be represented as 

 

‖𝑞𝑖(𝑡) − 𝑞𝑗(𝑡)‖ → 𝑑𝑖𝑗  As𝑡 → ∞, where𝑖, 𝑗 ∈ 𝑉∗.                  (7) 

 

And this makes the actual formation to converge to any isometric realization of 𝐹∗. In terms 

of graph theory, the formation will converge to one framework in the set of 𝐼𝑠𝑜(𝐹∗) based on 

the initial position of the formation coordination, 𝑞(0) = [𝑞1(0), … , 𝑞𝑛(0)]. 
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Formation Maneuvering Problem: While maintaining a predefined formation, agents are 

required to maneuver based on a predefined trajectory. So, the formation maneuvering control 

objective is 

�̇�𝑖(𝑡) − 𝑣𝑑𝑖(𝑡) → 0 As𝑡 → ∞, where 𝑖 = 1, … , 𝑛     (8) 
 

Where 𝑣𝑑𝑖 ∈ ℝ3 represent the required rigid body velocity for the swarm of agents based on 

their mission to be accomplished. So, the formation control has to achieve the formation 

acquisition simultaneously with the formation maneuvering so that the formation moves in 

translation motion, rotational motion, or both as a virtual rigid body. According to the problem 

statements, and the sensing capability and the interaction topology of agents, graph rigidity 

approach, which is a distance-based control scheme, is adopted. This paper introduces 

formation control for multi-agent system, based on graph rigidity, using double-integrator 

model. In the following section the double-integrator model will be previewed in detail and 

the control design to achieve the formation control objectives stated in (6), (7), and (8). 

 

 

4. Double Integrator Model 
 

The double-integrator model accounts for the agent acceleration by treating the agent as a 

point mass. Therefore, it can be considered a very simple dynamic model for omnidirectional 

robots. Given a system of n agents, the equations of motion for the double-integrator model 

are 

�̇�𝑖 = 𝑣𝑖         (9) 

�̇�𝑖 = 𝑢𝑖 ,    𝑖 = 1, … , 𝑛       (10) 

where:  

• 𝑣𝑖 ∈ ℝ𝑚 represents the velocity of the 𝑖𝑡ℎ agent with respect to an Earth-fixed 

coordinate frame of 𝑚 dimensions, 

• 𝑢𝑖 ∈ ℝ𝑚 is the acceleration-level control input of the 𝑖𝑡ℎ agent, 

• and 𝑞𝑖 ∈ ℝ𝑚 is the position of the 𝑖𝑡ℎ agent. 

Here, the agent velocity is a system state and the formation control laws in this work will be 

a function of the agent velocities in addition to the positions. 

By exploiting the integrator backstepping methodology, the double-integrator-based 

control laws can be obtained as an extension of the single-integrator-based control laws. 

As distance-based controller, the inputs 𝑢𝑖 , 𝑖 = 1, … , 𝑛  will control the relative distances 

‖𝑞𝑖 − 𝑞𝑗‖,  for all edges (𝑖, 𝑗) ∈ 𝐸∗ , where 𝐸∗ is the set of edges defined in the desired 

formation. So, the objective is to ensure that 

‖𝑞𝑖(𝑡) − 𝑞𝑗(𝑡)‖ → 𝑑𝑖𝑗  As𝑡 → ∞, (𝑖, 𝑗) ∈ 𝐸∗,     (11) 

Where 𝑑𝑖𝑗 is the required relative distance between agent 𝑖 and agent𝑗, defined in the desired 

formation. To simplify the notation in the following derivations, the proportional position of 

two agents will be defined as 

�̃�𝑖𝑗 = 𝑞𝑖 − 𝑞𝑗         (12) 

And�̃� = [… , �̃�𝑖𝑗 , … ] ∈ ℝ𝑚𝑙 , (𝑖, 𝑗) ∈ 𝐸∗, with 𝑙 is the number of edges of the graph defined 

in the desired formation. The distance error is given by 
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𝑒𝑖𝑗 = ‖�̃�𝑖𝑗‖ − 𝑑𝑖𝑗 .        (13) 

 

The distance error dynamics can be derived from equations (9) and (13) as 

 

