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Abstract: This paper addresses the challenge of controlling the formation 
of multi-agent system based only on the relative distances between agents 
obtained individually by local sensors mounted on each autonomous agent 
in the system. Based on the graph rigidity approach, the inter-agent 
sensing and communication topology is presented as a rigid graph, and 
the control model is designed for each agent as a distributed control 
scheme. This study shows the capability of utilizing graph rigidity in 
designing distance-based formation control for multi-agent system. It also 
shows the applicability of the approach to achieve formation control for 
more complex formations in both two and three-dimensional spaces. To 
validate the effectiveness and capability of the proposed formation control 
strategy, three complex formation scenarios are conducted and simulated 
using MATLAB. These scenarios involve both formation acquisition and 
maneuvering problems and consider double-integrator multi-agent 
systems with 5 and 12 agents. The simulation results show the 
effectiveness of the distance-based formation control based on the graph 
rigidity, by demonstrating the exponential stability of the controlled 
system and the convergence of the agents to the desired formation in less 
than 3 seconds even for a system of 12 agents. The system stability proof 
is provided using Lyapunov stability theorem. In addition to ensuring 
system stability, this study shows that the graph rigidity approach 
implicitly ensures inter-agent collision avoidance. This study 
demonstrates the effectiveness of using graph rigidity approach in 
designing formation control of multi-agent system based only on the 
relative distances between agents, which ensures system stability and can 
deal with more complex formations, in both two- and three-dimensional 
spaces, as long as the inter-agent sensing and communication topology 
can be presented by a rigid graph. 
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1. Introduction 
 
Nature has been a good inspiration source for many encountered problems in many fields. 
The collective behavior of group of insects, birds or fish with its capability of performing 
complex tasks beyond individual capabilities, have inspired humans to design such multi-
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agent systems (MAS) with distributed, decentralized, coordinated, and collective behavior. 
This implies that each agent in such systems operates depending on its own local sensing and 
control mechanisms without any global information, to perform complex tasks collectively 
with the other agents in the system acting like one whole organism [1]. Using distributed 
decentralized control method for MASs reduces information processing load through the 
system compared with central control methods. Specially, distributed and decentralized 
control overcome the communication limitations and poor connection accuracy between the 
central controller and each agent in the system which makes distributed control based multi-
agent systems more autonomous [2] and [3]. Furthermore, these multi-agent systems are more 
efficient to accomplish complex tasks compared with one advanced large agent due to their 
scalability based on scaling number of agents, versatility in combining different types of 
agents, robustness as it is not a single point of failure system, lower cost; although a MAS has 
multiple entities not a single one but each agent in the MAS has simpler required capabilities 
and design compared to that advanced single agent system to achieve same complex task [4], 
[5]. However, with more opportunities of a MAS, it has its own challenges: coordinating 
multiple agents cooperatively, avoiding collision between agents in the system, avoiding 
obstacle in static or dynamic environment, designing decentralized controllers suitable for the 
distribution of information independent of any global or central intervention [5]. 

One of the common challenges and considered as a primary challenge for a multi-agent 
system, especially for that deployed to physical interactive tasks, is Formation Control of the 
agent coordination. Here we focus our study on two subproblems of the formation control 
problem for multi-agent system: Formation Acquisition Problem, at which each agent 
control input is designed so that all agents of the system form a predefined geometric shape 
in space keeping this formation throughout the required task, and Formation Maneuvering 
Problem, at which all agents keep predefined formation and simultaneously each agent 
follows a task-related predefined trajectory in space so that the whole system moves as one 
unit in space. Such practical applications that consider formation control problem as an 
essential part of the whole task are large area searching and exploration [6], cooperative 
transportation, surveillance, reconnaissance, as in military purposes, building structures via 
autonomous construction vehicles, agriculture and environmental monitoring via multiple 
unmanned arial vehicles, and improving traffic safety and flow via platoon formation. It 
doesn't only accommodate multiple vehicles or multiple mobile robots but also for robotic 
manipulators as in [7]. It is worthy of mention that formation control can be utilized generally 
for multi-agent system to maintain common relative states between different entities in the 
system, which states that it does not have to be position-related state to be controlled via 
formation control method. For example, controlled system states could be frequency, arrival 
time, voltage, temperature, or pressure. 

According to a review of formation control of multi-agent systems [8], formation control 
methods can be divided into three categories: position-based control methods, displacement-
based control methods, and distance-based control methods, according to sensing capabilities 
of the controlled system and the type of the variables or agent state being controlled. Distance-
based formation control for multi-agent systems considers that inter-agent distances are the 
controlled variables to achieve the required formation given the wanted inter-agent distances. 
And, the sensing capabilities of each agent is to sense the relative position of each neighboring 
agent, according to the communication topology of the system, with respect to its local 
coordinate system [8]. 
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Based on this characteristic of the distance-based formation control, graph theory provides a 
natural tool for modeling the whole system of multiple agents, the formation of the agents, 
and the sensing and communication topology of the system. Utilizing the property of graph 
rigidity, the entire formation system of agents can be controlled as a rigid graph, with the 
desired inter-agent distances being the formation system constraints which ensures achieving 
the desired formation. In addition to obtaining the desired formation, building the formation 
control based on graph rigidity ensures implicit collision avoidance between the agents. 

The first exploitation of rigid graph theory was in 2002 by [9]. Other early work that provided 
formation control of multi-agent systems based on graph theory can be found in: [10], [11], 
[12], [13], [14]. Discussions of rigid graph theory and its application to sensing, 
communication, and control architectures for formations of autonomous vehicles were 
presented in [4], [15]. A lot of the early research on formation control treated the agents as 
masses and examined formation control of the agents based on single integrator model [16], 
[17], [18]. In real life, controlling movable objects needs to be at an acceleration level which 
can be implemented in actuator level controlling the motion of the target object. Here, double-
integrator model was adopted in formation control of multi-agent systems, where the 
displacement and velocity of the agents are controlled via controlling their accelerations. By 
using double-integrator model in multi-agent systems, the agents can be considered as mass 
points whose accelerations are controlled, hence, they can be simply considered as 
omnidirectional dynamic models. 

In [19] and [18], formation maintenance and target interception are achieved using double 
integrator model and single integrator model, respectively. It has been shown that formation control 
of multi-agent system that is based on single integrator model has apparent restrictions in an actual 
implementation when considering the actuator level control of the agent dynamics and its physical 
constraints. In studying formation control of multi-agent systems based on graph rigidity, 
literature [20] introduced an extension of formation control of multi-agent systems designed 
based on single-integrator agent model to obtain multi-agent formation control law based on 
double-integrator model. In the literature [21], an undirected graph with infinitesimal and 
minimum rigidity was used to design decentralized formation control for multi-agent system 
of double-integrator agents, as opposed to the simpler single-integrator agent model. It 
showed that designing formation control law based on infinitesimal and minimum rigidity 
ensures the asymptotic stability of the system formation. Exploiting gradient control systems, 
literature [22] introduced a proof of the local asymptotical stability of undirected formations 
of both; single-integrator and double-integrator modelled agents in 𝑛-dimensional space. 

