[1] Abdullah ME, Mohammed MM, Ahmed FS, Kubit A, Aghajani Derazkola H. Evaluating the microstructural and mechanical properties of TiO2/AA7075 metal matrix nanocomposite via friction stir processing. International Journal of Advanced Manufacturing Technology 2025;137:4741–60. https://doi.org/10.1007/S00170-025-15437-7/FIGURES/17.
[2] Rohim MNM, Abdullah ME, Mohammed MM, Kubit A, Aghajani Derazkola H. Friction Stir Processed AA5754-Al2O3 Nanocomposite: A Study on Tribological Characteristics. Journal of Composites Science 2024, Vol 8, Page 216 2024;8:216. https://doi.org/10.3390/JCS8060216.
[3] Abdullah ME, M. Rohim MN, Mohammed MM, Derazkola HA. Effects of Partial-Contact Tool Tilt Angle on Friction Stir Welded AA1050 Aluminium Joint Properties. Materials 2023, Vol 16, Page 4091 2023;16:4091. https://doi.org/10.3390/MA16114091.
[4] Mishra A, Tiwari A, Shukla MK, Rose AR. Analysis of Tools used in Friction Stir Welding process. International Journal of Current Engineering and Technology 2018;8. https://doi.org/10.14741/ijcet/v.8.6.2.
[5] Abdullah ME, M. Rohim MN, Mohammed MM, Derazkola HA. Effects of Partial-Contact Tool Tilt Angle on Friction Stir Welded AA1050 Aluminium Joint Properties. Materials 2023, Vol 16, Page 4091 2023;16:4091. https://doi.org/10.3390/MA16114091.
[6] Mohammed MM, Abdullah ME, Rohim MNM, Kubit A, Derazkola HA. AA5754–Al2O3 Nanocomposite Prepared by Friction Stir Processing: Microstructural Evolution and Mechanical Performance. Journal of Manufacturing and Materials Processing 2024, Vol 8, Page 58 2024;8:58. https://doi.org/10.3390/JMMP8020058.
[7] Habba MIA, Ahmed MMZ. Friction stir welding of dissimilar aluminium and copper alloys: A review of strategies for enhancing joint quality. Journal of Advanced Joining Processes 2025;11. https://doi.org/10.1016/j.jajp.2025.100293.
[8] Samal P, Vundavilli PR, Meher A, Mahapatra MM. Recent progress in aluminium metal matrix composites: A review on processing, mechanical and wear properties. J Manuf Process 2020;59:131–52. https://doi.org/10.1016/j.jmapro.2020.09.010.
[9] Mishra RS, Ma ZY, Charit I. Friction stir processing: A novel technique for fabrication of surface composite. Materials Science and Engineering: A 2003;341:307–10. https://doi.org/10.1016/S0921-5093(02)00199-5.
[10] Yang J song, Luo Z an, Zhang X, Wang M kun, Liu Z song, Xie G ming, et al. Through-thickness particle distribution, microstructure evolution and tribological performance of B4C/BN-AA6061 composite via friction stir processing. Wear 2024;558–559. https://doi.org/10.1016/j.wear.2024.205555.
[11] Sangamaeswaran R, Muhilan S, Navin J, Austin Manuelraj P, Palaniappan M. Mechanical and wear properties of friction stir processing AA 6082-T6/B4C aluminium matrix composites. Mater Today Proc 2023:4–9. https://doi.org/10.1016/j.matpr.2023.05.112.
[12] Ahmed MMZ, El-Sayed Seleman MM, Fydrych D, Çam G. Review on Friction Stir Welding of Dissimilar Magnesium and Aluminium Alloys: Scientometric Analysis and Strategies for Achieving High-Quality Joints. Journal of Magnesium and Alloys 2023;Accepted. https://doi.org/https://doi.org/10.1016/j.jma.2023.09.039.
[13] Alidokht SA, Abdollah-zadeh A, Soleymani S, Assadi H. Microstructure and tribological performance of an aluminium alloy-based hybrid composite produced by friction stir processing. Mater Des 2011;32:2727–33. https://doi.org/10.1016/j.matdes.2011.01.021.
[14] Rana HG, Badheka VJ, Kumar A. Fabrication of Al7075 / B4C Surface Composite by Novel Friction Stir Processing (FSP) and Investigation on Wear Properties. Procedia Technology 2016;23:519–28. https://doi.org/10.1016/j.protcy.2016.03.058.
[15] Srinivasan C, Karunanithi M. Fabrication of surface level Cu/SiCp nanocomposites by friction stir processing route. J Nanotechnol 2015;2015. https://doi.org/10.1155/2015/612617.
[16] Reddy G, Rao A, Rao K. Friction Stir Surfacing Route: Effective Strategy for the Enhancement of Wear Resistance of Titanium Alloy. Transactions of the Indian Institute of Metals 2013;66. https://doi.org/10.1007/s12666-013-0254-x.
[17] Bauri R, Yadav D, Shyam Kumar CN, Balaji B. Tungsten particle reinforced Al 5083 composite with high strength and ductility. Materials Science and Engineering: A 2015;620:67–75. https://doi.org/10.1016/j.msea.2014.09.108.
[18] Sharifitabar M, Sarani A, Khorshahian S, Shafiee Afarani M. Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Mater Des 2011;32:4164–72. https://doi.org/10.1016/j.matdes.2011.04.048.