�̇�𝑖𝑗 =
𝑑

𝑑𝑡
(√�̃�𝑖𝑗

𝑇 �̃�𝑖𝑗) =
1

2
(�̃�𝑖𝑗

𝑇 �̃�𝑖𝑗)
−

1

2(2 �̃�𝑖𝑗
𝑇 �̇̃�𝑖𝑗) =

�̃�𝑖𝑗
𝑇 (𝑣𝑖−𝑣𝑗)

𝑒𝑖𝑗+𝑑𝑖𝑗
   (14) 

 

As assumed that the only measured quantities throughout the multi-agent system are the 

relative distances between agents, specifically those in the 𝐸∗ set. The agents’ velocities 𝑣 =
[𝑣1, … , 𝑣𝑛] ∈ ℝ𝑚𝑛 are considered only as system states and can not be directly obtained. One 

solution is by utalizing backstepping technique and introduce the following variable 

 

𝑠 = 𝑣 − 𝑣𝑓       (15) 
 

where 𝑣𝑓 ∈ ℝ𝑚𝑛  denotes the desired velocity input and considered as a fictitious control 

input, which will be specified later according to the problem need to be solved; formation 

acquisition problem, formation maneuvering problem, or both. The variable 𝑠 quantifies the 

agents velocity error as it is the error between the actual agent velocity and the desired 

velocity-level input. The desired of 𝑣𝑓 will be problem-specific and will be obtained based on 

the velocity-level control laws of a single-integrator model, where the control input 𝑢 is the 

velocity-level input. The block diagrams in Figure 2 illustrates the relationship between the 

control designs for the single-integrator and double-integrator models. As one can see, the 

velocity-level, position control algorithms from single-integrator model will be embedded in 

the acceleration-level, velocity control loop to be designed in the double-integrator model. 

Due to the new error variable 𝑠 introduced in equation (15), an augmented Lyapunov function 

candidate will be introduced as follows: 

 

𝑊𝑑(𝑒, 𝑠) = 𝑊1(𝑒) + 𝑊2(𝑠)        (16) 
Where 𝑊1(𝑒) and 𝑊2(𝑠) are defined as follows, 

 

𝑊1(𝑒) =
1

4
𝑧𝑇𝑧 =

1

4
∑ 𝑧𝑖𝑗

2
(𝑖,𝑗)∈𝐸∗ ,      (17) 

And 

𝑊2(𝑠) =
1

2
𝑠𝑇𝑠        (18) 

 

Where 𝑒 = [… , 𝑒𝑖𝑗 , … ] ∈ ℝ𝑙 , (𝑖, 𝑗) ∈ 𝐸∗  and 𝑧 = [… , 𝑧𝑖𝑗 , … ] ∈ ℝ𝑙 , (𝑖, 𝑗) ∈ 𝐸∗  is a new 

introduced variable that is 

𝑧𝑖𝑗 = ‖�̃�𝑖𝑗‖
2

− 𝑑𝑖𝑗
2 ,        (19) 

 

Which can be rewritten in terms of position error from equation (13) as 

 

𝑧𝑖𝑗 = 𝑒𝑖𝑗(𝑒𝑖𝑗 + 2𝑑𝑖𝑗)       (20) 

Notice that 𝑊1(𝑒) is a potential energy term since its dependence on position only, while 

𝑊2(𝑠) is a kinetic energy term due to its dependence on velocity. Furthermore, 𝑊𝑑(𝑒, 𝑠) 

captures the total energy of the double integrator model formation. 
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Figure 2 Illustration of the double integrator control model and its relation to the single integrator 

control model. 

 

The derivative time of𝑊𝑑(𝑒, 𝑠), it is obtained that 

 

�̇�𝑑 = �̇�1(𝑒) + �̇�2(𝑠)  =
1

2
𝑧𝑇�̇� + 𝑠𝑇�̇�       (21) 

Where �̇�1 can be presented using equations (14), (17), (19), and (20) as 

 

�̇�1 =
1

2
𝑧𝑇 �̇� =

1

2
∑   𝑧𝑖𝑗 �̇�𝑖𝑗(𝑖,𝑗)∈𝐸∗   =

1

2
∑   𝑒𝑖𝑗(𝑒𝑖𝑗 + 2𝑑𝑖𝑗)(𝑖,𝑗)∈𝐸∗ �̇�𝑖𝑗     (22) 

 