Considering more complex formation of the multi-agent systems, most of the previous studies 
used simple formations such as triangles and rectangles [23]. For later literatures, more 
complex formations were introduced, studying its robustness comprehensively. Tetrahedral 
formations of multi-agent systems in 3D space were studied in literatures [24] [25], and [26]. 

After the work introduced in [5] to achieve formation maintenance and target interception 
using rigid graph formation control in velocity level control, an application of distance-based 
formation control based on rigid graphs to achieve flocking and target interception of multiple 
nonholonomic agents was implemented in [27]. In [22], and [12], the distance between the 
second order integrator models is labeled using the Hamiltonian energy system, and 
asymptotic stabilization is accomplished under the gradient control law. 
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In this paper, multi-agent distance-based formation control in two- and three- dimensional 
spaces using double integrator model is investigated. Three different cases will be 
investigated combining different achievements of formation acquisition control and formation 
maneuvering control, both in two- and three-dimensional spaces. The paper is organized as 
follows: in the second section, we introduce some preliminary and concepts of rigid graph 
theory and infinitesimal rigidity. In the third section, we give the problem statement. In the 
fourth section the main result of the paper is demonstrated though the provided simulation 
results. Finally, a conclusion of the work is introduced in the fifth section. 

 

 
2. Notations and basic concepts based on Graph Theory 
 
For the aim of clearance, this section starts with declaring the list of notations that will be 
used throughout of the paper as follows: 
 𝑥 ∈ ℝ௡ or 𝑥 = [𝑥ଵ, … , 𝑥௡] denotes an 𝑛 × 1 vector 
 𝑥 = [𝑥ଵ, … , 𝑥௡] where 𝑥௜ ∈ ℝ௠ denotes an 𝑚𝑛 × 1 vector, in this case, vector 𝑥 will be 

denoted as 𝑥 ∈ ℝ௠௡ 
 ‖𝑥‖ means the Euclidean norm or the second norm of the vector 𝑥 
 For any points 𝑞, 𝑥 ∈ ℝ௡ and set 𝑄, dist(𝑞, 𝑄) ≔ inf

௫∈ொ
‖𝑞 − 𝑥‖, is a function that 

determines the smallest distance between point 𝑞 to any point 𝑥 in the set 𝑄. 
 𝟏௠ is the 𝑚 × 1 vector of ones. 

An undirected graph 𝐺 is a pair (𝑉, 𝐸), where 𝑉 = {1,2, … , 𝑛} is the set of 𝑛 vertices, and 
𝐸 = (𝑖, 𝑗) is the set of undirected edges, for all 𝑖, 𝑗 ∈ 𝑉 and 𝑖 ≠ 𝑗, regardless of the order of 
the vertices in the vertex pair, which means that (𝑖, 𝑗) and (𝑗, 𝑖) represent the same edge. For 
any graph 𝐺  with 𝑛  vertices and edge set 𝐸 , there is 𝑙  number of edges that is 𝑙 ∈
{1, … , 𝑛(𝑛 − 1)/2}. Based on graph approach, the set of neighbors of vertex 𝑖 in graph 𝐺 =
(𝑉, 𝐸) , is a set of interest and is denoted by 𝒩௜(𝐸) = {𝑗 ∈ 𝑉|(𝑖, 𝑗) ∈ 𝐸} . By assigning 
coordinates for each vertex in an 𝑛-vertices graph 𝐺 with respect to some fixed coordinate 
frame, a pair (𝐺, 𝑞) is obtained where 𝑞 = [𝑞ଵ, … , 𝑞௡] ∈ ℝ௠௡, as 𝑞௜ ∈ ℝ௠ is the coordinate 
of vertex 𝑖, and 𝑚 is the number of dimensions of the space coordinates. This pair (𝐺, 𝑞) is 
called a framework, denoted by 𝐹 = (𝐺, 𝑞), which is a realization of the graph so that it can 
be used to model a geometric formation of multi-agent system in space. 

Our main concern here in using graph theory for modelling multi-agent system formation is 
utilizing graph rigidity. So that, applying the graph rigidity constraints to our framework 
model will make the multi-agent system behave as one rigid unit with same properties of rigid 
body. For that end, the utilized concepts to analyze graph rigidity such as infinitesimal 
rigidity, minimal rigidity and rigidity matrix of frameworks will be introduced here. 

For a framework 𝐹 = (𝐺, 𝑞)  where 𝐺 = (𝑉, 𝐸) , 𝑞 ∈ ℝ௠௡ , and its rigidity matrix 
𝑅(𝑞): ℝ௠௡ → ℝ௟×௠௡ is defined as 
 

𝑅(𝑞) =
ଵ

ଶ

డథ(௤)

డ௤
        (1) 

where 𝜙: ℝ௠௡ → ℝ௟ is the edge function and defined as 
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𝜙(𝑞) = ቂ… , ฮ𝑞௜ − 𝑞௝ฮ
ଶ

, … ቃ,         (𝑖, 𝑗) ∈ 𝐸.    (2) 

 
According to this definition, the edge function is a vector of 𝑙 elements, where each element 
is the square of the Euclidean distance between agent 𝑖 and agent𝑗. The order of the elements 
in the edge function is correspond to the order of the edges in the edge set 𝐸. As the rigidity 
matrix is the partial derivative of the edge function with respect to vector 𝑞 = [𝑞ଵ, … , 𝑞௡] ∈
ℝ௠௡, it has a row for each element in 𝜙(𝑞) which means a row for each edge in the edge set 
𝐸 with the rows being ordered in the same order of edges in 𝐸. Also, it has a column for each 
element in 𝑞 , which means 𝑚  columns for each 𝑞௜  in 𝑞  vector, a total of 𝑚  times 𝑛  (the 
number of vertices) columns. 

Note that each edge (𝑖, 𝑗) in the 𝐸 set will have its corresponding row in the rigidity matrix 
𝑅(𝑞) in the following form, which has 𝑛 row vectors, with each vector being a 1 × 𝑚 vector. 
 

ൣ0 ⋯  0 ൫𝑞௜ − 𝑞௝൯
்

0 ⋯  0 ൫𝑞௝ − 𝑞௜൯
்

0 ⋯  0൧   (3) 

 

Where ൫𝑞௜ − 𝑞௝൯
்
 is at the columns for 𝑖௧௛ vertex, ൫𝑞௝ − 𝑞௜൯

்
 is at the columns for 𝑗௧௛ vertex, 

and any other element is equal to zero. 
For two frameworks sharing the same graph 𝐺 = (𝑉, 𝐸) with different vertices coordination 
in ℝ௠ , 𝐹 = (𝐺, 𝑞)  and 𝐹෠ = (𝐺, 𝑞ො) ; if only their corresponding edges are equivalent in 
lengths, ฮ𝑞௜ − 𝑞௝ฮ = ฮ𝑞ො௜ − 𝑞ො௝ฮ for all (𝑖, 𝑗) ∈ 𝐸, they are said to be equivalent frameworks. 
It can be easy to note that if 𝐹 and 𝐹෠ are equivalent, then they have their edge functions be 
the same, 𝜙(𝑞) = 𝜙(𝑞ො) . Furthermore, if the two frameworks have their corresponding 
distances between all vertices are equivalent in lengths, ฮ𝑞௜ − 𝑞௝ฮ = ฮ𝑞ො௜ − 𝑞ො௝ฮ for all𝑖, 𝑗 ∈

𝑉, they are said to be congruent frameworks [28-29]. 

