• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 52 (2024)
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Elmetwally, H., Fahmy, E., S. M. Abd-Elhalim, E., M.I. Abu-Oqail, A., El-Sheikh, M., Abd-Eltwab, A. (2025). Production of externally gear parts with a new multi-level forming tool based on rotary ballizing technology using Numerical and experimental study. JES. Journal of Engineering Sciences, 53(3), 78-99. doi: 10.21608/jesaun.2025.356763.1416
Hammad Elmetwally; Emad Fahmy; Eman S. M. Abd-Elhalim; Ahmed M.I. Abu-Oqail; Mohamed El-Sheikh; Ayman Abd-Eltwab. "Production of externally gear parts with a new multi-level forming tool based on rotary ballizing technology using Numerical and experimental study". JES. Journal of Engineering Sciences, 53, 3, 2025, 78-99. doi: 10.21608/jesaun.2025.356763.1416
Elmetwally, H., Fahmy, E., S. M. Abd-Elhalim, E., M.I. Abu-Oqail, A., El-Sheikh, M., Abd-Eltwab, A. (2025). 'Production of externally gear parts with a new multi-level forming tool based on rotary ballizing technology using Numerical and experimental study', JES. Journal of Engineering Sciences, 53(3), pp. 78-99. doi: 10.21608/jesaun.2025.356763.1416
Elmetwally, H., Fahmy, E., S. M. Abd-Elhalim, E., M.I. Abu-Oqail, A., El-Sheikh, M., Abd-Eltwab, A. Production of externally gear parts with a new multi-level forming tool based on rotary ballizing technology using Numerical and experimental study. JES. Journal of Engineering Sciences, 2025; 53(3): 78-99. doi: 10.21608/jesaun.2025.356763.1416

Production of externally gear parts with a new multi-level forming tool based on rotary ballizing technology using Numerical and experimental study

Article 5, Volume 53, Issue 3, May and June 2025, Page 78-99  XML PDF (1.08 MB)
Document Type: Research Paper
DOI: 10.21608/jesaun.2025.356763.1416
View on SCiNiTO View on SCiNiTO
Authors
Hammad Elmetwally1; Emad Fahmy2; Eman S. M. Abd-Elhalimorcid 3; Ahmed M.I. Abu-Oqail4; Mohamed El-Sheikhorcid 4; Ayman Abd-Eltwab email orcid 5
1Mech. Dep., Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
2Mechanical Dep., Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
3Mechanical Eng. Dep., Faculty of Engineering, Assiut University, Assiut, Egypt
4Mechanical Dep., Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt.
5Mechanical Engineering Department, Faculty of Engineering, Beni-Suef University, Beni-Suef, Egypt.
Abstract
Abstract
External gear components are used in a variety of production and manufacturing areas, including motion, energy, and power transmission in many industrial applications. Examples include transportation equipment, aerospace equipment, and machine tools such as lathes and milling machines, all of which rely on gearboxes. As a result, these components are receiving increasing attention. This paper introduces an innovative multi-level rotary ballizing technique for manufacturing toothed tubular parts in one stroke. The process was examined both experimentally and numerically. The experimental study focused on key parameters, including die rotational speed (100, 200, 315, and 400 rpm), mandrel axial feed rate (0.13, 0.15, 0.18, and 0.21 mm/rev), and cross-feed values (4.5, 5.5, and 6.5 mm), achieved using three levels of ball. Additionally, initial tube thicknesses of 6, 7, and 8 mm were analyzed. The study investigated the influence of these parameters on forming load, filling ratio, and the hardness of the formed product. The results demonstrated that these factors significantly impact forming load, filling ratio, and overall product quality. A mathematical model was developed to predict forming loads numerically, and the calculated results showed a strong correlation with experimental findings. Moreover, the experimental results confirmed the effectiveness of the proposed multi-level ballizing technique in successfully forming toothed parts with greater thicknesses while significantly reducing forming loads compared to the single level ballizing method.
Keywords
Multi-stage ballizing; Externally gear parts; mathematical model; shear spinning; Process parameters
Main Subjects
Mechanical, Power, Production, Design and Mechatronics Engineering.
References

[1]   Haghshenas, M., Jhaver, M., Klassen, R. J., & Wood, J. T. (2011). Plastic strain distribution during splined-mandrel flow forming. Materials & Design, 32(6), 3629-3636.‏

[2]   JIANG, S. Y., ZHENG, Y. F., REN, Z. Y., & LI, C. F. (2009). Multi-pass spinning of thin-walled tubular part with longitudinal inner ribs. Transactions of Nonferrous Metals Society of China, 19(1), 215-221.‏