Where 

�̇�𝑖𝑗 =
𝑑

𝑑𝑡
(‖�̃�𝑖𝑗‖

2
) =

𝑑

𝑑𝑡
(√�̃�𝑖𝑗

𝑇 �̃�𝑖𝑗

2

)     = 2 �̃�𝑖𝑗
𝑇 �̇̃�𝑖𝑗   = 2 �̃�𝑖𝑗

𝑇 (𝑣𝑖 − 𝑣𝑗)  (23) 

 

Then, using equation (23) into (22), �̇�1 will be in element-wise form as follows 

 

�̇�1 = ∑ 𝑒𝑖𝑗(𝑒𝑖𝑗 + 2𝑑𝑖𝑗)(𝑖,𝑗)∈𝐸∗ �̃�𝑖𝑗
𝑇 (𝑣𝑖 − 𝑣𝑗)    (24) 

 

Based on the rigidity matrix definition and the introduced variable 𝑧𝑖𝑗 in equation (20), �̇�1 

can be conveniently written as 

 

�̇�1 = 𝑧𝑇𝑅(�̃�)𝑣        (25) 

 

Where 𝑣 = [𝑣1, … , 𝑣𝑛] ∈ ℝ𝑚𝑛 is the stacked vector of 𝑛 velocity vectors of each agent, and 

the rigidity matrix𝑅(�̃�) ∈ ℝ𝑙×𝑚𝑛?. Using equations (25) and (15) into (21), the derivative 

time of the augmented Lyapunov function can be written as 

�̇�𝑑 = 𝑧𝑇𝑅(�̃�)𝑣 + 𝑠𝑇�̇�  = 𝑧𝑇𝑅(�̃�)(𝑠 + 𝑣𝑓) + 𝑠𝑇(𝑢 − �̇�𝑓)  

 = 𝑧𝑇𝑅(�̃�)𝑣𝑓 + 𝑠𝑇(𝑢 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓)         (26) 

(b) double integrator control model: Note the implicit inclusion of the 𝑢𝑠𝑖𝑛𝑔𝑙𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 = 𝑢𝑆.𝐼 into 

the double integrator control model. 

Position Control 
𝐹∗ 𝑣𝑓 = 𝑢𝑆.𝐼 

 1

𝑠
 

𝑞 
 1

𝑠
 

𝑣 
  Velocity Control 

− 
+ 

𝑠 𝑢 

(a) single integrator control model 

Position Control 
𝐹∗ 𝑢𝑆𝑖𝑛𝑔𝑙𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟 

 1

𝑠
 

𝑞 
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And it will be the initial point for all double-integrator control designs for formation 

acquisition problems or formation maneuvering problems. 

 

Formation Acquisition 

The formation acquisition controller for the double-integrator model will have the general 

form 𝑢𝑖 = 𝑢𝑖(𝑞𝑖 − 𝑞𝑗 , 𝑣𝑖 − 𝑣𝑗 , 𝑣𝑖 , 𝑑𝑖𝑗), 𝑖 = 1, … , 𝑛 and 𝑗 ∈ 𝑁𝑖(𝐸∗) where 𝑁𝑖(∙) is the set of 

neighbours of the 𝑖𝑡ℎ agent. Based on equation (26), the control 

 

𝑢 =  −𝑘𝑎𝑠 + �̇�𝑓 − 𝑅𝑇(�̃�)𝑧,       (27) 

Where 

𝑣𝑓 = −𝑘𝑣𝑅𝑇(�̃�)𝑧,        (28) 

 

And 𝑘𝑎 > 0 is a defined control gain, renders 𝑊𝑑(𝑒, 𝑠) = 0 exponentially stable and ensures 

that formation converge to the desired construction and equation (11) is satisfied. 

A control input 𝑢 will be selected based on the augmented Lyapunov function in equation 

(26) so that it ensures the stability of the system. The control input 𝑢 will be selected so that 

�̇�𝑑 < 0 around the(𝑒, 𝑠) = (0,0). Using equation (26), each term of �̇�𝑑  will be set to be 

subjected to the following inequalities 

 

𝑧𝑇𝑅(�̃�)𝑣𝑓 ≤ − 𝐾𝑣  𝑀1       (29) 

 

𝑠𝑇(𝑢 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓) ≤ − 𝐾𝑎 𝑀2     (30) 

 

Where 𝐾𝑣 and 𝐾𝑎 are sufficiently small positive definite scalar constants, and 𝑀1 and 𝑀2 are 

positive definite 1-by-1 matrices. Then, selecting 𝑣𝑓 and 𝑢 that undergo these inequalities, 

will ensure that �̇�𝑑 is negative definite. One simple way to select 𝑣𝑓 is by selecting its value 

so that the term 𝑧𝑇𝑅(�̃�)𝑣𝑓 becomes in the form of−𝐾𝑣𝐴𝑇𝐴, where 𝐴 is a vector of real values. 