Distinguishing between these two concepts is so important here in formation control, as two 
frameworks being equivalent doesn’t guarantee that they are congruent frameworks. Figure 
(1) can illustrate this concept. Here, two frameworks are illustrated, 𝐹 = (𝐺, 𝑞) and 𝐹ത =
(𝐺, 𝑞ത), where 𝐺 = (𝑉, 𝐸), 𝑉 = {1, 2, 3, 4}, and 𝐸 = {(1,2), (1,4), (2,3), (2,4), (3,4)}. They 
share the same coordination for vertices 1, 2, and 4 only, as 𝑞ଷ ≠ 𝑞തଷ. Obviously, these two 
frameworks are not congruent to each other, although they have the same edge function, 
𝜙(𝑞) = 𝜙(𝑞ത) , as ฮ𝑞௜ − 𝑞௝ฮ = ฮ𝑞ത௜ − 𝑞ത௝ฮ  for all (𝑖, 𝑗) ∈ 𝐸  only, and this doesn’t include 
(𝑖, 𝑗) = (1,3), where ‖𝑞ଵ − 𝑞ଷ‖ ≠ ‖𝑞തଵ − 𝑞തଷ‖. In this case, 𝐹 and 𝐹ത are equivalent but not 
congruent, and they are called ambiguous frameworks [4]. In general, this is called flip 
ambiguity and can be occurred when a set of vertices of a graph 𝐺 ∈ ℝ௠ lays in a lower 
dimensional subspace of the 𝑚-dimensional space, which is (𝑚 − 1)-dimensional space it is 
also called a hyperplane in ℝ௠. As the framework 𝐹 illustrated in figure (1) with its four 
vertices laying in 2D space can lead to a flip ambiguity occurrence in 3D space. In this work, 
𝐴𝑚𝑏(𝐹) will be used as a notation of a set of all ambiguous frameworks to a framework𝐹. 

As opposed to the ambiguous frameworks that are equivalent to each other but don’t have to 
be congruent, there is the concept of isometric frameworks or isomorphic frameworks. 
Isomorphic frameworks are all frameworks that are related to each other by an isometry 
inℝ௠, which is defined as a bijective map 𝑇: ℝ௠ → ℝ௠ [30], where 
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ฮ𝑇(𝑞௜) − 𝑇൫𝑞௝൯ฮ = ฮ𝑞௜ − 𝑞௝ฮ,       ∀𝑞௜ , 𝑞௝ ∈ ℝ௠.     (4) 

 

 
Figure 1 Ambiguous frameworks: (a) Framework 𝐹. (b) Framework 𝐹ത ∈ 𝐴𝑚𝑏(𝐹) in dashed line with 𝐹 in solid line. 

 
This means that vector 𝑞௜ − 𝑞௝ is translated and/or rotated in the 𝑚-dimensional space with 
preserving the Euclidean distance between points 𝑖 and𝑗. So, when there are two frameworks 
𝐹 and 𝐹෠ that are said to be isomorphic frameworks, this means that the coordination of one 
of them can be obtained by translating and/or rotating the other framework. This implies that 
𝐹 and 𝐹෠ are congruent to each other. Hence, a set of all frameworks that are congruent to 
framework 𝐹 ∈ ℝ௠, are isomorphic to 𝐹 in ℝ௠, and will be denoted throughout this work by 
𝐼𝑠𝑜(𝐹).  

Practically, the capability of preserving the formation of multi-agent system using distance-
based control method is directly related to the rigidity of the framework that represents the 
sensing and communication network between agents. This is simply the purpose of using 
graph rigidity.  A framework 𝐹 = (𝐺, 𝑞), with 𝑛 number of vertices that is more than three, 
and the coordination of the vertices 𝑞 construct an 𝑀 dimensional convex hull {𝑞ଵ, … , 𝑞௡}, is 
infinitesimally rigid framework in 𝑚-dimensional space if and only if 𝑅𝑎𝑛𝑘൫𝑅(𝑞)൯ = 𝑚𝑛 −
(ெାଵ)(ଶ௠ିெ)

ଶ
. For the case of (𝑀 = 𝑚) which means that the vertices of the framework are 

distributed to construct a convex hull that occupies 𝑚-dimensional space, the rank of rigidity 
matrix, that implies 𝐹 is infinitesimally rigid, will be as  

 

𝑅𝑎𝑛𝑘൫𝑅(𝑞)൯ = 𝑚𝑛 −
(௠ାଵ)(௠)

ଶ
 [30],                               [22]. 

 
For an infinitesimally rigid framework 𝐹 = (𝐺, 𝑞) with (𝑛 > 3) number of vertices, if 𝐹 is 

minimally rigid framework then its number of edges must be 𝑙 = 𝑚𝑛 −
(௠ାଵ)(௠)

ଶ
 [4]. Hence, 

it can be concluded that for an infinitesimally and minimally rigid framework 𝐹 = (𝐺, 𝑞), its 
rigidity matrix must satisfy that 𝑅𝑎𝑛𝑘൫𝑅(𝑞)൯ = 𝑙 which means it has a full row rank. 
 
 
3. Problem Statement 
 
In this paper, two formation control problems are being addressed starting with Formation 
Acquisition, as it is considered the primary objective of formation control. Then, the 
Formation Maneuvering of multi-agent systems is being demonstrated. Consider a multi-
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agent system of 𝑛 agents with 𝑢௜ being the acceleration-level control input for the 𝑖௧௛ agent 
where its relative position to an earth-fixed coordinate frame is 𝑞௜ ∈ ℝ௠. Exploiting the graph 
rigidity, the desired inter-agent distances is denoted by an infinitesimally and slightly rigid 
framework 𝐹∗ = (𝐺∗, 𝑞∗)  where 𝐺∗ = (𝑉∗, 𝐸∗)  is the desired formation graph, with 𝑛 
vertices representing agents and 𝑙 edges representing the only inter-agent distances that need 
to be controlled, and 𝑞∗ = [𝑞ଵ

∗, … , 𝑞௡
∗ ] is the agents desired coordination that achieve the 

desired formation. The desired distances between agents will be denoted by the vector 𝑑 =

ൣ… , 𝑑௜௝ , … ൧ ∈ ℝ௟ , where 𝑑௜௝  is the desired distance between agent 𝑖  and agent 𝑗  and is 
obtained based on the agent desired coordination by 
 

𝑑௜௝ = ฮ𝑞௜
∗ − 𝑞௝

∗ฮ > 0, 𝑖, 𝑗 ∈ 𝑉∗     (5) 

 
Let’s build our problem statements based onto the following assumptions: 

 Assumption 1: Each edge (𝑖, 𝑗) ∈ 𝐸∗ in the desired formation graph always has its 
corresponding sensing capability and communication between 𝑖௧௛ agent and 𝑗௧௛ agent. In 
other words, to add or select an edge (𝑖, 𝑗) to be in the desired formation graph, there must 
be an inter-agent sensing capability beteen the corresponding agents 𝑖 and 𝑗. 