[19] Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Materials Science and Engineering: A 2009;500:84–91. https://doi.org/10.1016/j.msea.2008.09.064.
[20] Wang W, Shi Q yu, Liu P, Li H ke, Li T. A novel way to produce bulk SiCp reinforced aluminium metal matrix composites by friction stir processing. J Mater Process Technol 2009;209:2099–103. https://doi.org/10.1016/j.jmatprotec.2008.05.001.
[21] Ke L, Huang C, Xing L, Huang K. Al-Ni intermetallic composites produced in situ by Friction Stir Processing. J Alloys Compd 2010 ;503 :494–9. https://doi.org/10.1016/j.jallcom.2010.05.040.
[22] Cui GR, Ni DR, Ma ZY, Li SX. Effects of Friction Stir Processing Parameters and In Situ Passes on Microstructure and Tensile Properties of Al-Si-Mg Casting. Metall Mater Trans A Phys Metall Mater Sci 2014;45:5318–31. https://doi.org/10.1007/s11661-014-2494-8.
[23] El-Rayes MM, El-Danaf EA. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminium Alloy 6082. J Mater Process Technol 2012;212:1157–68. https://doi.org/10.1016/j.jmatprotec.2011.12.017.
[24] Yang R, Zhang Z, Zhao Y, Chen G, Guo Y, Liu M, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites. Mater Charact 2015;106:62–9. https://doi.org/10.1016/j.matchar.2015.05.019.
[25] Ostovan F, Amanollah S, Toozandehjani M, Shafiei E. Fabrication of Al5083 surface hybrid nanocomposite reinforced by CNTs and Al2O3 nanoparticles using friction stir processing. J Compos Mater 2020;54:1107–17. https://doi.org/10.1177/0021998319874849.
[26] Mirjavadi SS, Alipour M, Hamouda AMS, Matin A, Kord S, Afshari BM, et al. Effect of multi-pass friction stir processing on the microstructure, mechanical and wear properties of AA5083/ZrO2 nanocomposites. J Alloys Compd 2017;726:1262–73. https://doi.org/10.1016/J.JALLCOM.2017.08.084.
[27] ELSayed EM, Ahmed MMZ, Seleman MMEls, EL-Nikhaily AE. Effect of Number of Friction Stir Processing Passes on Mechanical Properties of SiO2/5083Al Metal Matrix Nano-Composite. Journal of Petroleum and Mining Engineering 2017;19:10–7. https://doi.org/10.21608/JPME.2017.38325.
[28] Al-Qutub AM, Khalil A, Saheb N, Hakeem AS. Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes. Wear 2013;297:752–61. https://doi.org/10.1016/J.WEAR.2012.10.006.
[29] Abdeltawab NM, Esawi AMK, Wifi A. Investigation of the Wear Behavior of Dual-Matrix Aluminium–(Aluminium–Carbon Nanotube) Composites. Metals 2023, Vol 13, Page 1167 2023;13:1167. https://doi.org/10.3390/MET13071167.
[30] Bharti S, Ghetiya ND, Patel KM. Micro-hardness and wear behavior of AA2014/Al2O3 surface composite produced by friction stir processing. SN Appl Sci 2020;2:1–16. https://doi.org/10.1007/S42452-020-03585-2/FIGURES/13.
[31] Luo J, Liu S, Paidar M, Vignesh RV, Mehrez S. Enhanced mechanical and tribological properties of AA6061/CeO2 composite fabricated by friction stir processing. Mater Lett 2022;318:132210. https://doi.org/10.1016/J.MATLET.2022.132210.
[32] Wang Y, Paidar M, Eslami-Farsani R, Ahmadi-Danesh-Ashtiani H, Salman S, Mehrez S, et al. Friction surfacing of AA6061 on AA5083 aluminium alloy with adding 316 stainless steel powders: Effect of volume fraction of reinforcements. Journal of Materials Research and Technology 2024;30:1800–5. https://doi.org/10.1016/J.JMRT.2024.03.066.
[33] Nabi S, Rathee S, Wani MF, Srivastava M. Effect of multiple passes on the properties of Al-5052/SiC surface composites fabricated via friction stir processing. Mater Chem Phys 2024;314:128819. https://doi.org/10.1016/J.MATCHEMPHYS.2023.128819.
[34] Leszczyńska-Madej B, Madej M, Wąsik A, Węglowska A. Microstructural homogenization and mechanical enhancement of aluminium matrix composites via multi-pass friction stir processing with SiC reinforcements. International Journal of Advanced Manufacturing Technology 2024;134:2035–50. https://doi.org/10.1007/S00170-024-14252-W/FIGURES/15.
[35] Moradi Faradonbeh A, Shamanian M, Edris H, Paidar M, Bozkurt Y. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior. J Mater Eng Perform 2018;27:835–46. https://doi.org/10.1007/S11665-018-3131-2/FIGURES/17.
[36] Parizi MT, Ebrahimi GR, Ezatpour HR, Paidar M. The structure effect of carbonaceous reinforcement on the microstructural characterization and mechanical behavior of AZ80 magnesium alloy. J Alloys Compd 2019;809:151682. https://doi.org/10.1016/J.JALLCOM.2019.151682.