If it is assumed that𝐴𝑇 = 𝑧𝑇𝑅(�̃�), then 𝑣𝑓 can be selected to be𝑣𝑓 = −𝐾𝑣𝐴, and that is 

 

𝑣𝑓 = −𝐾𝑣(𝑧𝑇𝑅(�̃�))
𝑇

= −𝐾𝑣𝑅𝑇(�̃�)𝑧     (31) 

By substituting the selected value of 𝑣𝑓 in 𝑧𝑇𝑅(�̃�)𝑣𝑓 it is obtained that 

−𝐾𝑣𝑧𝑇𝑅(�̃�)𝑅𝑇(�̃�)𝑧 < 0    ∀ 𝑧 ∈ ℝ𝐿 , 𝑅 ∈ ℝ𝐿×𝑚𝑛 

 

For all 𝑧 ∈ ℝ𝐿 and𝑅 ∈ ℝ𝐿×𝑚𝑛, where 𝐿 is the number of edges in the controlled formation 

and 𝑚𝑛 is the number of agents times its special dimensions. 

Then, the same considerations can be followed for selecting𝑢. The selected control input must 

ensure that𝑠𝑇(𝑢 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓) ≤ −𝐾𝑎 . 𝑀2. One simple way to achieve this is by making  

 

(𝑢 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓) = −𝐾𝑎𝑠,      (32) 

So that 𝑠𝑇(𝑢 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓) will be in the form of−𝐾𝑎𝑠𝑇𝑠, where 𝑠 is vector of real 

values. Hence, 

𝑢 = −𝐾𝑎𝑠 + �̇�𝑓 − 𝑅𝑇(�̃�)𝑧      (33) 



Peter Gaber et, al., Distributed control design for formation control of double integrator multi-agent systems…... 

_______________________________________________________________________________________ 

12 

 

Where this control input ensures that the term 𝑠𝑇(𝑢 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓) < 0 and is negative 

definite. This can be demonstrated by substituting by the selected value of𝑢, it gets that 

 

𝑠𝑇(𝑢 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓) = 𝑠𝑇(−𝐾𝑎𝑠 + �̇�𝑓 − 𝑅𝑇(�̃�)𝑧 + 𝑅𝑇(�̃�)𝑧 − �̇�𝑓) = −𝐾𝑎𝑠𝑇𝑠 < 0 

 

For all 𝑠 ∈ ℝ𝑚𝑛 vector of (𝑚𝑛) real elements. 

Then these selection of 𝑣𝑓  and 𝑢  will ensure that �̇�𝑑 < 0  for all 𝑡 ≥ 0 , hence 𝑊𝑑  is 

nonincreasing for𝑡 ≥ 0. And this ensures the stability of the system at the origin(𝑒, 𝑠). 

Now �̇�𝑓 is given by 

 

�̇�𝑓 = −𝑘𝑣�̇�𝑇𝑧 − 𝑘𝑣𝑅𝑇�̇�       (34) 

Where 

�̇�(�̃�) = 𝑅(�̃�),         (35) 

 

�̃� = [… , 𝑣𝑖 − 𝑣𝑗 , … ] ∈ ℝ𝑙 , (𝑖, 𝑗) ∈ 𝐸∗, And from (17) 

 

�̇� = 2𝑅(�̃�)𝑣.        (36)  

The control law in equations (27) and (28), can be rewritten in element-wise form as 

 

𝑢𝑖 = −𝑘𝑎𝑣𝑖 − ∑ [(𝑘𝑎𝑘𝑣 + 1)�̃�𝑖𝑗𝑧𝑖𝑗 + 𝑘𝑣(𝑧𝑖𝑗𝐼𝑚 + 2�̃�𝑖𝑗�̃�𝑖𝑗
𝑇 )�̃�𝑖𝑗]𝑗∈𝑁𝑖(𝐸∗)   (37) 

 

For 𝑖 = 1, … , 𝑛 and 

 

�̃�𝑖𝑗 = 𝑣𝑖 − 𝑣𝑗 , (𝑖, 𝑗) ∈ 𝐸∗.       (38) 

 

This control is decentralized, since its operation only needs each agent to measure its own 

velocity and the proportional position and relative velocity to adjacent agents. The agent’s 

velocity was measured onboard sensors. 