 Assumption 2: The inter-agent sensing, and communication network is always 
maintained so that agent 𝑖 is always in the sensing and communication range of its 
neighbours in the desired formation framework 𝐹∗. This means that there is no temporary 
loss of any sensing or communication connection represented by an edge in the desired 
framework which in turn guarantees preventing flex ambiguity occurrence. 

 Assumption 3: The only position information being measured is the proportional position 
of agent pairs in 𝐸∗ set, defined in the desired formation. This means that the global 
position of the agents, 𝑞∗ = [𝑞ଵ

∗, … , 𝑞௡
∗ ] is not available for the controllers, only the 

proportional position of agent pairs, 𝑞௜ − 𝑞௝ for (𝑖, 𝑗) ∈ 𝐸∗. 

Based on these assumptions and the background of graph rigidity previewed in the 
introduction, the formation acquisition problem and the formation maneuvering problem can 
be detailed as follows. 

Formation Acquisition Problem: The agents are required to form and maintain a predefined 
formation in space. The formation acquisition control objective, which is considered the 
primary objective of the formation control problems, is designing control input 𝑢௜ such that 

 
𝐹(𝑡) → 𝐼𝑠𝑜(𝐹∗) as 𝑡 → ∞.       (6) 

 
In the terms of the inter-agent distances, which is the only position information being 
measured in the system, the control objective can be represented as 
 

ฮ𝑞௜(𝑡) − 𝑞௝(𝑡)ฮ → 𝑑௜௝  As𝑡 → ∞, where𝑖, 𝑗 ∈ 𝑉∗.                  (7) 

 
And this makes the actual formation to converge to any isometric realization of 𝐹∗. In terms 
of graph theory, the formation will converge to one framework in the set of 𝐼𝑠𝑜(𝐹∗) based on 
the initial position of the formation coordination, 𝑞(0) = [𝑞ଵ(0), … , 𝑞௡(0)]. 
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Formation Maneuvering Problem: While maintaining a predefined formation, agents are 
required to maneuver based on a predefined trajectory. So, the formation maneuvering control 
objective is 

𝑞̇௜(𝑡) − 𝑣ௗ௜(𝑡) → 0 As𝑡 → ∞, where 𝑖 = 1, … , 𝑛     (8) 
 

Where 𝑣ௗ௜ ∈ ℝଷ represent the required rigid body velocity for the swarm of agents based on 
their mission to be accomplished. So, the formation control has to achieve the formation 
acquisition simultaneously with the formation maneuvering so that the formation moves in 
translation motion, rotational motion, or both as a virtual rigid body. According to the problem 
statements, and the sensing capability and the interaction topology of agents, graph rigidity 
approach, which is a distance-based control scheme, is adopted. This paper introduces 
formation control for multi-agent system, based on graph rigidity, using double-integrator 
model. In the following section the double-integrator model will be previewed in detail and 
the control design to achieve the formation control objectives stated in (6), (7), and (8). 
 
 
4. Double Integrator Model 
 
The double-integrator model accounts for the agent acceleration by treating the agent as a 
point mass. Therefore, it can be considered a very simple dynamic model for omnidirectional 
robots. Given a system of n agents, the equations of motion for the double-integrator model 
are 

𝑞̇௜ = 𝑣௜         (9) 
𝑣̇௜ = 𝑢௜ ,    𝑖 = 1, … , 𝑛       (10) 

where:  
 𝑣௜ ∈ ℝ௠ represents the velocity of the 𝑖௧௛ agent with respect to an Earth-fixed 

coordinate frame of 𝑚 dimensions, 
 𝑢௜ ∈ ℝ௠ is the acceleration-level control input of the 𝑖௧௛ agent, 
 and 𝑞௜ ∈ ℝ௠ is the position of the 𝑖௧௛ agent. 

Here, the agent velocity is a system state and the formation control laws in this work will be 
a function of the agent velocities in addition to the positions. 

By exploiting the integrator backstepping methodology, the double-integrator-based 
control laws can be obtained as an extension of the single-integrator-based control laws. 

As distance-based controller, the inputs 𝑢௜ , 𝑖 = 1, … , 𝑛  will control the relative distances 
ฮ𝑞௜ − 𝑞௝ฮ,  for all edges (𝑖, 𝑗) ∈ 𝐸∗ , where 𝐸∗ is the set of edges defined in the desired 
formation. So, the objective is to ensure that 

ฮ𝑞௜(𝑡) − 𝑞௝(𝑡)ฮ → 𝑑௜௝  As𝑡 → ∞, (𝑖, 𝑗) ∈ 𝐸∗,     (11) 

Where 𝑑௜௝ is the required relative distance between agent 𝑖 and agent𝑗, defined in the desired 
formation. To simplify the notation in the following derivations, the proportional position of 
two agents will be defined as 

𝑞෤௜௝ = 𝑞௜ − 𝑞௝         (12) 

And𝑞෤ = ൣ… , 𝑞෤௜௝ , … ൧ ∈ ℝ௠௟ , (𝑖, 𝑗) ∈ 𝐸∗, with 𝑙 is the number of edges of the graph defined 
in the desired formation. The distance error is given by 
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𝑒௜௝ = ฮ𝑞෤௜௝ฮ − 𝑑௜௝ .        (13) 

 
The distance error dynamics can be derived from equations (9) and (13) as 
 

𝑒̇௜௝ =
ௗ

ௗ௧
൬ට𝑞෤௜௝

் 𝑞෤௜௝൰ =
ଵ

ଶ
൫𝑞෤௜௝

் 𝑞෤௜௝൯
ି

భ

మ൫2 𝑞෤௜௝
் 𝑞෤̇௜௝൯ =

௤෤೔ೕ
೅ ൫௩೔ି௩ೕ൯

௘೔ೕାௗ೔ೕ
   (14) 

 
As assumed that the only measured quantities throughout the multi-agent system are the 
relative distances between agents, specifically those in the 𝐸∗ set. The agents’ velocities 𝑣 =
[𝑣ଵ, … , 𝑣௡] ∈ ℝ௠௡ are considered only as system states and can not be directly obtained. One 
solution is by utalizing backstepping technique and introduce the following variable 
 

𝑠 = 𝑣 − 𝑣௙       (15) 
 

where 𝑣௙ ∈ ℝ௠௡  denotes the desired velocity input and considered as a fictitious control 
input, which will be specified later according to the problem need to be solved; formation 
acquisition problem, formation maneuvering problem, or both. The variable 𝑠 quantifies the 
agents velocity error as it is the error between the actual agent velocity and the desired 
velocity-level input. The desired of 𝑣௙ will be problem-specific and will be obtained based on 
the velocity-level control laws of a single-integrator model, where the control input 𝑢 is the 
velocity-level input. The block diagrams in Figure 2 illustrates the relationship between the 
control designs for the single-integrator and double-integrator models. As one can see, the 
velocity-level, position control algorithms from single-integrator model will be embedded in 
the acceleration-level, velocity control loop to be designed in the double-integrator model. 
Due to the new error variable 𝑠 introduced in equation (15), an augmented Lyapunov function 
candidate will be introduced as follows: 
 