[3]   Miscandlon, J., Tuffs, M., Halliday, S. T., & Conway, A. (2018). Effects of flow forming parameters on dimensional accuracy in Cr-Mo-V steel tubes. Procedia Manufacturing, 15, 1215-1223.‏

[4]   Li, Y., Xu, Z., Tang, Y., & Zeng, Z. (2010). Forming characteristics analysis of the cross-section of axially inner grooved copper tube. The International Journal of Advanced Manufacturing Technology, 47, 1023-1031.‏

[5]   Ma, Z. E. (1993). Optimal angle of attack in tube spinning. Journal of Materials Processing Technology, 37(1-4), 217-224.‏

[6]   Li, M., Zhang, S. H., & Kang, D. (2005). Research on selecting working angle in ball spinning. International journal of vehicle design, 39(1-2), 73-79.‏

[7]   Jiang, S., Ren, Z., Li, C., & Xue, K. (2009). Role of ball size in backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Journal of materials processing technology, 209(4), 2167-2174.‏

[8]   Rotarescu, M. I. (1995). A theoretical analysis of tube spinning using balls. Journal of materials processing technology, 54(1-4), 224-229.‏

[9]   Zhang, Y. Q., Jiang, S. Y., Zheng, Y. F., & Zhao, L. H. (2010). Finite element simulation of backward ball spinning of thin-walled tube with longitudinal inner ribs. Advanced Materials Research, 97, 111-115.‏

[10] Chunjiang, Z., Jie, X., Xiaodong, H., Lianyun, J., Jiefeng, L., & Chen, W. (2017). The analytical model of ball-spinning force for processing an annular groove on the inner wall of a steel tube. The International Journal of Advanced Manufacturing Technology, 91, 4183-4190.‏

[11] Zeng, X., Fan, X. G., Li, H. W., Zhan, M., Zhang, H. R., Wu, K. Q., ... & Li, S. H. (2020). Die filling mechanism in flow forming of thin-walled tubular parts with cross inner ribs. Journal of Manufacturing Processes, 58, 832-844.‏

[12] Kuss, M., & Buchmayr, B. (2016). Damage minimised ball spinning process design. Journal of materials processing technology, 234, 10-17.‏

[13] Zhang, G. L., Zhang, S. H., Li, B., & Zhang, H. Q. (2007). Analysis on folding defects of inner grooved copper tubes during ball spin forming. Journal of materials processing technology, 184(1-3), 393-400.‏

[14] Shuyong, J., & Zhengyi, R. (2008). Analysis of mechanics in ball spinning of thin-walled tube. Chin J Mech Eng, 21(1), 25-30.‏

[15] Ahmed, K. I. (2011). A new ball set for tube spinning of thin-walled tubular parts with longitudinal inner ribs. JES. Journal of Engineering Sciences, 39(1), 15-32.‏

[16] Kassar, M., Ahmed, K., ElSheikh, M., & El-Abden, S. (2022). Tube Spinning Using Functionally Graded Ballizing. Available SSRN, 3977528.‏

[17] Edriys, I. I., & Fattouh, M. (2013). Characteristics of Finished Holes By Ballizing Process. ERJ. Engineering Research Journal, 36(4), 403-415.‏‏

[18] Lai, M. O., & Nee, A. Y. C. (1989). The effect of several finishing processes on the fatigue resistance of hole surfaces.‏

[19] Dyl, T. (2017). The numerical and experimental analysis of ballizing process of steel tubes. Archives of Metallurgy and Materials, 62(2A), 807-814.‏

[20] Dyl, T. (2017). The Numerical Analysis of the Ballizing Process. Scientific Journal of Gdynia Maritime University, (100), 63-75.

[21] Fattouh, M. (1989). Some investigations on the ballizing process. Wear, 134(2), 209-219.‏

[22] El-Abden, S. Z., Abdel-Rahman, M., & Mohamed, F. A. (2002). Finishing of non-ferrous internal surfaces using ballizing technique. Journal of materials processing technology, 124(1-2), 144-152.‏

[23] Kim, N., Kim, H., & Jin, K. (2013). Minimizing the axial force and the material build-up in the tube flow forming process. International Journal of precision engineering and manufacturing, 14, 259-266.‏

[24] Nee, A. Y. C., & Venkatesh, V. C. (1983). A mathematical analysis of the ball-burnishing process. CIRP annals, 32(1), 201-204.‏