 

Maneuver of Formation 

The formation steering control law for the double-integrator model is simply a combination 

of the designs of formation acquisition control law of a single-integrator model and formation 

maneuvering of the double-integrator model. The control 𝑢 is given by (27) with 

 

𝑣𝑓 = 𝑢𝑎 + 𝑣𝑑        (39) 

Where 

𝑢𝑎 = −𝑘𝑣𝑅𝑇(�̃�)𝑧        (40) 

 

Is the formation acquisition control law of a single-integrator model, and the formation 

maneuvering velocity is𝑣𝑑 = [𝑣𝑑1, … , 𝑣𝑑𝑛] ∈ ℝ3𝑛, where for 𝑖𝑡ℎ agent 

 

𝑣𝑑𝑖 = 𝑣0 + 𝜔0 × �̃�𝑖𝑛       (41) 

 

𝑣0(𝑡) ∈ ℝ3 Means the desired change velocity for the formation, 𝜔0(𝑡) ∈ ℝ3 is the desired 

angular velocity. 
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The term �̇�𝑓 in equation (27) will be as equation (34) with additional terms due to�̇�𝑑. 

As �̇�𝑑𝑖 is given by 

 

�̇�𝑑𝑖 = �̇�0 + �̇�0 × �̃�𝑖𝑛 + 𝜔0 × �̃�𝑖𝑛, 𝑖 = 1, … , 𝑛    (42) 

 

Where �̇�0 ∈ ℝ3 denotes the desire change acceleration and �̇�0 ∈ ℝ3 is the desired angular 

acceleration for each agent about the position of the leader, as �̃�𝑖𝑛 and �̃�𝑖𝑛 are, respectively, 

the proportional position and the proportional velocity of the 𝑖𝑡ℎ agent with respect to the 

leader. 

Then using equations (35) and (36), �̇�𝑓 will be obtained as 

 

�̇�𝑓 = −𝑘𝑣�̇�𝑇𝑧 − 𝑘𝑣𝑅𝑇�̇� + �̇�𝑑 = −𝑘𝑣𝑅𝑇(�̃�)𝑧 − 𝑘𝑣𝑅𝑇(�̃�)(2𝑅(�̃�)𝑣) + �̇�𝑑          (43) 

 

Substituting by𝑠, 𝑣𝑓, and �̇�𝑓 from equations (39), (40), (42), and (43) into the control input 𝑢 

of equation (27) yields 

 

𝑢 = −𝑘𝑎(𝑣 − 𝑣𝑓) + (−𝑘𝑣𝑅𝑇(�̃�)𝑧 − 𝑘𝑣𝑅𝑇(�̃�)(2𝑅(�̃�)𝑣) + �̇�𝑑) − 𝑅𝑇(�̃�)𝑧  

= −𝑘𝑎(𝑣 − (𝑢𝑎 + 𝑣𝑑)) + (−𝑘𝑣𝑅𝑇(�̃�)𝑧 − 𝑘𝑣𝑅𝑇(�̃�)(2𝑅(�̃�)𝑣) + �̇�𝑑) − 𝑅𝑇(�̃�)𝑧  

= −𝑘𝑎𝑣 + 𝑘𝑎𝑢𝑎 + 𝑘𝑎𝑣𝑑 − 𝑘𝑣(𝑅𝑇(�̃�)𝑧 + 2𝑅𝑇(�̃�)(𝑅(�̃�)𝑣)) + �̇�𝑑 − 𝑅𝑇(�̃�)𝑧  

= −𝑘𝑎𝑣 − 𝑘𝑎𝑘𝑣𝑅𝑇(�̃�)𝑧 + 𝑘𝑎𝑣𝑑 − 𝑘𝑣(𝑅𝑇(�̃�)𝑧 + 2𝑅𝑇(�̃�)(𝑅(�̃�)𝑣)) + �̇�𝑑 − 𝑅𝑇(�̃�)𝑧   (44) 

 

By rearranging the terms 𝑢 will be as follows 

 