𝑊ௗ(𝑒, 𝑠) = 𝑊ଵ(𝑒) + 𝑊ଶ(𝑠)        (16) 
Where 𝑊ଵ(𝑒) and 𝑊ଶ(𝑠) are defined as follows, 
 

𝑊ଵ(𝑒) =
ଵ

ସ
𝑧்𝑧 =

ଵ

ସ
∑ 𝑧௜௝

ଶ
(௜,௝)∈ா∗ ,      (17) 

And 

𝑊ଶ(𝑠) =
ଵ

ଶ
𝑠்𝑠        (18) 

 
Where 𝑒 = ൣ… , 𝑒௜௝ , … ൧ ∈ ℝ௟ , (𝑖, 𝑗) ∈ 𝐸∗  and 𝑧 = ൣ… , 𝑧௜௝ , … ൧ ∈ ℝ௟ , (𝑖, 𝑗) ∈ 𝐸∗  is a new 
introduced variable that is 

𝑧௜௝ = ฮ𝑞෤௜௝ฮ
ଶ

− 𝑑௜௝
ଶ ,        (19) 

 
Which can be rewritten in terms of position error from equation (13) as 
 

𝑧௜௝ = 𝑒௜௝(𝑒௜௝ + 2𝑑௜௝)       (20) 
Notice that 𝑊ଵ(𝑒) is a potential energy term since its dependence on position only, while 
𝑊ଶ(𝑠) is a kinetic energy term due to its dependence on velocity. Furthermore, 𝑊ௗ(𝑒, 𝑠) 
captures the total energy of the double integrator model formation. 
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Figure 2 Illustration of the double integrator control model and its relation to the single integrator 

control model. 
 
The derivative time of𝑊ௗ(𝑒, 𝑠), it is obtained that 
 

𝑊̇ௗ = 𝑊̇ଵ(𝑒) + 𝑊̇ଶ(𝑠)  =
ଵ

ଶ
𝑧்𝑧̇ + 𝑠்𝑠̇       (21) 

Where 𝑊̇ଵ can be presented using equations (14), (17), (19), and (20) as 
 

𝑊̇ଵ =
ଵ

ଶ
𝑧் 𝑧̇ =

ଵ

ଶ
∑   𝑧௜௝𝑧̇௜௝(௜,௝)∈ா∗   =

ଵ

ଶ
∑   𝑒௜௝(𝑒௜௝ + 2𝑑௜௝)(௜,௝)∈ா∗ 𝑧̇௜௝     (22) 

 
Where 

𝑧̇௜௝ =
ௗ

ௗ௧
ቀฮ𝑞෤௜௝ฮ

ଶ
ቁ =

ௗ

ௗ௧
ቆට𝑞෤௜௝

் 𝑞෤௜௝

ଶ

ቇ     = 2 𝑞෤௜௝
் 𝑞෤̇௜௝   = 2 𝑞෤௜௝

் ൫𝑣௜ − 𝑣௝൯  (23) 

 
Then, using equation (23) into (22), 𝑊̇ଵ will be in element-wise form as follows 
 

𝑊̇ଵ = ∑ 𝑒௜௝(𝑒௜௝ + 2𝑑௜௝)(௜,௝)∈ா∗ 𝑞෤௜௝
் ൫𝑣௜ − 𝑣௝൯    (24) 

 
Based on the rigidity matrix definition and the introduced variable 𝑧௜௝ in equation (20), 𝑊̇ଵ 
can be conveniently written as 
 

𝑊̇ଵ = 𝑧்𝑅(𝑞෤)𝑣        (25) 
 
Where 𝑣 = [𝑣ଵ, … , 𝑣௡] ∈ ℝ௠௡ is the stacked vector of 𝑛 velocity vectors of each agent, and 
the rigidity matrix𝑅(𝑞෤) ∈ ℝ௟×௠௡?. Using equations (25) and (15) into (21), the derivative 
time of the augmented Lyapunov function can be written as 

𝑊̇ௗ = 𝑧்𝑅(𝑞෤)𝑣 + 𝑠்𝑠̇  = 𝑧்𝑅(𝑞෤)൫𝑠 + 𝑣௙൯ + 𝑠்൫𝑢 − 𝑣̇௙൯  

 = 𝑧்𝑅(𝑞෤)𝑣௙ + 𝑠்൫𝑢 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯         (26) 

(b) double integrator control model: Note the implicit inclusion of the 𝑢௦௜௡௚௟௘ ூ௡௧௘௚௥௔௧௢௥ = 𝑢ௌ.ூ into 
the double integrator control model. 

Position Control 
𝐹∗ 𝑣௙ = 𝑢ௌ.ூ  1

𝑠
 

𝑞 
 1

𝑠
 

𝑣 
  Velocity Control 

− 
+ 

𝑠 𝑢 

(a) single integrator control model 

Position Control 
𝐹∗ 𝑢ௌ௜௡௚௟௘ ூ௡௧௘௚௥௔௧௢௥ 

 1

𝑠
 

𝑞 
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And it will be the initial point for all double-integrator control designs for formation 
acquisition problems or formation maneuvering problems. 
 
Formation Acquisition 
The formation acquisition controller for the double-integrator model will have the general 
form 𝑢௜ = 𝑢௜൫𝑞௜ − 𝑞௝ , 𝑣௜ − 𝑣௝ , 𝑣௜ , 𝑑௜௝൯, 𝑖 = 1, … , 𝑛 and 𝑗 ∈ 𝑁௜(𝐸∗) where 𝑁௜(∙) is the set of 
neighbours of the 𝑖௧௛ agent. Based on equation (26), the control 
 

𝑢 =  −𝑘௔𝑠 + 𝑣̇௙ − 𝑅்(𝑞෤)𝑧,       (27) 
Where 

𝑣௙ = −𝑘௩𝑅்(𝑞෤)𝑧,        (28) 
 
And 𝑘௔ > 0 is a defined control gain, renders 𝑊ௗ(𝑒, 𝑠) = 0 exponentially stable and ensures 
that formation converge to the desired construction and equation (11) is satisfied. 
A control input 𝑢 will be selected based on the augmented Lyapunov function in equation 
(26) so that it ensures the stability of the system. The control input 𝑢 will be selected so that 
𝑊̇ௗ < 0 around the(𝑒, 𝑠) = (0,0). Using equation (26), each term of 𝑊̇ௗ will be set to be 
subjected to the following inequalities 

 
𝑧்𝑅(𝑞෤)𝑣௙ ≤ − 𝐾௩  𝑀ଵ       (29) 

 
𝑠்൫𝑢 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯ ≤ − 𝐾௔  𝑀ଶ     (30) 