[25] Nee, A. Y. C., & Venkatesh, V. C. (1984). Dry and lubricated ballizing. Tribology international, 17(1), 25-29.‏

[26] Upadhyay P. K, Joshi H, Agarwal P. Evaluation of Different Forces for Super Finishing the Internal Surface of Ballizing process. Mat.Sci.Res.India;9(2). Available from: http://www.materialsciencejournal.org/?p=1105

[27] Nee, A. Y. C., & Venkatesh, V. C. (1982). Bore finishing—the ballizing process. Journal of Mechanical Working Technology, 6(2-3), 215-226.‏

[28] Khodadadi, M., Khalili, K., & Ashrafi, A. (2020). Studying the effective parameters on teeth height in internal gear flowforming process. International Journal of Engineering, 33(12), 2563-2571.‏

[29] Maximov, J. T., Duncheva, G. V., & Amudjev, I. M. (2013). A novel method and tool which enhance the fatigue life of structural components with fastener holes. Engineering Failure Analysis, 31, 132-143.‏

[30] Upadhyay P. K, Agarwal P, Ansari A. R. Discussion and Analysis of Ball Rolling (Ballizing) Process with Elastic and Plastic Deformation between Ball and Material. Mat.Sci.Res.India;9(1). Available from: http://www.materialsciencejournal.org/?p=1218.‏

[31] Abd-Eltwab, A. A., El-Abden, S. Z., Ahmed, K. I., El-Sheikh, M. N., & Abdel-Magied, R. K. (2017). An investigation into forming internally-spline sleeves by ball spinning. International Journal of Mechanical Sciences, 134, 399-410.‏

[32] Ayman Ali Abd-Eltwab, Essam Khalaf Saied, Ahmed Mohamed Atia, Nouby M. Ghazaly, A.A. Gomaa, Karim Mohamed Atia (2024). Investigation of externally toothed parts forming using ballizing technique. Results in Materials, 24 (2024) 100640. https://doi.org/10.1016/j.rinma.2024.100640.

[33] Bhatt, R. J., & Raval, H. K. (2018). In situ investigations on forces and power consumption during flow forming process. Journal of Mechanical Science and Technology, 32, 1307-1315.‏

[34] Droge Krafte, K., und Material fluss beim Drucken, T.H. Stuttgart, (1954)

[35] Hayama M., “Theoretical Study of Tube Spinning”, Bull. Fac. Eng. Yokohama Univ., Vol. 15, pp. 33-47, (1966)

[36] Ragab K. Abdel-Magied, Emad A. Fahmy, A. El-Sayed M. Hassan, Mohamed N. El-Sheikh, Essam K. Saied and Ayman A. Abd-Eltwab, “An Investigation into Forming Externally Toothed Parts using Novel Tool based on Rotary Forging Technique.” International Journal of Advanced Science and Technology, ISSN: 2005-4238 IJAST, Vol. 29, No.03, (2020), pp. 2194-2206.

[37] Abd-Eltwab, A.A., Helal, G.I., El-Sheikh, M.N., Saied, E.K., & Atia, A.M. (2023). An Investigation into Conventional Spinning Process Using Ball Shaped Rollers as Forming Tool. Manufacturing Technology Journal, 23(6), 788-800. doi: 10.21062/mft.2023.084.

[38] Abd-Eltwab, A.A., Elsyed Ayoub, W., El-Sheikh, M.N., Saied, E.K., Ghazaly, N.M., & Gomaa, A.A. (2024). An Investigation into Forming of Gears Using Rotary Forging Process. Manufacturing Technology Journal, 24(4), 539-551. doi:10.21062/mft.2024.068.

[39] Abd-Eltwab, A.A., Hamdy, K., ELSheikh, A., Saied, E.K., Ghazaly, N.M., & Gomaa, A.A. (2024). An investigation into production of double wall tube using squeeze Ballizing technique. Journal of Manufacturing Processes, 127 (2024) 545–558. https://doi.org/10.1016/j.jmapro.2024.08.005

[40] Heshmat, M., & Abdelrhman, Y. (2020). ANOVA and regression model of slurry erosion parameters of a polymeric spray paint film. International Journal of Materials Engineering Innovation, 11(3), 198-211.‏

[41] Astakhov, V. P. (2012). Design of experiment methods in manufacturing: Basics and practical applications. In Statistical and computational techniques in manufacturing (pp. 1-54). Berlin, Heidelberg: Springer Berlin Heidelberg.‏