𝑢 = −𝑘𝑎𝑣 − 𝑘𝑎𝑘𝑣𝑅𝑇(�̃�)𝑧 − 𝑅𝑇(�̃�)𝑧 − 𝑘𝑣(𝑅𝑇(�̃�)𝑧 + 2𝑅𝑇(�̃�)(𝑅(�̃�)𝑣)) + 𝑘𝑎𝑣𝑑 + �̇�𝑑  

 = −𝑘𝑎𝑣 − (𝑘𝑎𝑘𝑣 + 1)𝑅𝑇(�̃�)𝑧 − 𝑘𝑣(𝑅𝑇(�̃�)𝑧 + 2𝑅𝑇(�̃�)(𝑅(�̃�)𝑣)) + [𝑘𝑎𝑣𝑑 + �̇�𝑑]       (45) 

 

Then, the control was written in element-wise form as 

 

𝑢𝑖 = −𝑘𝑎𝑣𝑖 − ∑ [(𝑘𝑎𝑘𝑣 + 1)�̃�𝑖𝑗𝑧𝑖𝑗 + 𝑘𝑣�̃�𝑖𝑗𝑧𝑖𝑗 + 2�̃�𝑖𝑗�̃�𝑖𝑗
𝑇 �̃�𝑖𝑗]

𝑗∈𝑁𝑖(𝐸∗)

+ ∑[𝑘𝑎𝑣𝑑𝑖(�̃�𝑖𝑛) + �̇�𝑑𝑖(�̃�𝑖𝑛, �̃�𝑖𝑛)]

𝑖∈𝑉∗

 

= −𝑘𝑎𝑣𝑖 − ∑ [(𝑘𝑎𝑘𝑣 + 1)�̃�𝑖𝑗𝑧𝑖𝑗 + 𝑘𝑣(𝑧𝑖𝑗𝐼𝑚 + 2�̃�𝑖𝑗�̃�𝑖𝑗
𝑇 )�̃�𝑖𝑗]

𝑗∈𝑁𝑖(𝐸∗)

+ ∑[𝑘𝑎𝑣𝑑𝑖(�̃�𝑖𝑛) + �̇�𝑑𝑖(�̃�𝑖𝑛, �̃�𝑖𝑛)]

𝑖∈𝑉∗

 

           (46) 

 

For the double-integrator model, 𝑣0 and 𝜔0 essential to be continuously differentiable 

functions of time with bounded first derivative for the control input to be continuous and 

bounded. Like 𝑣0 and𝜔0, the signals �̇�0 and �̇�0 was stored on all agent’s onboard computer 

since they are usually known a priori. 
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5. Simulation Results 

 

In this section, three scenarios are used to demonstrate the validation of the proposed 

formation control laws solving formation achievement and formation maneuvering problems. 

In the first case, a 2D wedge formation achievement problem is introduced. In the second 

case, 12 agents deployed to form icosahedral formation in 3D space starting from arbitrary 

initial positions. Then, the same wedge formation used in the first case is extended in the third 

case to perform a circular trajectory while maintaining the wedge formation. In the first and 

second cases, the double integrator formation acquisition control law in equation (27) is 

deployed, based on 𝑣𝑓 in equation (28). And for the formation maneuvering problem in case 

3, the control low in equation (45) is deployed. All the cases considered the following equation 

to randomly select the initial position of each agent. 

 

𝑞𝑖(0)𝑚×1 = 𝑞𝑖
∗

𝑚×1
+ 𝛼 [2 𝑟𝑎𝑛𝑑(0,1)𝑚×1 − 𝟏𝑚×1]   (47) 

 

where initial position vector for each agent is column vector of 𝑚 elements for the considered 

𝑚  dimensional space, 𝛼  is a positive constant real value used to adjust the amount of 

deviation of the agents, 𝑟𝑎𝑛𝑑(0,1) is a randomization function that generates column vector 

of 𝑚 elements of real values uniformly distributed on the interval (0,1), and 𝟏𝑚×1 is column 

vector of 𝑚 elements of ones. Designing the randomization function in this way provides 

uniformly distributed values on the interval (−𝛼, +𝛼) that used to deviate the agents away 

from the desired formation. The value of 𝛼 is mainly adjusting the deviation of the whole 

multi-agent system to be away from an isomorphic framework of 𝐹∗ (the desired framework) 

and in the same way closer to 𝐼𝑠𝑜(𝐹∗) than𝐴𝑚𝑏(𝐹∗). This ensures that the system is stable 

around an equilibrium point corresponding to a desired formation. 