 
Where 𝐾௩ and 𝐾௔ are sufficiently small positive definite scalar constants, and 𝑀ଵ and 𝑀ଶ are 
positive definite 1-by-1 matrices. Then, selecting 𝑣௙ and 𝑢 that undergo these inequalities, 
will ensure that 𝑊̇ௗ is negative definite. One simple way to select 𝑣௙ is by selecting its value 
so that the term 𝑧்𝑅(𝑞෤)𝑣௙ becomes in the form of−𝐾௩𝐴்𝐴, where 𝐴 is a vector of real values. 
If it is assumed that𝐴் = 𝑧்𝑅(𝑞෤), then 𝑣௙ can be selected to be𝑣௙ = −𝐾௩𝐴, and that is 
 

𝑣௙ = −𝐾௩൫𝑧்𝑅(𝑞෤)൯
்

= −𝐾௩𝑅்(𝑞෤)𝑧     (31) 
By substituting the selected value of 𝑣௙ in 𝑧்𝑅(𝑞෤)𝑣௙ it is obtained that 

−𝐾௩𝑧்𝑅(𝑞෤)𝑅்(𝑞෤)𝑧 < 0    ∀ 𝑧 ∈ ℝ௅ , 𝑅 ∈ ℝ௅×௠௡ 

 
For all 𝑧 ∈ ℝ௅ and𝑅 ∈ ℝ௅×௠௡, where 𝐿 is the number of edges in the controlled formation 
and 𝑚𝑛 is the number of agents times its special dimensions. 
Then, the same considerations can be followed for selecting𝑢. The selected control input must 
ensure that𝑠்൫𝑢 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯ ≤ −𝐾௔ . 𝑀ଶ. One simple way to achieve this is by making  
 

൫𝑢 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯ = −𝐾௔𝑠,      (32) 
So that 𝑠்൫𝑢 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯ will be in the form of−𝐾௔𝑠்𝑠, where 𝑠 is vector of real 
values. Hence, 

𝑢 = −𝐾௔𝑠 + 𝑣̇௙ − 𝑅்(𝑞෤)𝑧      (33) 
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Where this control input ensures that the term 𝑠்൫𝑢 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯ < 0 and is negative 
definite. This can be demonstrated by substituting by the selected value of𝑢, it gets that 
 

𝑠்൫𝑢 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯ = 𝑠்൫−𝐾௔𝑠 + 𝑣̇௙ − 𝑅்(𝑞෤)𝑧 + 𝑅்(𝑞෤)𝑧 − 𝑣̇௙൯ = −𝐾௔𝑠்𝑠 < 0 
 
For all 𝑠 ∈ ℝ௠௡ vector of (𝑚𝑛) real elements. 
Then these selection of 𝑣௙  and 𝑢  will ensure that 𝑊̇ௗ < 0  for all 𝑡 ≥ 0 , hence 𝑊ௗ  is 
nonincreasing for𝑡 ≥ 0. And this ensures the stability of the system at the origin(𝑒, 𝑠). 
Now 𝑣̇௙ is given by 
 

𝑣̇௙ = −𝑘௩𝑅்̇𝑧 − 𝑘௩𝑅்𝑧̇       (34) 
Where 

𝑅̇(𝑞෤) = 𝑅(𝑣෤),         (35) 
 
𝑣෤ = ൣ… , 𝑣௜ − 𝑣௝ , … ൧ ∈ ℝ௟ , (𝑖, 𝑗) ∈ 𝐸∗, And from (17) 
 

𝑧̇ = 2𝑅(𝑞෤)𝑣.        (36)  
The control law in equations (27) and (28), can be rewritten in element-wise form as 
 

𝑢௜ = −𝑘௔𝑣௜ − ∑ ൣ(𝑘௔𝑘௩ + 1)𝑞෤௜௝𝑧௜௝ + 𝑘௩൫𝑧௜௝𝐼௠ + 2𝑞෤௜௝𝑞෤௜௝
் ൯𝑣෤௜௝൧௝∈ே೔(ா∗)   (37) 

 
For 𝑖 = 1, … , 𝑛 and 
 

𝑣෤௜௝ = 𝑣௜ − 𝑣௝ , (𝑖, 𝑗) ∈ 𝐸∗.       (38) 
 
This control is decentralized, since its operation only needs each agent to measure its own 
velocity and the proportional position and relative velocity to adjacent agents. The agent’s 
velocity was measured onboard sensors. 
 
Maneuver of Formation 
The formation steering control law for the double-integrator model is simply a combination 
of the designs of formation acquisition control law of a single-integrator model and formation 
maneuvering of the double-integrator model. The control 𝑢 is given by (27) with 
 

𝑣௙ = 𝑢௔ + 𝑣ௗ        (39) 
Where 

𝑢௔ = −𝑘௩𝑅்(𝑞෤)𝑧        (40) 
 
Is the formation acquisition control law of a single-integrator model, and the formation 
maneuvering velocity is𝑣ௗ = [𝑣ௗଵ, … , 𝑣ௗ௡] ∈ ℝଷ௡, where for 𝑖௧௛ agent 
 

𝑣ௗ௜ = 𝑣଴ + 𝜔଴ × 𝑞෤௜௡       (41) 
 
𝑣଴(𝑡) ∈ ℝଷ Means the desired change velocity for the formation, 𝜔଴(𝑡) ∈ ℝଷ is the desired 
angular velocity. 
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The term 𝑣̇௙ in equation (27) will be as equation (34) with additional terms due to𝑣̇ௗ. 
As 𝑣̇ௗ௜ is given by 
 

𝑣̇ௗ௜ = 𝑣̇଴ + 𝜔̇଴ × 𝑞෤௜௡ + 𝜔଴ × 𝑣෤௜௡, 𝑖 = 1, … , 𝑛    (42) 
 
Where 𝑣̇଴ ∈ ℝଷ denotes the desire change acceleration and 𝜔̇଴ ∈ ℝଷ is the desired angular 
acceleration for each agent about the position of the leader, as 𝑞෤௜௡ and 𝑣෤௜௡ are, respectively, 
the proportional position and the proportional velocity of the 𝑖௧௛ agent with respect to the 
leader. 
Then using equations (35) and (36), 𝑣̇௙ will be obtained as 
 

𝑣̇௙ = −𝑘௩𝑅்̇𝑧 − 𝑘௩𝑅்𝑧̇ + 𝑣̇ௗ = −𝑘௩𝑅்(𝑣෤)𝑧 − 𝑘௩𝑅்(𝑞෤)(2𝑅(𝑞෤)𝑣) + 𝑣̇ௗ          (43) 
 
Substituting by𝑠, 𝑣௙, and 𝑣̇௙ from equations (39), (40), (42), and (43) into the control input 𝑢 
of equation (27) yields 
 