[42] Abdelaal, O., Heshmat, M., & Abdelrhman, Y. (2020). Experimental investigation on the effect of water-silica slurry impacts on 3D-Printed polylactic acid. Tribology International, 151, 106410.‏

[43] Heshmat, M., Maher, I., & Abdelrhman, Y. (2023). Surface roughness prediction of polylactic acid (PLA) products manufactured by 3D printing and post processed using a slurry impact technique: ANFIS-based modeling. Progress in Additive Manufacturing, 8(2), 87-98.‏

[44] Mahapatra, S., Das, A., Jena, P. C., & Das, S. R. (2023). Turning of hardened AISI H13 steel with recently developed S3P-AlTiSiN coated carbide tool using MWCNT mixed nanofluid under minimum quantity lubrication. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(4), 843-864.‏

[45] Jena, P. C., Pohit, G., & Parhi, D. R. (2017). Fault measurement in composite structure by fuzzy-neuro hybrid technique from the natural frequency and fibre orientation. JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 5(2), 123-136.‏

[46] Jena, P. C., Parhi, D. R., & Pohit, G. (2016). Dynamic study of composite cracked beam by changing the angle of bidirectional fibres. Iranian Journal of Science and Technology, Transactions A: Science, 40, 27-37.‏

[47] Sahoo, S., Parida, S. P., & Jena, P. C. (2023). Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass. Structural Engineering and Mechanics, An Int'l Journal, 87(6), 529-540.‏

[48] Saraswati, P. K., Sahoo, S., Parida, S. P., & Jena, P. C. (2019). Fabrication, characterization and drilling operation of natural fiber reinforced hybrid composite with filler (fly-ash/graphene). Int. J. Innov. Technol. Explor. Eng, 8, 1653-1659.‏

[49] Parida, S. P., Sahoo, S., & Jena, P. C. (2024). Prediction of multiple transverse cracks in a composite beam using hybrid RNN-mPSO technique. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(16), 7977-7986.‏

[50] Jena, P. C., Parhi, D. R., & Pohit, G. (2019). Dynamic investigation of FRP cracked beam using neural network technique. Journal of Vibration Engineering & Technologies, 7, 647-661.‏

[51] Sahoo, S., & Jena, P. C. (2023). Damage detection using recurrent neural network in hybrid composite beam. In Advances in Modelling and Optimization of Manufacturing and Industrial Systems: Select Proceedings of CIMS 2021 (pp. 593-603). Singapore: Springer Nature Singapore.‏

[52] Parida, S. P., & Jena, P. C. (2023). Selective layer-by-layer fillering and its effect on the dynamic response of laminated composite plates using higher-order theory. Journal of Vibration and Control, 29(11-12), 2473-2488.‏

[53] Sahoo, S., & Jena, P. C. (2021). Analysis of GFRP cracked cantilever beam using artificial neural network. Materials Today: Proceedings, 44, 1788-1793.‏

[54] Parida, S. P., Jena, P. C., Das, S. R., Basem, A., Khatua, A. K., & Elsheikh, A. H. (2024). Transverse vibration of laminated-composite-plates with fillers under moving mass rested on elastic foundation using higher order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 238(20), 9878-9888.‏

[55] Sahoo, S., & Jena, P. C. (2023). Effect of lamina orientation, crack severity, and fillers on dynamic parameters of hybrid composite cantilever beam with double transverse cracks. Materialwissenschaft und Werkstofftechnik, 54(6), 737-750.‏

[56] Jena, P. C. (2018). Fault assessment of FRC cracked beam by using neuro-fuzzy hybrid technique. Materials Today: Proceedings, 5(9), 19216-19223.‏

[57] Jena, P. C., Parhi, D. R., Pohit, G., & Samal, B. P. (2015). Crack assessment by FEM of AMMC beam produced by modified stir casting method. Materials Today: Proceedings, 2(4-5), 2267-2276.‏

[58] Dhupal, D., Panigrahi, D., Rout, S., Bhuyan, R. K., Nayak, S., Jena, P. C., & Das, S. R. (2024). Generation of effusion holes on ultra-high temperature alloy by micro electro-discharge machining process. Surface Review and Letters, 31(02), 2450015.‏

[59] Pradhan, S., Das, S. R., Jena, P. C., & Dhupal, D. (2022). Investigations on surface integrity in hard turning of functionally graded specimen under nano fluid assisted minimum quantity lubrication. Advances in Materials and Processing Technologies, 8(sup3), 1714-1729.‏

Statistics
Article View: 802
PDF Download: 830
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.