 

Case 1: 2D Double Integrator Formation Acquisition 

In this case, five agents are controlled to form a wedge in 2D space. The desired framework 

of the wedge formation is shown in Figure 3. The coordination of the five agents in the wedge 

formation starting from agent 1 to agent 5 is as follows: (0,0), (−1, −0.5), (−2, −1), (2, −1), 
and (1, −0.5), where agent 1 is at the head of the wedge and the other agents are order in 

counterclockwise around the generated convex hull. As this formation control method require 

that the graph presenting the formation must be infinitesimally and minimally rigid graph to 

ensure formation stability, the number of edges of the framework must submit with the 

condition that𝑙 = 𝑚𝑛 −
𝑚(𝑚+1)

2
, where 𝑛 is the number of agents and 𝑚 here is the agent 

coordination dimensions and the dimension of the convex hull generated by the agent 

coordination. Hence, seven edges (𝑙 = 2 ∗ 5 − 3 = 7) is sufficient to satisfy the condition of 

infinitesimal and minimal graph rigidity.  

The primary positions of the agents were randomly select based on equation (47) where𝛼 =
0.25. In this formation acquisition problem, the formation control law of equation (27) is 

deployed using (28) and𝑘𝑣 = 𝑘𝑎 = 1. Note that these control gains affect the speed of the 

system convergence to the desired formation. 

Figure 4 shows the agent trajectories to form the predefined desired formation demonstrated 

in Figure 3. The stability of the formation acquisition control system is proofed to be 

achievable based on the convergence of the inter-agent distance between all agents in 𝑉∗ to 
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the desired distances in 𝐹∗ and the convergence of the introduced variable 𝑠 to zero, which 

can be considered as the agent velocity error. It is shown in Figure 5 that all inter-agent 

distance errors are converging to zero, and Figure 6 shows the zero convergence of the x and 

y components of all agents’ velocity errors. In Figure 7, the control inputs 𝑢𝑖(𝑡) for 𝑖 =
1, … ,5  are shown in the form of its components the direction of each dimension of the 

considered two-dimensional space. 

 

 
Figure 3 Formation achievement: the desired formation𝑭∗. 

 

 
Figure 4 Formation acquisition: Agent trajectories𝑞𝑖(𝑡)∀𝑖 ∈ 𝑉∗, that satisfy formation acquisition 

control objective. 
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Figure 5 Formation acquisition: distance errors𝑒𝑖𝑗(𝑡)∀𝑖, 𝑗 ∈ 𝑉∗. 

 
(a) 

 
(b) 

Figure 6 Formation Acquisition: (a) Velocity errors along x axis (b) velocity errors along y axis. 
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(a) 

 
(b) 

Figure 7 Formation acquisition: Control inputs 𝑢𝑖(𝑡), 𝑖 ∈ 𝑉∗ where (a) is for control inputs along 

x axis and (b) is for control inputs along y axis. 

 

Case 2: 3D Double Integrator Formation Acquisition 

In this case a simulation of formation acquisition of 12 agents forming a regular convex 

icosahedral geometric shape in 3D space is conducted. The chosen formation of the regular 

convex icosahedral form is shown in Figure 8. The coordination of agents at the vertices of 

the icosahedron are constructed so that the edge length is equal to 2. This is done by using the 

Cartesian coordinate system of: (±𝜑, ±1,0), (±1,0, ±𝜑), (0, ±𝜑, ±1) , where 𝜑 =

(1 + √5) 2⁄  denotes the golden ratio. The 30 edges of the convex regular icosahedron are 

sufficient to satisfy the requirement of the graph being minimally and infinitesimally rigid 

inℝ3, as3𝑛 − 6 = 3 × 12 − 6 = 30. 

The primary positions of the agents were randomly generated using equation (47) where 𝛼 

were selected to be0.4. The same formation control law of equation (27) is submitted to this 

formation using equation (28) and setting control gains 𝑘𝑣 and 𝑘𝑎 both to1.  

It is shown in figure 9 that all the 12 agents have successfully formed the desired regular 

convex icosahedral. Figure 10 and 11 shows respectively the inter-agent distance errors 

between all the 12 agents and the components of the velocity error of each agent in the three 

dimensions x, y, and z. Both distance and velocity errors are converged to zero demonstrating 

the stability of the formation acquisition control system used for the 3D formation acquisition 
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problem. The x, y, and z directional components of the control inputs of all the 12 agents are 

demonstrated in figure 12. 