𝑢 = −𝑘௔൫𝑣 − 𝑣௙൯ + (−𝑘௩𝑅்(𝑣෤)𝑧 − 𝑘௩𝑅்(𝑞෤)(2𝑅(𝑞෤)𝑣) + 𝑣̇ௗ) − 𝑅்(𝑞෤)𝑧  
= −𝑘௔൫𝑣 − (𝑢௔ + 𝑣ௗ)൯ + (−𝑘௩𝑅்(𝑣෤)𝑧 − 𝑘௩𝑅்(𝑞෤)(2𝑅(𝑞෤)𝑣) + 𝑣̇ௗ) − 𝑅்(𝑞෤)𝑧  
= −𝑘௔𝑣 + 𝑘௔𝑢௔ + 𝑘௔𝑣ௗ − 𝑘௩൫𝑅்(𝑣෤)𝑧 + 2𝑅்(𝑞෤)(𝑅(𝑞෤)𝑣)൯ + 𝑣̇ௗ − 𝑅்(𝑞෤)𝑧  
= −𝑘௔𝑣 − 𝑘௔𝑘௩𝑅்(𝑞෤)𝑧 + 𝑘௔𝑣ௗ − 𝑘௩൫𝑅்(𝑣෤)𝑧 + 2𝑅்(𝑞෤)(𝑅(𝑞෤)𝑣)൯ + 𝑣̇ௗ − 𝑅்(𝑞෤)𝑧   (44) 

 
By rearranging the terms 𝑢 will be as follows 
 

𝑢 = −𝑘௔𝑣 − 𝑘௔𝑘௩𝑅்(𝑞෤)𝑧 − 𝑅்(𝑞෤)𝑧 − 𝑘௩൫𝑅்(𝑣෤)𝑧 + 2𝑅்(𝑞෤)(𝑅(𝑞෤)𝑣)൯ + 𝑘௔𝑣ௗ + 𝑣̇ௗ  
 = −𝑘௔𝑣 − (𝑘௔𝑘௩ + 1)𝑅்(𝑞෤)𝑧 − 𝑘௩൫𝑅்(𝑣෤)𝑧 + 2𝑅்(𝑞෤)(𝑅(𝑞෤)𝑣)൯ + [𝑘௔𝑣ௗ + 𝑣̇ௗ]       (45) 

 
Then, the control was written in element-wise form as 
 

𝑢௜ = −𝑘௔𝑣௜ − ෍ ൣ(𝑘௔𝑘௩ + 1)𝑞෤௜௝𝑧௜௝ + 𝑘௩𝑣෤௜௝𝑧௜௝ + 2𝑞෤௜௝𝑞෤௜௝
் 𝑣෤௜௝൧

௝∈ே೔(ா∗)

+ ෍[𝑘௔𝑣ௗ௜(𝑞෤௜௡) + 𝑣̇ௗ௜(𝑞෤௜௡, 𝑣෤௜௡)]

௜∈௏∗

 

= −𝑘௔𝑣௜ − ෍ ൣ(𝑘௔𝑘௩ + 1)𝑞෤௜௝𝑧௜௝ + 𝑘௩൫𝑧௜௝𝐼௠ + 2𝑞෤௜௝𝑞෤௜௝
் ൯𝑣෤௜௝൧

௝∈ே೔(ா∗)

+ ෍[𝑘௔𝑣ௗ௜(𝑞෤௜௡) + 𝑣̇ௗ௜(𝑞෤௜௡, 𝑣෤௜௡)]

௜∈௏∗

 

           (46) 
 
For the double-integrator model, 𝑣଴ and 𝜔଴ essential to be continuously differentiable 
functions of time with bounded first derivative for the control input to be continuous and 
bounded. Like 𝑣଴ and𝜔଴, the signals 𝑣̇଴ and 𝜔̇଴ was stored on all agent’s onboard computer 
since they are usually known a priori. 
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5. Simulation Results 
 
In this section, three scenarios are used to demonstrate the validation of the proposed 
formation control laws solving formation achievement and formation maneuvering problems. 
In the first case, a 2D wedge formation achievement problem is introduced. In the second 
case, 12 agents deployed to form icosahedral formation in 3D space starting from arbitrary 
initial positions. Then, the same wedge formation used in the first case is extended in the third 
case to perform a circular trajectory while maintaining the wedge formation. In the first and 
second cases, the double integrator formation acquisition control law in equation (27) is 
deployed, based on 𝑣௙ in equation (28). And for the formation maneuvering problem in case 
3, the control low in equation (45) is deployed. All the cases considered the following equation 
to randomly select the initial position of each agent. 
 

𝑞௜(0)௠×ଵ = 𝑞௜
∗

௠×ଵ
+ 𝛼 [2 𝑟𝑎𝑛𝑑(0,1)௠×ଵ − 𝟏௠×ଵ]   (47) 

 
where initial position vector for each agent is column vector of 𝑚 elements for the considered 
𝑚  dimensional space, 𝛼  is a positive constant real value used to adjust the amount of 
deviation of the agents, 𝑟𝑎𝑛𝑑(0,1) is a randomization function that generates column vector 
of 𝑚 elements of real values uniformly distributed on the interval (0,1), and 𝟏௠×ଵ is column 
vector of 𝑚 elements of ones. Designing the randomization function in this way provides 
uniformly distributed values on the interval (−𝛼, +𝛼) that used to deviate the agents away 
from the desired formation. The value of 𝛼 is mainly adjusting the deviation of the whole 
multi-agent system to be away from an isomorphic framework of 𝐹∗ (the desired framework) 
and in the same way closer to 𝐼𝑠𝑜(𝐹∗) than𝐴𝑚𝑏(𝐹∗). This ensures that the system is stable 
around an equilibrium point corresponding to a desired formation. 
 
Case 1: 2D Double Integrator Formation Acquisition 
In this case, five agents are controlled to form a wedge in 2D space. The desired framework 
of the wedge formation is shown in Figure 3. The coordination of the five agents in the wedge 
formation starting from agent 1 to agent 5 is as follows: (0,0), (−1, −0.5), (−2, −1), (2, −1), 
and (1, −0.5), where agent 1 is at the head of the wedge and the other agents are order in 
counterclockwise around the generated convex hull. As this formation control method require 
that the graph presenting the formation must be infinitesimally and minimally rigid graph to 
ensure formation stability, the number of edges of the framework must submit with the 

condition that𝑙 = 𝑚𝑛 −
௠(௠ାଵ)

ଶ
, where 𝑛 is the number of agents and 𝑚 here is the agent 

coordination dimensions and the dimension of the convex hull generated by the agent 
coordination. Hence, seven edges (𝑙 = 2 ∗ 5 − 3 = 7) is sufficient to satisfy the condition of 
infinitesimal and minimal graph rigidity.  
The primary positions of the agents were randomly select based on equation (47) where𝛼 =
0.25. In this formation acquisition problem, the formation control law of equation (27) is 
deployed using (28) and𝑘௩ = 𝑘௔ = 1. Note that these control gains affect the speed of the 
system convergence to the desired formation. 
Figure 4 shows the agent trajectories to form the predefined desired formation demonstrated 
in Figure 3. The stability of the formation acquisition control system is proofed to be 
achievable based on the convergence of the inter-agent distance between all agents in 𝑉∗ to 
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the desired distances in 𝐹∗ and the convergence of the introduced variable 𝑠 to zero, which 
can be considered as the agent velocity error. It is shown in Figure 5 that all inter-agent 
distance errors are converging to zero, and Figure 6 shows the zero convergence of the x and 
y components of all agents’ velocity errors. In Figure 7, the control inputs 𝑢௜(𝑡) for 𝑖 =
1, … ,5  are shown in the form of its components the direction of each dimension of the 
considered two-dimensional space. 
 

 
Figure 3 Formation achievement: the desired formation𝑭∗. 

 

 
Figure 4 Formation acquisition: Agent trajectories𝑞௜(𝑡)∀𝑖 ∈ 𝑉∗, that satisfy formation acquisition 

control objective. 
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Figure 5 Formation acquisition: distance errors𝑒௜௝(𝑡)∀𝑖, 𝑗 ∈ 𝑉∗. 

 
(a) 

 
(b) 

Figure 6 Formation Acquisition: (a) Velocity errors along x axis (b) velocity errors along y axis. 
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(a) 

 
(b) 

Figure 7 Formation acquisition: Control inputs 𝑢௜(𝑡), 𝑖 ∈ 𝑉∗ where (a) is for control inputs along 
x axis and (b) is for control inputs along y axis. 

 
Case 2: 3D Double Integrator Formation Acquisition 
In this case a simulation of formation acquisition of 12 agents forming a regular convex 
icosahedral geometric shape in 3D space is conducted. The chosen formation of the regular 
convex icosahedral form is shown in Figure 8. The coordination of agents at the vertices of 
the icosahedron are constructed so that the edge length is equal to 2. This is done by using the 
Cartesian coordinate system of: (±𝜑, ±1,0), (±1,0, ±𝜑), (0, ±𝜑, ±1) , where 𝜑 =

(1 + √5) 2⁄  denotes the golden ratio. The 30 edges of the convex regular icosahedron are 
sufficient to satisfy the requirement of the graph being minimally and infinitesimally rigid 
inℝଷ, as3𝑛 − 6 = 3 × 12 − 6 = 30. 
The primary positions of the agents were randomly generated using equation (47) where 𝛼 
were selected to be0.4. The same formation control law of equation (27) is submitted to this 
formation using equation (28) and setting control gains 𝑘௩ and 𝑘௔ both to1.  
It is shown in figure 9 that all the 12 agents have successfully formed the desired regular 
convex icosahedral. Figure 10 and 11 shows respectively the inter-agent distance errors 
between all the 12 agents and the components of the velocity error of each agent in the three 
dimensions x, y, and z. Both distance and velocity errors are converged to zero demonstrating 
the stability of the formation acquisition control system used for the 3D formation acquisition 
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problem. The x, y, and z directional components of the control inputs of all the 12 agents are 
demonstrated in figure 12. 
 

 
Figure 8 Desired formation of a regular convex icosahedron. 

 

 
Figure 9 Three-dimensional formation acquisition: all 12 agent trajectories to form the desired 

regular convex icosahedron. 
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Figure 10 Three-dimensional formation acquisition: distance errors of the distances between all 

the 12 agents 𝑒௜௝ where𝑖, 𝑗 ∈ 𝑉∗. 

 
(a) velocity error in x direction 

 
(b) velocity error in y direction 

 
(c) velocity error in z direction 

Figure 11 Three-dimensional formation achievement: Velocity error for each agent in the x, y, 
and z directions for all 12 agents where i = 1, … , 12 
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(a) 

 
(b) 

 
(c) 

Figure 12 Three-dimensional formation acquisition: The control inputs for all the 12 agents in x 
axis (subfigure a), y axis (subfigure b), and in z axis (subfigure c) where 𝑖 = 1, … , 12 

 
Case 3: 2D Double Integrator Formation Maneuvering 
In the third simulation case, the deployment of the formation control law in (45) is simulated 
solving formation maneuvering problem using the same wedge formation shape used in the 
first case. In this maneuvering problem, five agents are desired to maintain a wedge formation 
according to the same graph used in case 1 (review figure 3) and move in a circular trajectory 
of radius 5 where agent 1 being in the head of the formation and considered as the leader of 
all the other agents that keep rotating around the leader to provide some sort of fixed 
orientation of the whole formation. The required wedge formation with its vertices’ 
coordination is in the following order starting from agent 1: 
(0,0), (−0.5,1), (−1,2), (−1, −2), and(−0.5, −1). Here, 𝛼 is selected to be equal0.2, and 
simulated the system using control gains 𝑘௩ and 𝑘௔ both equals ½.  
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Figure 13 Snapshots of the wedge formation at different instants of time that shows MAS 

maintaining the desired formation while performing predefined trajectories starting from and 
arbitrary initial positions. 

 
To show the formation maneuvering trajectory, snapshots are taken in different instants of 
time along the simulation time as depicted in figure (13). Based on the distance errors between 
all agents demonstrated in figure (14), it can be shown that the agents successfully achieved 
the required formation around the 5th second of simulation time with fair amount of distance 
errors. It is also shown that agents keep the desired inter-agent distances throughout the 
simulation. Figure (15) shows the control inputs of all agents in the formation. 
 

 
(a) 

 
(b) 

Figure 14 Inter-agent distance error for all agent pairs (𝑖, 𝑗) in 𝑉∗ × 𝑉∗ . 
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Based on these three case studies we can demonstrate that the used formation control laws are 
exponentially stable around the equilibrium point at which the desired formation is achieved. 
Based on equations (26, 29, 30), the control gains 𝑘௩  and 𝑘௔  can control the speed of 
convergence of the distance errors and velocity errors and hence the convergence of 
augmented Lyapunov function (16) to zero. It is important to declare that it is a compromising 
situation, as the larger 𝑘௩ and 𝑘௔ is selected, the faster the convergence but on the other hand 
the larger the control input can go. 
 

 
(a) 

 
(b) 

Figure 15 Formation maneuvering control inputs for each agent (a) for x axis (b) for y axis. 
 

 
6. Conclusions 
 
In this paper, a construction of distance-based formation control law has been shown which 
is applicable for solving formation acquisition and formation maneuvering problems of multi-
agent systems based on double-integrator model. The used control laws were mainly 
constructed based on graph rigidity, specifically the properties of the infinitesimal and 
minimal rigidity of the graph that modeled the sensing and communication network topology 
in the multi-agent system. This is what guarantees that this formation method is 
asymptotically stable around the desired formation and implicitly ensures collision avoidance 
between agents in the system. The stability of the system is proved based on Lyapunov theory. 
For the double-integrator model, backstepping technique is used implicitly to construct the 
formation control law. This formation method provides a distributed control law for each 
agent in the system, provided that each agent can obtain the proportional position and velocity 
of its neighbors in the rigid graph and its own velocity. These required inputs can be obtained 
by using on board sensors or wireless communication with other agents in the network. One 
of the important limitations of the graph rigidity approach is that it requires satisfying some 
conditions to ensure not to converge to any ambiguous formation and only converge to 
isomorphic framework of the desired framework. 
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