 

 
Figure 8 Desired formation of a regular convex icosahedron. 

 

 
Figure 9 Three-dimensional formation acquisition: all 12 agent trajectories to form the desired 

regular convex icosahedron. 
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Figure 10 Three-dimensional formation acquisition: distance errors of the distances between all 

the 12 agents 𝑒𝑖𝑗 where𝑖, 𝑗 ∈ 𝑉∗. 

 
(a) velocity error in x direction 

 
(b) velocity error in y direction 

 
(c) velocity error in z direction 

Figure 11 Three-dimensional formation achievement: Velocity error for each agent in the x, y, 

and z directions for all 12 agents where i = 1, … , 12 
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(a) 

 
(b) 

 
(c) 

Figure 12 Three-dimensional formation acquisition: The control inputs for all the 12 agents in x 

axis (subfigure a), y axis (subfigure b), and in z axis (subfigure c) where 𝑖 = 1, … , 12 

 

Case 3: 2D Double Integrator Formation Maneuvering 

In the third simulation case, the deployment of the formation control law in (45) is simulated 

solving formation maneuvering problem using the same wedge formation shape used in the 

first case. In this maneuvering problem, five agents are desired to maintain a wedge formation 

according to the same graph used in case 1 (review figure 3) and move in a circular trajectory 

of radius 5 where agent 1 being in the head of the formation and considered as the leader of 

all the other agents that keep rotating around the leader to provide some sort of fixed 

orientation of the whole formation. The required wedge formation with its vertices’ 

coordination is in the following order starting from agent 1: 
(0,0), (−0.5,1), (−1,2), (−1, −2), and(−0.5, −1). Here, 𝛼 is selected to be equal0.2, and 

simulated the system using control gains 𝑘𝑣 and 𝑘𝑎 both equals ½.  
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Figure 13 Snapshots of the wedge formation at different instants of time that shows MAS 

maintaining the desired formation while performing predefined trajectories starting from and 

arbitrary initial positions. 

 

To show the formation maneuvering trajectory, snapshots are taken in different instants of 

time along the simulation time as depicted in figure (13). Based on the distance errors between 

all agents demonstrated in figure (14), it can be shown that the agents successfully achieved 

the required formation around the 5th second of simulation time with fair amount of distance 

errors. It is also shown that agents keep the desired inter-agent distances throughout the 

simulation. Figure (15) shows the control inputs of all agents in the formation. 

 

 
(a) 

 
(b) 

Figure 14 Inter-agent distance error for all agent pairs (𝑖, 𝑗) in 𝑉∗ × 𝑉∗ . 
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Based on these three case studies we can demonstrate that the used formation control laws are 

exponentially stable around the equilibrium point at which the desired formation is achieved. 

Based on equations (26, 29, 30), the control gains 𝑘𝑣  and 𝑘𝑎  can control the speed of 

convergence of the distance errors and velocity errors and hence the convergence of 

augmented Lyapunov function (16) to zero. It is important to declare that it is a compromising 

situation, as the larger 𝑘𝑣 and 𝑘𝑎 is selected, the faster the convergence but on the other hand 

the larger the control input can go. 

 

 
(a) 

 
(b) 

Figure 15 Formation maneuvering control inputs for each agent (a) for x axis (b) for y axis. 

 
 

6. Conclusions 

 

In this paper, a construction of distance-based formation control law has been shown which 

is applicable for solving formation acquisition and formation maneuvering problems of multi-

agent systems based on double-integrator model. The used control laws were mainly 

constructed based on graph rigidity, specifically the properties of the infinitesimal and 

minimal rigidity of the graph that modeled the sensing and communication network topology 

in the multi-agent system. This is what guarantees that this formation method is 

asymptotically stable around the desired formation and implicitly ensures collision avoidance 

between agents in the system. The stability of the system is proved based on Lyapunov theory. 

For the double-integrator model, backstepping technique is used implicitly to construct the 

formation control law. This formation method provides a distributed control law for each 

agent in the system, provided that each agent can obtain the proportional position and velocity 

of its neighbors in the rigid graph and its own velocity. These required inputs can be obtained 

by using on board sensors or wireless communication with other agents in the network. One 

of the important limitations of the graph rigidity approach is that it requires satisfying some 

conditions to ensure not to converge to any ambiguous formation and only converge to 

isomorphic framework of the desired framework. 
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